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Rapid antibiotic-resistance predictions from
genome sequence data for Staphylococcus aureus
and Mycobacterium tuberculosis
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The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug

resistance in clinical samples, and improvements in global surveillance. Here we show how

de Bruijn graph representation of bacterial diversity can be used to identify species and

resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus

and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor’) that takes raw

sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop.

For S. aureus, the error rates of our method are comparable to gold-standard phenotypic

methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an inde-

pendent validation set, n¼470). For M. tuberculosis, our method predicts resistance with

sensitivity/specificity of 82.6%/98.5% (independent validation set, n¼ 1,609); sensitivity is

lower here, probably because of limited understanding of the underlying genetic mechanisms.

We give evidence that minor alleles improve detection of extremely drug-resistant strains,

and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing

techniques for these purposes.
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T
he marked increase in antibiotic use in health care and
agriculture since the 1940s has driven a rise in frequency of
drug-resistant bacterial strains, which now present a global

threat to public health. Clinical isolates resistant to most drugs
have now been seen for many species including Mycobacterium
tuberculosis, Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Neisseria gonorrhoeae, Acinetobacter
baumannii and Pseudomonas aeruginosa1. Antimicrobial suscept-
ibility testing is therefore now central to the treatment of serious
bacterial infections diagnosed by culture, and is used to determine
the protocols for first-line antibiotic use when culture is not
available. At present, phenotyping tests take at least 1–2 days to
complete for rapidly growing bacteria such as S. aureus, and can
take weeks in slow-growing bacteria such as M. tuberculosis.

Microbial genome sequencing has the potential to substantially
increase the speed of antibiotic resistance detection for many
pathogens2 and in addition provides valuable information on
relatedness that could contribute to surveillance. The key
biological constraint is the extent of our understanding of the
genotype-to-phenotype correspondence—that is, the genotype
needs to be sufficiently predictive of resistance. Increasingly, this
correspondence is high for many bacterium/drug combinations.
For example, Gordon et al.3 recently demonstrated that a curated
panel of mutations and genes known to cause drug resistance in S.
aureus was sufficient to predict resistance for 12 antibiotics with a
sensitivity of 97% and specificity of 99%. Thus, at least for one
species, a genotype-based method could deliver results with
accuracy suitable for use in a clinical laboratory.

We set out to develop methods applicable to standard clinical
samples, and solve the multiple computational challenges that act
as barrier to routine and rapid deployment of such a system in
clinical practice. These challenges include not only the need to
determine species and predict resistance, but also developing a
framework extensible to many species, and ensuring accessibility
of the tool to a user base who may be unskilled in bioinformatics.
Furthermore, although clinical samples currently undergo proto-
cols that tend to remove diversity (for example, blood culture for
S. aureus and solid/liquid culture for M. tuberculosis), future
developments to reduce bed-to-diagnosis time will surely involve
reductions in culture time, and potentially increase the levels of
diversity in the sample. Thus we set out to build a system robust
to mixture, and to establish whether an appreciable proportion of
phenotypic resistance was explained by low-frequency alleles.

Methods using genome sequence data for species identification
range from the specific4 to the sensitive5, but generally
performance is measured globally in terms of detection of
species presence. However, for clinical use we need considerable
flexibility in tuning sensitivity and specificity for different species,
potentially weighted to minimize clinical risk. For example, there
may be a species associated with high mortality (for example,
S. aureus) that can occur in samples mixed with other species (for
example, coagulase-negative staphylococci (CoNS), which are
common contaminants of blood cultures, being present on the
skin through which the blood was taken), and that may even
share the same resistance genes and thus confound inference.

Various methods have been used for genotyping resistance
features: mutations and genes have been detected by whole-
genome assembly3, genes by assembly and BLAST6, or single
nucleotide polymorphisms (SNPs) and indels by mapping7,8.
These methods have been demonstrated to have adequate
performance in some circumstances. However, traditional
whole-genome bacterial assembly is fundamentally based on the
assumption that all data comes from a single haploid genome9,
and so is ill-suited for mixed samples, and mapping to a single-
reference results in error rates that depend on genetic distance of
the sample from the reference10. There are pre-existing tools for

expert users that incorporate resistance prediction6,11,12, none of
which handle the issue of contaminating related species in clinical
samples, or minor clones—we include comparative data below.

Here we aim to move beyond proof-of-concept of how
sequencing might work in the clinic, to a general framework
for genotype-based antimicrobial-resistance prediction, with
concrete implementations for two species where drug resistance
is of global concern: S. aureus and M. tuberculosis. The user
should be able to obtain a report interpretable by a clinician by
simple drag-and-drop of raw sequence data file. We evaluate
extensively against clinical gold standards using current
(Illumina) sequence data, including the impact of minor
population detection. We notice that minor alleles improve
ability to distinguish multi-drug resistant (MDR) from exten-
sively drug-resistant (XDR) tuberculosis. We demonstrate that
our method also works with an emerging strand-sequencing
technology (Oxford Nanopore Technologies (ONT), MinION),
giving perfect concordance with phenotype after just 7 h of
sequencing, both for SNP-based and gene-based resistance.
Finally, we discuss what is needed to apply our framework to
other species.

Results
Using population genome graphs for genotyping. We show in
Fig. 1a a cartoon of the genetic diversity in a bacterial species and
two options for building a reference variation structure. In option
(i) we show the standard approach, where we select an arbitrary
strain (strain 1) to be the reference genome, along with one copy
of each plasmid gene. In this work we have developed an alternate
approach, shown in option (ii). We start with a curated knowl-
edge base of resistant/susceptible alleles, and assemble a de Bruijn
graph13 of them on different genetic backgrounds, along with
many examples of resistance genes. This forms our reference
graph. In Fig. 1b we show the corresponding analyses of a mixed
sample. The traditional approach is shown in option (i), whereby
sequence reads are mapped to the reference genome and genes,
requiring the mapping and inference to cope with the divergence
between sample strains and the reference. Our approach (option
(ii)) directly compares the de Bruijn graph of the sample with the
reference graph. This results in statistical tests for the presence of
resistance alleles that are unbiased by choice of reference or
assumptions of clonality. Moreover, these tests will improve as
the catalogue of diversity in the species grows. Our approach is
implemented in a software application called Mykrobe predictor.
See Methods section for details.

S. aureus species identification. All the data sets in this study are
Illumina sequence data sets, and are described in Methods
section, Supplementary Fig. 1 and Supplementary Table 1. We
designed several panels of probes for detection of S. aureus,
S. epidermidis, S. haemolyticus or other CoNS (see Methods
section for details). We then evaluated our predictions on a
separate validation set (St_B), combining 471 S. aureus samples
(St_B1, Supplementary Data 3), and 221 CoNS (St_B2,
Supplementary Data 4) and show the results in Fig. 2a. This
confirmed an appropriately low rate of missing a true S. aureus
sample (0/492, upper 97.5% confidence interval 0.7%). We
studied the three non-S. aureus samples that appeared to be
misclassified by Mykrobe predictor as S. aureus, and concluded
that they were mis-labelled in the National Center for Bio-
technology Information’s Short Read Archive (SRA), as both
BLAST and OneCodex (http://beta.onecodex.com) agreed with
Mykrobe predictor that these were S. aureus. We also created 540
in silico mixtures of S. epidermidis/S. aureus and S. haemolyticus/
S. aureus (simulation 1) and correctly detected presence of
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S. epidermidis and S. haemolyticus minor infections in 100% of
cases at frequencies above 0.7% (see Supplementary Fig. 2 and
Methods section).

Comparing S. aureus predictions with consensus phenotype.
We used a training set (St_A1) of 495 and a validation set (St_B1)
of 471 S. aureus isolates that had been sequenced and phenotyped
after being collected in Oxfordshire, UK (samples and pheno-
typing described in Methods section, Supplementary Fig. 1;
accession codes and phenotyping data are given in
Supplementary Data 1 and 3). We show in Fig. 2b a phylogeny
(construction described in Methods section) of these samples,
showing that both the training set (orange tips of tree) and
validation set (blue) are distributed across the entire
phylogeny. We also confirmed that, although enriched for the
S. aureus clonal complexes seen in UK hospitals (CC22/CC30), all
major clonal complexes were represented (Supplementary Fig. 3).
A subset of these samples (n¼ 94) has been compared in a
previous publication with international clinical strains (US, UK,
Japan and Australia), animal-associated strains (bovine, ovine
and poultry) and historic clinical strains (1943, 1952 and 1960) to
show that Oxfordshire S. aureus diversity, while not exhaustive,
broadly recapitulates that of the world14.

All validation samples were phenotyped using two methods:
a British Society for Antimicrobial Chemotherapy (BSAC) disc
test15 and the Phoenix automated microbiology system (BD
Biosciences, Sparks, MD, USA), except for trimethoprim, for
which only disc testing was performed. A ‘consensus’ phenotype
was defined to be either that called by disc/Phoenix where they
agreed, or the result of an Etest and/or nitrocefin (for penicillin)

where disc and Phoenix were discrepant. This allowed us to
estimate error rates for disc and Phoenix as well as for Mykrobe
predictor.

Considering each resistance mutation and gene in turn, our
prediction algorithm first genotypes a sample into one of three
categories: clonal susceptible, minor frequency-resistant allele, or
major frequency-resistant allele. It then predicts a resistant
phenotype for samples containing resistant alleles of sufficiently
high frequency, where ‘sufficiently high’ is estimated using the
training set. Note that for antibiotics where resistance is mediated
by genes on variable copy-number plasmids (erythromycin and
tetracycline) a minor population with high copy number of a
resistance-carrying plasmid may sometimes be called as major
resistant. After using the training data set to estimate parameters
for our statistical model (see Methods section, and for results on
training set, see Supplementary Table 2), we applied Mykrobe
predictor to the validation set.

Figure 2c,d shows in red the false-negative calls (panel c) and
false-positive calls (panel d) for Mykrobe predictor and the two
laboratory methods: disc and Phoenix. If we consider Fig. 2c first,
and focus on the 7 drugs with more than 10 resistant samples,
then Mykrobe predictor misses fewer resistant calls than the other
individual phenotypic methods for all drugs except ciprofloxacin.
Ciprofloxacin had a false-negative rate of 4.6%; we were unable to
determine the reason for these missed resistant predictions,
although we note that disc and Phoenix had similar problems,
and that this drug has at least one uncharacterized mechanism for
resistance16. For the three drugs (methicillin, penicillin and
erythromycin) for which our study has enough resistant samples
to meet US Food and Drug Administration (FDA) criteria (false-
negative rate o1.5%, upper 95% confidence interval o7.5%),
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Figure 1 | Representation and analysis of bacterial genetic variation. (a) Reference construction methods. Left: chromosomes with SNPs (black circles)

and genes (coloured blocks) from strains of a bacterial species. Option (i) picks strain 1 to be reference, plus one example of each plasmid resistance gene.

In option (ii), our method is to build the de Bruijn graph of all strains, restrict to loci of interest, and annotate resistance (red) and susceptible (green)

alleles. For SNPs, local graph topology is determined by adjacent SNPs (black dots) and indels (black blocks). (b) Mixed infection read analysis. Left:

sequence data from a clinical sample harbouring major (90%) and minor (10%) strains. Right: option (i) maps the reads to the reference genome to detect

SNPs and genes. In option (ii), our approach, we construct the de Bruijn graph of the sample and compare with the reference graph. We see a specific SNP

is present both in the sample and the reference graph (marked X, Y). Both the resistant (red) and susceptible (green) alleles are present in the sample, and

within-sample frequency is estimated from sequencing depth on each allele.
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Figure 2 | Species and susceptibility predictions for S. aureus. (a) Species classification results on species validation set St_B (n¼ 692). Red shading of

box indicates errors we wish to minimize. S.aur, S. aureus; S.epi, S. epidermidis; S.hae, S. haemolyticus; O.st, other staphylococcus; Non-st, non staphylococcal.

‘Truth (SRA)’ is the species as annotated in the SRA metadata, which was used as truth for comparisons. (b) Phylogeny of S. aureus samples used in

evaluating resistance prediction, with tips marked orange or blue to represent samples in training set (St_A1, n¼495) or validation set (St_B1, n¼471).

Drug resistance is indicated in concentric rings around the phylogenetic tree; plasmid-mediated resistance (erythromycin in purple, tetracycline in black) is

distributed across the whole tree. The two multi-drug resistant clades are in UK hospital clonal complexes CC22 and CC30. (c) Proportion of resistant

S. aureus samples (St_B1) correctly identified as resistant by Mykrobe predictor (orange), disc test (dark blue) and Phoenix (light blue) compared with

consensus, with false negatives in red. Note the break in the y axis between 80 and over 300 to show penicillin on same plot. (d) As c, but showing

proportion of susceptible samples correctly identified as susceptible—false positives in red. A small number of failed disc tests for fusidic acid in panel c

result in a lower bar. PEN, penicillin; ERY, erythromycin; CIP, ciprofloxacin; METH, methicillin; FUS, fusidic acid; CLIN, clindamycin; TET, tetracycline; RIF,

rifampicin; GEN, gentamicin; MUP, mupirocin; TRIM, trimethoprim; VAN, vancomycin.

Table 1 | Comparison of Mykrobe predictor S. aureus resistance prediction results with consensus phenotype for validation set

(St_B1).

Drug FN(R) FP(S) VME (95% CI) ME (95% CI) PPV (95% CI) NPV (95% CI)

PEN 1 (377) 11 (94) 0.3% (0.0–1.5%) 11.7% (6.0–20.0%) 97.2% (95.0–98.6%) 98.8% (93.5–100%)

ERY 1 (79) 0 (392) 1.3% (0.0–6.9%) 0.0% (0–0.9%) 100% (95.4–100%) 99.7% (98.6–100%)

CIP 3 (65) 1 (406) 4.6% (1.0–12.9%) 0.2% (0.0–1.4%) 98.4% (91.5–100%) 99.3% (97.9–99.8%)

METH 0 (54) 0 (417) 0.0% (0–6.6%) 0.0% (0–0.9%) 100% (93.4–100%) 100% (99.1–100%)

FUS 0 (41) 4 (430) 0.0% (0–8.6%) 0.9% (0.3–2.4%) 91.1% (78.8–97.5%) 100% (99.1–100%)

CLIN 0 (25) 1 (97) 0.0% (0–13.7%) 1.0% (0.0–5.6%) 96.2% (80.4–99.9%) 100% (96.2–100%)

TET 0 (17) 1 (454) 0.0% (0–19.5%) 0.2% (0.0–1.2%) 94.4% (72.7–99.9%) 100% (99.2–100%)

RIF 0 (5) 0 (466) N/A 0.0% (0–0.8%) N/A 100% (99.2–100%)

GEN 1 (3) 0 (468) N/A 0.0% (0–0.8%) N/A 99.8% (98.8–100%)

MUP 0 (2) 0 (348) N/A 0.0% (0–1.1%) N/A 100% (98.9–100%)

TRIM 0 (1) 1 (188) N/A 0.5% (0.0–2.9%) N/A 100% (98.0–100%)

VAN 0 (0) 0 (471) N/A 0.0% (0–0.8%) N/A 100% (99.2–100%)

CI, confidence interval; CIP, ciprofloxacin; CLIN, clindamycin; ERY, erythromycin; FDA, food and drug administration; FN, false-negative calls; FP, false positives; FUS, fusidic acid; GEN, gentamicin;

ME, major error rate (false-positive rate); METH, methicillin; MUP, mupirocin; N/A, not applicable; NPV, negative predictive value; PEN, penicillin; PPV, positive predictive value; R, total number of

resistant samples; RIF, rifampicin; S, total number of susceptible samples; TET, tetracycline; TRIM, trimethoprim; VAN, vancomycin; VME, very major error rate (false-negative rate).

Resistance prediction results for Mykrobe predictor on the S. aureus validation set (St_B1), treating the consensus phenotype as gold standard except for trimethoprim (which Phoenix does not test)

where the disc test was used as truth. VME only shown where R410. ME only shown where S410. Error rates shown with 95% CI calculated by Clopper–Pearson. Error rates meeting the FDA

requirements are in bold.
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Mykrobe predictor met these criteria17. The data underlying this
plot are presented in Table 1. The results for the disc and Phoenix
tests on the validation set are in Supplementary Tables 3 and 4.

The equivalent plot for false-positive calls is shown in Fig. 2d.
For all drugs except penicillin and methicillin, all methods have
low false-positive rates, below the FDA threshold of 3%. All
methods had unacceptably high error rates for penicillin (11.7%
for Mykrobe predictor, 15.1% for disc and 16.0% for Phoenix).
However, it is known that for penicillin, phenotyping methods
may under-detect resistance18–20, and so the apparent high false-
positive rate is likely to be artefactual—that is, under-detecting
resistance by disc, Phoenix and nitrocefin might lead to an
(incorrect) consensus susceptible call. Indeed it has been
previously shown3 that for some samples with weak beta-
lactamase activity (exhibited by a very slowly developing
nitrocefin test), resistance was not detected by either disc or
Phoenix. Mykrobe predictor had an acceptable false-positive rate
for methicillin of 0.0%, compared with disc (0.5%) and Phoenix
(18.9%). This high false-positive rate for Phoenix was unexpected;
either both disc and Etest under-detected resistance (they are
both diffusion methods and might have correlated errors), or
these were indeed false calls from Phoenix.

For comparison with a commercial software package, we also
ran SeqSphere6 on the validation set, which made predictions for
six drugs where resistance was gene based. Since SeqSphere
predicted all 471 samples to be resistant to erythromycin and
clindamycin, we excluded these drugs. Other results were broadly
comparable to Mykrobe predictor and the phenotyping methods.
See Supplementary Table 5 and Supplementary Figs 4 and 5 for
full results.

Finally, our strong prior expectation was that there would be
limited within-sample diversity, due to blood culture followed by
storage processes, and removal of contaminated samples (see
Methods section). Mykrobe predictor confirmed this expectation
and made only 6 minor calls out of 11,592 (12 drugs times 966
training and validation samples). However, we noted with interest
that for the four samples where Mykrobe predictor made false-
positive (major) resistant calls that were not made by disc or
Phoenix, re-running the disc test resulted in contradictory results.
Two changed to resistant (ciprofloxacin and erythromycin)
and two produced heteroresistant phenotypes (erythromycin,
tetracycline, see Fig. 3). This behaviour is consistent with a disc
test presented with mixed strains or with variable plasmid loss

(that would explain the three erythromycin/tetracycline results).
All four samples had low levels of chromosomal diversity
(between 12 and 25 ‘heterozygous’ SNPs, Methods section),
ruling out contamination unless by a closely related strain.

Simulating minor infections with empirical data. To determine
the power of our method to detect minor resistant populations,
we ran Mykrobe predictor on 27,000 in silico ‘mixed infections’,
created by mixing sequence data from different samples
(simulation 2, see Methods section). We show in Fig. 4a the
power to detect alleles at low frequency. Our method has greatest
power to detect resistance genes that lie on multi-copy plasmids,
with detection power reaching 94 and 100% by the time the
population frequency is 2% for tetracycline and erythromycin,
respectively. For other drugs, detection power exceeds 90% once
the subpopulation exceeds 8% frequency. This ability to genotype
low-frequency alleles did not come at the cost of false-positive
phenotypic resistance predictions—apart from the few false-
positive calls that Mykrobe predictor made in pure samples
(Table 1), there were no additional false positives out of 189,000
calls (27,000 mixtures � 7 drugs).

One goal for Mykrobe predictor was to avoid the combination
of detecting mecA from mecA-containing-CoNS while failing to
detect the CoNS species itself—thus causing a miscall of MRSA.
We therefore used the simulated mixtures of S. aureus and CoNS
(simulation 1), to estimate the discovery power for low-frequency
CoNS species, and compared with that for low-frequency mecA in
simulation 2—results are shown in Fig. 4b. We were able to
confirm that in these mixtures such miscalls were indeed unlikely.
At 1% frequency, the estimated power to detect the presence of a
CoNS species was 100% (red curve), but power to detect mecA
was 0.33 (blue curve). Above 3% frequency, power to detect each
was 100%.

Virulence elements. Antimicrobial resistance is not the only
medically relevant phenotype that might be revealed by sequen-
cing. S. aureus has a large number of virulence elements that
might prove valuable to genotype. As an example, we considered
Panton–Valentine leukocidin, a cytotoxin that kills leukocytes
and is associated with tissue necrosis21. We incorporated tests for
presence of the Panton–Valentine Leukocidin genes lukPV-S
and lukPV-K into Mykrobe predictor and applied to sequence
data from 67 S. aureus clinical isolates from an outbreak
(Supplementary Data 5). The results were 100% concordant
with PCR tests for the presence of these genes (23 negative and
44 positive).

Identification of mycobacterial species in clinical samples.
Species within the M. tuberculosis complex (MTBC) cause
tuberculosis, but clinical samples may be other mycobacterial
species. We defined probes (described in Methods section) for
detection of four MTBC species (M. tuberculosis, M. bovis,
M. africanum and M. caprae) and 40 nontuberculous myco-
bacteria (NTM) species including M. abscessus, M. avium and
M. intracellulare. Co-infection with both MTBC and NTM, which
is known to occur22,23, would be reported if present. We also use
SNPs that have been defined in a previous publication24 to
identify lineages within the MTBC. In terms of desired error
profile, the main aim would be to minimize misclassifying a
MTBC as a NTM, or vice versa. Misidentifying species within
MTBC has limited impact on choice of treatment, except that
M. bovis is known to be intrinsically resistant to pyrazinamide
and some substrains of the Bacille Calmette–Guérin strain of
M. bovis are known to be resistant to isoniazid.

E
5

Figure 3 | Photograph of BSAC disc test showing heteroresistant

phenotype. Seen on re-running Erythromycin disc test on a sample

(accession: ERS398183) where Mykrobe predictor had called a false

positive (resistant) that neither disc nor Phoenix had called.
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We then evaluated species prediction on the union of data sets
MTBC_A2 (1157 MTBC clinical isolates, Supplementary Data 7)
and Myco_Retro (147 Mycobacterial isolates, Supplementary
Data 10), where species had been identified by Hain assay,
showing results in Fig. 5a. No samples were misclassified between
MTBC and NTM, but there were four M. africanum and two
M. tuberculosis samples that were only resolved to MTBC, and
one M. tuberculosis sample misidentified as M. africanum. See
Supplementary Table 6 for full results. Finally we tested our
identification of the lineages as defined by Gagneux and
co-workers in ref. 25 by comparing with the lineage as
identified by their own tool, KvarQ11 on dataset MTBC_A2
and found 100% concordance.

M. tuberculosis predictions match commercial assays. We
use a ‘training’ data set MTBC_A of 1,920 MTBC isolates with
Illumina sequence data and associated drug-susceptibility test
(DST) data (see Methods section, Supplementary Fig. 1 and
Supplementary Table 1 with accession codes in Supplementary
Data 6–8) from Oxfordshire, Birmingham, Sierra Leone and
South Africa to fit the frequency threshold of 10%, above which a
resistance allele is modelled as causing phenotypic resistance (see
Methods section). We used an equivalent separate data set
(MTBC_B, Supplementary Data 9) of 1,609 further isolates
from Uzbekistan, Germany, South Africa and the UK to validate.
All these samples had been previously collected for an indepen-
dent study26 on the discovery of mutations predictive of
resistance.

Figure 5b shows a phylogeny of these samples, with training
and validation samples coloured at the branch tips in orange and
blue, respectively. The validation set does show some clustering
within the phylogeny, due to the large number of samples from
Uzbekistan in the validation set, with a resulting higher number
of XDR TB samples in the validation set.

Our understanding of the genetic basis for resistance in
MTBC is incomplete. Common resistance mutations are on
commercial line-probe assays, and explain B85–95% of observed
resistance to the two primary first-line drugs (isoniazid and
rifampicin)27–29. These assays have lower sensitivity for the third

first-line drug (ethambutol) and second-line drugs30, and do not
attempt to predict resistance for the fourth first-line drug
(pyrazinamide), which is poorly understood. We built a panel
of resistance mutations based on the Hain and AID line-probe
assays, with a small number of additional mutations from the
literature (see Methods section for details). For comparison with a
method using a similar panel but without minor calls, we also ran
the KvarQ tool11.

Figure 5c,d shows the proportion of resistant and susceptible
samples that were called correctly for each drug. As expected, for
first-line drugs rifampicin, isoniazid and ethambutol, the two
methods (Mykrobe predictor and KvarQ) have similar power to
detect resistance (93.7%, 84.3%, 71.6% versus 90.8%, 83.2%,
76.3%) and similar false-positive rates (1.0%, 1.4%, 4.2% versus
1.0%, 1.4%, 4.5%)—in line with expected performance of the
Hain assay (Supplementary Figs 6 and 7).

Fewer samples were phenotyped for second-line drugs, but
Mykrobe predictor had noticeably higher sensitivity for amikacin
and capreomycin (89.8% and 83.6%, respectively) than KvarQ
(74.6 and 70.9%), see below. There were very few false calls for
second-line drugs for either method, except for a high (7%) error
rate for KvarQ for streptomycin. See Supplementary Tables 7–10
for full results.

Slow-growth rpoB SNPs and limitations of the gold standard.
There were 12 false-positive rifampicin-resistance calls, all major
calls in the gene rpoB. Three were L452P mutations, known to
cause only low-level resistance31,32. However, on examination, we
found the remaining nine calls may reflect limitations of gold-
standard culture-based phenotyping. These were either mutations
known to slow growth (S450L (n¼ 3)33, S450W (n¼ 1)33,34,
Q432 (n¼ 1)33,35), or overlap a 10 bp deletion affecting growth
(Q429H (n¼ 1), L430P (n¼ 3)36). Since the proportion method
used in M. tuberculosis susceptibility tests fundamentally
measures growth rate as a proxy for resistance37, slow growth
can lead to false susceptible DST results for samples with these
mutations38–41. Thus, 75% of the false-positive rifampicin calls
from Mykrobe predictor may actually be resistant in vivo, but
called susceptible by DST due to the nature of the test. Indeed
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Figure 4 | Power to detect minor populations. (a) Simulation 2: power to detect minor resistant alleles in 27,000 in silicomixtures created by taking 1,000

pairs of S. aureus samples and mixing each pair in 27 different ratios. As above, we do not estimate false-negative rates for drugs where we have

o10 resistant samples, as confidence intervals would be unreasonably large. Power is greatest for the drugs where resistance genes reside on multi-copy

plasmids, namely erythromycin and tetracycline. Tet, tetracycline; Ery, erythromycin; Meth, methicillin; Pen, penicillin; Fuc, fusidic acid; Cip, ciprofloxacin.

(b) Power to detect low-frequency coagulase-negative species (red, simulation 1, N¼ 540, described above) is consistently higher than power to detect

mecA (blue, simulation 2, N¼ 27,000, frequencies down to 1% only due to large sample numbers; dotted lines extrapolate linearly from points at 1

and 2%), which causes methicillin resistance in S. aureus. Thus, the risk of detecting mecA but not detecting the coagulase-negative species it comes

from is limited.
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there is evidence that such rpoBmutations may be associated with
poor outcome42,43.

Minor alleles increase power to distinguish XDR fromMDR TB.
Mykrobe predictor predicted 56 samples were phenotypically
resistant owing to minor alleles, across the 9 drugs and 1,609
samples in the MTBC_B validation set (Supplementary Data 9).
Whole-genome analysis of these samples (see Methods section)
found a median of 16 heterozygous sites per sample, consistent
with mixed infections (local transmission or in-host evolution)44,
although we cannot exclude the possibility of contamination with
a closely related strain.

We show in Fig. 6 the proportion of true positives due to minor
resistant calls in the validation set, showing a clear demarcation
between first- and second-line drugs. Power to predict phenotypic
resistance to second-line drugs amikacin and capreomycin was
significantly increased by the detection of minor populations:
from 74.5 to 83.6% for capreomycin and 78.0 to 89.8% for
amikacin. In addition, although here the numbers were small
(N¼ 13), power increased from 38.5 to 61.5% for ofloxacin. This
increase in sensitivity did not come at the price of a loss of
specificity. However, the effect was only seen in our validation set
that had the majority of XDR samples in our data—these minor

alleles were mostly (27/39) found in validation samples from
Uzbekistan.

Nanopore sequencing of S. aureus. Having evaluated perfor-
mance thoroughly on two species using Illumina data, we tested
Mykrobe predictor on data from the ONT MinION single-
molecule sequencing machine. Since the per-base error rate is
high (between 10 and 30% per base, depending on whether the
molecule has been sequenced in one or two directions, termed
‘1d reads’ and ‘2d reads’, respectively), we modified Mykrobe
predictor to expect an error rate of 10%, and to ignore the quality
score for ONT data. We took a MDR S. aureus isolate from a
clinical sample taken in 2014, and sequenced its genome with
both the Illumina MiSeq and a ONT MinION (see Methods
section for details) and ran Mykrobe predictor. The MiSeq run
took 24 h and produced after cutting reads at bases with quality
below 10, 368x of 122 bp reads. The MinION run took 24 h
and generated 39x of ‘2d’ reads, with min/mean/max length
113 bp/4.7 kb/48 kb. In both cases, Mykrobe predictor correctly
predicted that the sample was resistant to penicillin, methicillin,
gentamicin, trimethoprim, erythromycin, ciprofloxacin and
clindamycin, and susceptible to fusidic acid, rifampicin, tetra-
cycline, vancomycin and mupirocin. All of the resistance calls
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Figure 5 | Species predictions for mycobacteria and resistance predictions for MTBC. (a) Species classification results on a validation set
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resolution from Mykrobe predictor than PCR (light green). M.tb., M. tuberculosis; M.af., M. africum; M.bv., M. bovis. See Supplementary Table 1 for details of

‘truth’ species. (b) Phylogeny of MTBC samples with phenotype data, with tips marked orange or blue to indicate training set (MTBC_A, n¼ 1,920) or

validation set (MTBC_B, n¼ 1,609). Drug resistance is shown in concentric rings around the phylogenetic tree. Resistance exists across the phylogeny,

especially against isoniazid (light blue), with a clustering of multi-drug resistance in the Beijing lineage. (c) Proportion of resistant MTBC samples correctly

identified as resistant by Mykrobe predictor (yellow) and KvarQ (light blue) compared with DSTphenotype—false negatives in red. (d) As c, but showing
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were due to detection of genes, except for ciprofloxacin where a
S-4L mutation at position 84 in the gene gyr was detected. No
false-positive resistance SNPs were called. Furthermore, by
truncating the MinION output file we showed that these results
could have been obtained with just 7 h of sequencing.

Software performance and usability. Mykrobe predictor
memory use is comparable with that typically used by a web
browser such as Chrome with multiple tabs open, and CPU
requirements are low. Mykrobe predictor has been run on a
Google Nexus 10 tablet, a Samsung Core Duos phone and a
Raspberry Pi Model B. We give in Table 2 some performance
statistics for S. aureus (abbreviated as Sa) and M. tuberculosis
(abbreviated as Mtb), with comparison data from alternative tools
SeqSphere6 (which uses whole-genome assembly), and KvarQ11

(which uses kmer detection).

Discussion
Rapid determination of antimicrobial resistance profile is of
critical importance to patient care for many serious bacterial
infections and has wider implications for determination of
treatment protocols and national surveillance. We have developed

a software application, extensible to many bacterial species, called
Mykrobe predictor, which can identify species, resistance profile
and other genomic features such as virulence elements and
phylogenetic lineage, within 3min on a standard laptop. We have
provided two implementations, for S. aureus and M. tuberculosis,
and validated them extensively against clinical gold standards.
Our results for S. aureus (overall sensitivity and specificity above
99%) are comparable to or better than phenotyping methods
(BSAC disc test, Phoenix). For M. tuberculosis, specificity is high
(98.5%) and sensitivity of 82.6% matches the line-probe assays
from which our resistance panel was constructed, but still is
below that of the gold standard of DST based on solid
(Löwenstein–Jensen) culture. However, as new resistance-causing
mutations are determined, Mykrobe predictor can be easily
updated and tested, and unlike a line-probe assay or the
automated Xpert-Mtb/Rif (Cepheid) assay, is unaffected by
number of resistance-causing mutations in the panel.

We detail in Fig. 7a how the timelines for a proposed S. aureus
sequencing workflow would compare with the clinical protocols
implemented at Oxford University Hospitals clinical laboratory.
Using an Illumina MiSeq 16.5 h run, our proposed sequencing
workflow would provide a full set of predictions for all drugs at
36 h, ahead of Oxford University Hospital by 12 h. At other
institutions, one might use MALDI-TOF or alternate rapid
methods to identify the species or even methicillin resistance
directly on blood culture45,46 but these cannot give the
full susceptibility profile (nor any information on ancestry,
epidemiology or virulence).

The acceleration provided by sequencing is even greater for
M. tuberculosis, where the standard process to run first-line drug
tests and, if necessary, the second-line tests afterwards, takes
months (Fig. 7b). In principle these could be run in parallel, but
the cost is prohibitive. By contrast, for the sequencing workflow,
most clinical isolates become MGIT positive within 2 weeks.
Thus, if sample preparation and sequencing is completed within 2
days of positivity47, one can get results in 2 weeks. This is a gain
of somewhere between 5 and 17 weeks compared with gold-
standard DST, depending on whether the sample is resistant to
first-line drugs.

We have demonstrated that detection of simple minor resistant
infections can be achieved in a robust and automated fashion,
assuming at most two strains are present. We are unaware of any
other resistance prediction tool that allows this. In our study,
Mykrobe predictor classified 3.5%/4.9% of our M. tuberculosis
training/validation samples as having minor resistant
populations, with median frequency of 6.8%/9.2%, respectively.
However, to match the results of the in vitro gold standard, we
only predicted a resistant phenotype for alleles above 10%
frequency. It remains an open question as to whether the lower
frequency alleles have a bearing on patient outcome, despite
generally failing to cause in vitro resistance.
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Figure 6 | Percentage of true positive resistant calls in M. tuberculosis

validation set due to minor alleles. Confidence intervals are calculated

using the Clopper–Pearson interval. Drugs with o10 resistant samples

were excluded to avoid overly large confidence intervals. For

aminoglycosides and quinolones, minor populations explain between

11–38% of true positive resistance predictions. ISO, isoniazid; RIF,

rifampicin; ETH, ethambutol; STREP, streptomycin; OFX, ofloxacin; AMI,

amikacin; CAP, capreomycin.

Table 2 | Performance and feature comparison of Mykrobe predictor, SeqSphere and KvarQ software.

Mykrobe predictor (Sa) SeqSphere (Sa) Mykrobe predictor (Mtb) KvarQ (Mtb)

RAM 100Mb 8Gb 100Mb 30Mb

Time/sample on laptop 1.5min — 2.75min 40min

Time/sample on server 44 s 19min 47 s 23min

CPU time (Mtb validation set) — — 1 day 30 days

CPU time (Sa validation set) 5.8 h 6.2 days — —

Speciation of clinical samples Yes No Yes No (MTBC only)

MTBC, Mycobacterium tuberculosis complex; Mtb, Mycobacterium tuberculosis; Sa, Staphylococcus aureus.

We show elapsed time for one sample on a laptop (Macbook Air with 8GB RAM) and a server (Dell PowerEdge R820 with 32 cores, 1 Tb RAM), and then for the entire S. aureus and M. tuberculosis

validation sets StB1 (n¼491) and MTBCB (n¼ 1609) respectively. We ran KvarQ on 1 thread for ease of parallelization and comparison, as recommended by the authors. However, we ran SeqSphere on 4

threads because to use one would have taken a prohibitively long time.
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For TB, initial treatment is with the preferred set of four first-
line drugs (rifampicin, isoniazid, ethambutol and pyrazinamide)
until it is identified that a drug-resistant strain is present, when
treatment is changed to second-line drugs, many of which are less
effective, less well-tolerated and more difficult to administer. The
spread of MDR TB48 (resistant to rifampicin and isoniazid) and

of XDR TB (MDR plus resistant to specific second-line drugs,
that is, quinolones and an ‘injectable’ such as capreomycin or
amikacin) is a major global health concern. In our validation set,
which contained the bulk of our XDR samples, we found minor
alleles improved power to predict resistance by 9.1/11.8/23.0%
for second-line drugs capreomycin, amikacin, and ofloxacin
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samples are undergo extended susceptibility testing by automated broth microdilution (brandname ‘Phoenix’), giving final results after another 18–24h (‘D’). For

the sequencing-based workflow (a,ii), the DNA extraction plus sample preparation takes 7.5h because samples are from blood culture, not colony isolates. With
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decision point ‘Y’, if the sample tests susceptible to all first-line drugs, no further testing is done. MGIT DST is repeated for pyrazinamide if the first test revealed

resistance to this drug. If there is resistance to any other drug, then solid culture DST is performed. If these tests show there is resistance to rifampicin then

another round of MGITculture followed by MGIT DST is done for second-line drugs. For sequencing-based approaches we show timelines for the present study

(b,ii) and a potential alternative (b,iii), which would reduce time-to-results to just over 2 weeks.
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respectively (also see Fig. 6). Thus, minor alleles (or hetero-
resistance) may have a significant role in distinguishing
MDR from XDR TB. However, since only 18%/44% of our
training/validation samples were phenotyped for at least one
quinolone or injectable, this finding needs replication with larger
data sets.

Recognizing that lack of bioinformatics expertise is a barrier to
clinical adoption, we provide drag-and-drop Windows and Mac
applications (see screenshots in Supplementary Figs 8–10) and a
linux version that could, for example, enable a cloud service.
Our demonstration that Mykrobe predictor can work on
low-specification hardware, such as a mobile phone or Raspberry
Pi is intended to enable future applications of resistance
determination in the field, in low-resource settings with no
internet access. Along these lines, the advent of portable single-
molecule sequencing machines that deliver long-read information
in real time will change the face of clinical microbiology. The
ability to sequence a single sample removes the need to batch
samples until an Illumina MiSeq sequencing run is justified,
reducing bedside-to-treatment time, and the long reads could
provide vital information on mixed infection composition. Our
N¼ 1 test of the Oxford Nanopore MinION machine offers only
proof-of-principle, but unlike one recent report49, we were able to
get fully concordant results for both gene and SNP-driven
resistance with only 13� coverage, without the high per-base
error rate causing any false SNP calls. Since Mykrobe predictor
can test the de Bruijn graph and assess confidence of resistance/
susceptibility approximately an order of magnitude faster than
MinION reads arrive, this could be done as the reads come in
from the machine, enabling a real-time decision to be made as to
whether to stop sequencing. In this case we could have stopped
after 7 h of sequencing, and throughput on this maturing
platform has improved considerably since then.

In terms of the path to clinical use of Mykrobe predictor, the
next steps for S. aureus and M. tuberculosis are further clinical
testing, and then obtaining regulatory approval. We will be
running Mykrobe predictor in parallel with the clinical workflow
in hospitals in Oxford, Leeds and Brighton (UK) for 3 months
starting in 2015 as part of a Health Innovation Challenge Fund
project. It is relatively simple to extend Mykrobe predictor to
other bacterial species by using a panel of known sites and genes,
as we did in this study. However, more generally, for a species
where resistance mechanisms are poorly characterized, one would
need to use a large training set with both whole-genome sequence
data and phenotype information for hypothesis-free discovery of
causal mutations or purely predictive markers. Some such studies
have been done50,51, and we expect many more.

There are two main limitations to the current implementation
of Mykrobe predictor. First, we suspect that incorporating a more
general model of mixtures, rather than simply major/minor
clones, will be of value when analysing M. tuberculosis samples
direct from sputum. Second, our sensitivity for M. tuberculosis is
low (82.6% across all drugs) compared with traditional DST, and
completely excludes the first-line drug pyrazinamide since known
mutations are poorly predictive. This issue, shared by all
molecular assays, can only be resolved by large-scale sequencing
and phenotyping studies.

Methods
Study design. The objectives of this study were:

(a) To show that our software program could deliver automated antimicrobial-
resistance predictions for two bacterial species given a pre-specified genotype-
to-drug-resistance mapping. The limitations of the pre-specified mapping
would place an upper bound on sensitivity—for S. aureus that upper bound
was above 99%, but for M. tuberculosis we followed the HAIN and AID assays,
expecting sensitivity of B82%. To achieve this, we used independent training

and validation sets previously obtained in other studies3,26. For both species,
the number of samples with resistant phenotypes was limiting, and we only
estimated false-negative rates where there were sufficiently many (410)
resistant samples in the validation set, reporting confidence intervals calculated
using the Clopper–Pearson interval.

(b) To handle contamination and mixture issues seen in clinical samples. We used
independent data sets for design of probes and validation. To include some
realistic sampling of species, the validation set for mycobacteria included the
set Myc_Retro consisting of all mycobacterial (meaning positive MGIT
culture) samples sent to the laboratories at the Oxford John Radcliffe Hospital
between 2 June 2013 and 29 January 2014.

(c) To observe whether minor resistant population detection could increase
predictive power of phenotypic resistance without compromising specificity in
the data sets collected.

All data sets used are described in Supplementary Fig. 2 and Supplementary
Table 1 with full sample information in Supplementary Data 1–11.

Phenotyping and sequencing of S. aureus data sets. Initial phenotyping of the
training and validation sets was described in detail in Gordon et al.3 The training
set was phenotyped using either the Vitek automated system (bioMerieux) or the
Stokes method disc diffusion52, whereas all validation samples were phenotyped
using two methods: a BSAC disc test15 and the Phoenix automated microbiology
system (BD Biosciences). For trimethoprim only disc testing was performed.

We removed 6 samples from the training data set and 20 samples from the
validation set that were contaminated (see section Contamination in S. aureus
genome sequence data below for details). All samples where there was discordance
between Phoenix and disc for any drug in Gordon et al.3 were rerun on Phoenix
(for all drugs) and previous results from Gordon et al.3 were discarded.

Samples were sequenced on Illumina HiSeq 2000 platform, with mean read
length (after cutting reads at bases with quality score below 10) of 87 bp and mean
depth of 87, as described in ref. 3.

Species identification in general. To ensure sensitivity to low-frequency
contaminating species, we wanted to use more than one probe (as opposed to
common methods based on single genes, for example, rpoB, gyrA and so on.),
which contained more sequence than a single gene. We developed a system for
designing a hierarchy of markers (contigs) that first separated two phylogroups
(S. aureus from CoNS, or MTBC from NTM), and then identified species present
within a phylo group. We first built a Bruijn graph by pooling several hundred
samples from both phylogroups, and pulled out all unique and unambiguous
contigs (‘unitigs’) and calculated the frequency of each contig in each phylo group.
We chose the most highly differentiated contigs to form marker panels to
distinguish the groups. This process was then run again to find contigs informative
at the species level.

Identification of staphylococcal species. The above process was applied to 731
staphylococcal isolates in training set St_A, which combines data sets St_A1
(532 clinical S. aureus isolates, Supplementary Data 1) and St_A2 (199 CoNS
isolates, Supplementary Data 2) , using Cortex13 with kmer size 15, to produce
probes (contigs) for phylogroups (S. aureus versus coagulase-negative
staphylococci) and species (S. aureus, S. epidermidis, S. haemolyticus, other
coagulase-negative species). We assume a positive Gram stain has been obtained,
and use 33 alleles of the catalase gene (Supplementary Table 11) to confirm
presence of staphylococci. The percentage of sequence in the probe panel found in
each training sample (‘recovery’) was plotted, and extreme outliers were ignored as
possible errors in the SRA metadata; detection thresholds were chosen based on
recovery in the training set: 90% for S. aureus, 30% for S. epidermidis and
S. haemolyticus, 10% for other staphylococci and 20% for the catalase gene.

S. aureus resistance panel. Starting from the variant catalogue described by
Gordon et al.3, we made the following alterations. B434N in fusA was changed to
D434N. Q456K in rpoB was removed as Q was not the amino acid at position 456 of
the referenced rpoB gene. We added rpoB N474K, described by Villar et al.53

We also considered the 10 novel mutations reported by Dordel et al.54 We found
three of the mutations (PBP1 H499Y, PBP2 T31M and PBP2 D156Y) in our
derivation set. These were found in samples phenotypically susceptible to
methicillin, so none of the variants from that paper54 were included in the final
catalogue. Variants that changed predicted MIC (Minimum Inhibitory
concentration) but did not confer resistance on their own were not included. For
resistance genes we took all versions/alleles of the gene from National Center for
Biotechnology Information that were not explicitly annotated as existing in a
susceptible strain, and did not have stop codons. The full list of chromosomal
mutations, genes and accession codes can be found in Supplementary Tables 12–14.

Data structures for genotyping. We implemented two versions of Mykrobe
predictor. The first builds a whole-genome de Bruijn graph of the sample, and then
takes the intersection of this with the de Bruijn graph of all (alleles of) genes and
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mutations on different genetic backgrounds (the ‘target graph’). This requires
B300Mb of RAM for a typical Illumina data set, but could in principle grow for
very large data sets. To control memory use, the second approach builds the target
graph first, and then only loads sample data that intersects it, reducing RAM use to
100Mb. Both methods give absolutely identical results, and we ran all analyses for
this paper using the second approach.

Genotyping at mutations. We use three competing models: pure susceptible,
minor resistant (frequency¼ 10%) and major resistant (we used frequency¼ 75%,
but we expect that values from 60–100% would result in identical model choice).
In this and subsequent sections, a subscript MAJ, MIN or S refers to the
Major Resistant, Minor Resistant or Susceptible models. We use the following
uninformative priors:

PS ¼ 1

PMAJ ¼ IðpercðRÞ ¼ 100% Þ

PMIN ¼ IðpercðRÞ ¼ 100% and percðSÞ ¼ 100% Þ

where perc(R) and perc(S) are, respectively, the percentage of the kmers in the
resistant/susceptible alleles that are seen in the sample, and I is an indicator
function. We use the following simple Poisson model for the likelihoods for all
three models.

Susceptible model: likelihood specified by Poisson coverage on S allele, plus
errors driving both coverage loss on S allele and coverage on R allele.

CovðS alleleÞ � PoisðDð1� eÞkÞ

CovðR alleleÞ � PoisðDeð1� eÞk� 1=3Þ

Major and minor resistant models: Poisson coverage on both alleles scaled by
frequency:

CovðS alleleÞ � PoisðDð1� f Þð1� eÞkÞ

CovðR alleleÞ � PoisðDf ð1� eÞkÞ

where Cov() is a function returning median coverage on an allele, D is the depth of
coverage, e is the per-base error rate, k is the kmer size, and the frequency f of the
resistance allele is 0.1/0.75 for the minor/major resistant model.

The vast majority of mutations in the panel result in amino acid changes, but
some of the mutations occur within promoter regions. When we refer to genetic
background, we simply mean mutations present in the population within one kmer
length of the site of interest. For all mutations in the panel, we run through all
genetic backgrounds, and if appropriate, all possible nucleotide changes that would
generate the specified amino acid change, and find the highest coverage resistant
allele and susceptible allele. These are then passed into the three models. The
Maximum A Posteriori Model is chosen.

Resistance calling at mutations. If the frequency of the genotyped variant is
below a threshold (T, determined below) we report the mutation but predict a
susceptible phenotype. Otherwise we predict a resistant phenotype, and mention
whether we classified this as a minor or major population.

For S. aureus, the protocol undergone by samples in the standard clinical
workflow removed almost all mixture, and so there were almost no minor alleles
to either train or validate on—we set an arbitrary threshold of 10%. For
M. tuberculosis, we did not have enough data to estimate per-drug thresholds, and
we knew that the phenotyping data was imperfect (for example embB mutations at
amino acid 306 lead to ethambutol MICs that are very close to the critical
concentration, leading to stochastic switching of test results). We examined the two
frequency distributions of resistance alleles present in phenotypically resistant/
susceptible samples in the training set (Supplementary Fig. 11), and selected a
single threshold of 10% for all drugs. The corresponding distributions for the
validation set can be seen in Supplementary Fig. 12.

Genotyping at genes. The expected proportion of kmers in a gene that are
observed is

g ¼ 1�P gapð Þ ¼ 1� exp �Dfð Þ

We use the following priors

PrS ¼ 1

PrMAJ;MIN ¼ I max
Gi

percðGiÞ4gKðGÞ
h i

where each gene G has multiple exemplars Gi representing diversity of that gene,
I is an indicator function, and perc() is a function returning the percentage of
kmers present in the sample. K is the minimum percentage of kmers expected to be
recovered for a gene, based on the empirical level of diversity observed in the
training set.

KG ¼ 0:3 for blaZ

KG ¼ 0:6 for fusB; fusC

KG ¼ 0:8 otherwise

The likelihoods for major and minor models depends on the probability of
having the observed median coverage across the gene. If dpois refers to the
probability density of a Poisson distribution, and the observed median coverage
across the gene is m, then the likelihood for the major and minor resistant models
are given by

L � dpoisðrate ¼Df ; value ¼mÞ

where D is the median depth of coverage on the species-specific probe panel
defined above, k is kmer and R is read length.

Resistance calling at genes. In the training set, a threshold frequency was chosen
for each gene, such that above this frequency the sample was more likely to be
resistant than sensitive. If the gene was genotyped as Minor Resistant but the gene’s
estimated frequency (based on median coverage over overall depth of coverage)
was below this threshold a susceptible phenotype was reported. Otherwise, a (major
or minor) resistant phenotype was reported.

The minimum frequency thresholds were: erythromycin: 0.19, fusidic acid: 0.03,
gentamicin: 0.04, methicillin: 0.06, mupirocin: 0.21, penicillin: 0.04 , tetracycline:
0.13 and otherwise¼ 0.03.

Identification of mycobacterial species. We chose to identify 4 MTBC species
(M. tuberculosis, M. africanum, M. bovis, M. caprae) and 40 NTM species
(M. abscessus, M. africanum, M. aromaticivorans, M. avium, M. bovis, M. branderi,
M. caprae, M. chelonae, M. chlorophenolicum, M. chubuense, M. colombiense,
M. crocinum, M. flavescens, M. fluoranthenivorans, M. fortuitum, M. gilvum,
M. gordonae, M. hodleri, M. interjectum, M. intracellulare, M. kansasii,
M. lentiflavum, M. leprae, M. malmoense, M. marinum, M. mucogenicum,
M. pallens, M. peregrinum, M. phage, M. pyrenivorans, M. rufum, M. rutilum,
M. scrofulaceum, M. senegalense, M. smegmatis, M. sphagni, M. szulgai, M. triplex,
M. tuberculosis,M. tusciae,M. ulcerans,M. vaccae,M. xenopi.). Marker panels were
generated for MTBC and NTM (‘phylo groups’) and for individual species within
those groups, using the same method as for staphylococci based on training set
consisting of data sets MTBC_A1 (338 MTBC clinical isolates, Supplementary
Data 6) and Myco_SRA (380 Mycobacterial samples downloaded from the SRA,
Supplementary Data 11) . The required percentage of probe sequence to be found
in each of the ‘phylo group’ panels was set as 70% for MTBC, 25% for the NTM
panel, and 30% for all species panels. Above this threshold the phylo group or
species was predicted to be present.

We also used the lineage-informative SNPs defined by Stucki et al.24

to assign M. tuberculosis lineages: Beijing/East Asia, East Africa / Indian ocean,
Delhi/Central Asia, European/American, West Africa 1 and 2 or Ethiopian.

M. tuberculosis phylogeny. We used the underlying phylogeny of samples in sets
MTBC_A and MTBC_B, which was constructed using RAxML (version 8.0.5)
using a GTRCAT (General Time Reversible—CAT) model55. For this study, we
combined this tree with data set membership and phenotypic resistance metadata
using the analyses of Phylogenetics And Evolution Package55 to produce Fig. 2b.

M. tuberculosis resistance panel. We used a panel of MTBC resistance variants
from the HAIN29, Cepheid56 and AID57 assays supplemented by others from the
literature58–60 (Supplementary Table 15). All possible SNPs that would account for
amino acid or DNA variants associated with resistance were introduced on
multiple susceptible backgrounds. These backgrounds were selected as follows.
Two samples were chosen from each of the six M. tuberculosis lineages. For those
samples, paired-end reads were mapped by Stampy (version 1.0.17)61 to the H37Rv
reference genome (GenBank accession code NC000962.2). SNP calls were made
with SAMtools62 mpileup (version 0.1.18), requiring a minimum read depth of
5 and at least one read on each strand. We looked for variants in the 20 bases on
either side of each resistance mutation in each of those 12 samples—these, along
with the reference, defined a set of genetic backgrounds.

Since the underlying panel is almost identical, we expect Mykrobe predictor
to perform equivalently to the HAIN test. Comparing on MTBC_A, Mykrobe
predictor and HAIN have similar power to detect resistance (85.5%, 94.1%, 76.5%
versus 85.5%, 93.5%, 76.5%) for first-line drugs rifampicin, isoniazid and
ethambutol, respectively—see Supplementary Figs 5 and 6.

We chose an underlying frequency of 10% for the minor resistant model as this
gave appropriately low false-positive rates when comparing with phenotypes in the
training set (Supplementary Table 7).

Software. The Mykrobe predictor software is freely available (opensource) at
www.github.com/iqbal-lab/Mykrobe-predictor for non-commercial academic and
research use only, under a licence from Isis Innovation, the technology transfer
company of the University of Oxford. We provide a Linux command-line version
and desktop ‘drag-and-drop’ applications for 64-bit Windows and Mac OS X
(Supplementary Software 1–4; see screenshots in Supplementary Figs 8–10 and
screencasts in Supplementary Movies 1 and 2).
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Contamination in S. aureus genome sequence data. We removed six samples
from the St_A1 and nine samples from St_B1, as BLAST of the assembly contigs
confirmed presence of non-staphylococcal contamination. We also removed 11
samples from St_B1, which had 440 confident heterozygous SNPs as called by the
Cortex variation assembler (independent workflow, k¼ 31, ploidy¼ 2, automatic
error cleaning, using ‘bubble caller’ calling algorithm). We used this threshold of 40
heterozygous sites to determine whether a sample was contaminated by an unre-
lated strain—less than that we considered a conceivable level of in-host diversity.

Phylogeny of S. aureus. A conservative set of SNPs was called for each sample in
the training set (St_A1) and validation set (St_B1) by first mapping reads to the
MRSA252 reference genome with Stampy61, and then calling variants with
samtools62. SNPs with less than five reads’ support, or without at least one read on
each strand, were filtered, as were multiallelic SNPs, SNPs with at least 5 reads on
both alleles, and SNPs in repetitive regions. A phylogeny was then constructed
using RAxML55 with the following command-line.

RAxML-7.7.6/raxmlHPC-PTHREADS-SSE3 -s phylipFile -n outputPrefix -m
GTRCAT -p 12345 -c 1 -T 2 -D ON -f c -F ON -V.

This tree was used to produce Fig. 2b, to display the distribution of resistance
training and validation samples across the phylogeny.

Simulation 1: detecting staphylococcal contaminants. We took 18 CoNS
samples from the St_B2 (Supplementary Data 4) data set (9 S. epidermidis and 9 S.
haemolyticus), and 9 S. aureus samples from St_B1 (Supplementary
Data 3), and associated random pairs of samples from these sets (always 1 S. aureus
and 1 CoNS, mixture pairs below). We then made in silico mixtures of these pairs
with the CoNS samples at 30 frequencies ranging from 0.5 to 20%. We ran
Mykrobe predictor on all 540 mixtures to determine sensitivity to detect CoNS
at each frequency. Accession identifiers of the pairs: (SRR1182410, ERR410084),
(SRR1182413, ERR410093), (SRR1182415, ERR410136), (SRR1609104,
ERS398139), (SRR221652, ERS398155), (SRR398319, ERS398179), (SRR496759,
ERS398307), (SRR496761, ERS398353), (SRR496889, ERS398370), (ERR085178,
ERR410084), (ERR085180, ERR410093), (ERR085182, ERR410136), (ERR085188,
ERS398139), (ERR085190, ERS398155), (ERR085192, ERS398179), (ERR085258,
ERS398307), (ERR085260, ERS398353) and (ERR085262, ERS398370).

Simulation 2: detecting low-frequency alleles in S. aureus. We took 450
samples from the S. aureus data set St_B1 that all had at least 100� mean
sequencing depth of coverage across the genome, and subsampled them randomly
to precisely 100� . We then took 1,000 random pairs of samples from this set, and
for each pair, combined subsets of their reads so as to create 27 different mixtures
with ratios ranging from 1:99 to 99:1.

We than ran Mykrobe predictor on these mixtures, to determine the frequency
at which rare SNPs/genes were detected, and to confirm that this sensitivity did not
cause false-positive predictions of phenotypic resistance.

Analysing S. aureus samples with discrepant disc retests. Whole-genome
variant calling was done with the Cortex variation assembler63 (version 1.0.5.21,
independent workflow, k¼ 31, ploidy¼ 2, automatic error cleaning, using ‘bubble
caller’ calling algorithm) with the following command: perl ocortex_dir4/scripts/
calling/run_calls.pl --ref Absent --fastaq_index INDEX --first_kmer 31 --
auto_cleaning yes --outdir OUTDIR --ploidy 2 --genome_size 2800000 --
mem_height 20 --mem_width 100 --qthresh 10 --do_union no --logfile log.txt --
workflow joint --vcftools_dir /path/to/vcftools_0.1.9/.

The number of variants which were genotyped as ‘heterozygous’ with genotype
confidence 41 was counted for each of these samples.

Running other software for comparison. The commercial software SeqSphere
recently demonstrated resistance gene detection64. The template (the SeqSphere
equivalent of a gene panel) used was not publicly released but the authors were
kind enough to allow us to use it. We ran SeqSphere on the sequence data from the
validation set St_B1 (471 S. aureus isolates), in pipeline mode. We followed the
methods in the original paper64 with the exception that the Velvet assembly was
run by SeqSphere with the default parameters. Although used in that paper,
erythromycin and, therefore, clindamycin were excluded from the comparison
since all samples were called as Resistant.

KvarQ11 version 0.12.3a1 was run on the training and validation MTB fastq files
using the provided ‘MTBC’ testsuite.

Heterozygosity in M. tuberculosis set MTBC_B. The standard ‘independent
workflow’ of Cortex was used, with the bubble caller algorithm, using the run_calls
script which is part of Cortex. Parameter values: ploidy¼ 2, do_union¼ yes,
auto_clean¼ yes, kmer_size¼ 31. Only sites with genotype confidence
GT_CONF41 were considered.

Nanopore sequencing. The DNA library was prepared using the Genomic DNA
Sequencing Kit SQK-MAP005 according the manufacturer’s protocol (Version
MN005_1115_revC_26Nov2014), with small modifications.

Without undergoing any shearing process, 2 mg of DNA were treated with
PreCR Repair Mix (New England BioLabs, NEB) , to repair possible damage to the
DNA that could interfere with the sequencing process. Following Oxford Nanopore
recommendation for the optional PreCR treatment, each mg of DNA was first
diluted in nuclease-free water to a volume of 85 ml to which 10ml ThermoPol
Reaction Buffer, 1 ml NADþ , 1 ml 10 mM dNTPs and 2 ml PreCR Repair Mix were
added, and the two reactions were incubated at 37 �C for 30min. The repaired
DNA was purified with 1 volume (100 ml) Agencourt AMPure XP beads (Beckman
Coulter, UK) according to manufacturer’s instructions. The purified DNA from
each of the two reactions was eluted from the magnetic beads in 40 ml EB buffer
and pooled together. The 80ml of DNA were end repaired using the NEBNext End
Repair (NEB) module from the NEBNext DNA Library Prep Master Mix Set (New
England BioLabs, UK) for Illumina by adding 10 ml buffer and 5 ml of enzyme mix,
and nuclease-free water to a final volume of 100 ml, and incubating the reaction at
20 �C for 30min. The end-repaired DNA was purified with 1� volume (100 ml)
Agencourt AMPure XP beads and the purified product eluted in 25 ml EB buffer.
dA tailing on the purified DNA was performed in a final volume of 30 ml using the
dA-tailing module of the NEBNext DNA Library Prep Master Mix Set for Illumina:
3 ml buffer and 2 ml Klenow fragment (30-50 exo� ) were added and the reaction
was incubated at 37 �C for 30min. The dA-tailed DNA was then transferred to
Eppendorf LoBind tubes. The ligation of the Oxford Nanopore adaptor was
performed by adding 10ml adaptor mix, 2 ml HP (‘hairpin’ adaptor), 50ml blunt/TA
ligase master mix (NEB), and water to a final volume of 100 ml, with a 10min
incubation at room temperature. Extra care was taken to mix reagents during the
ligation and the following steps only through pipetting to avoid, as much as possible,
unnecessary contact of the ligated and protein-bound DNA with the tube walls.

The fragments with a hairpin ligated were selectively pulled down using
Dynabeads His-Tag Isolation and Pulldown. A 10 ml aliquot of beads was washed
twice using 200 ml of a 1:2 dilution of Oxford nanopore bead-binding buffer (BBB)
and resuspended in 100 ml undiluted BBB before adding to the sample. After a
5min incubation at room temperature, the tube was placed on a magnetic rack and
the supernatant removed. The beads were then washed twice with 200 ml diluted
BBB, and any excess of buffer was removed by aspiration with a pipette. The beads
were resuspended in 25 ml Oxford Nanopore Elution Buffer and left for 10min at
room temperature. The tube was placed on a magnetic rack and the library was
transferred to a new tube.

In parallel with the library preparation, the MinION was made ready for
sequencing. A new flow cell (R7.3 chemistry) was loaded on the MinION and the
Platform QC protocol in the MinKNOW software was run to assess the number of
available pores for sequencing. At the end of the QC, the flow cell was primed by
loading twice 150ml of a mix of 75ml Oxford nanopore-running buffer (2X), 72 ml
nuclease-free water, 3 ml Fuel mix, and leaving at least a 10min interval between
subsequent loadings of buffer or library. Once the flow cell was ready, a mix of 6 ml
library, 3 ml fuel mix, 75ml Oxford nanopore-running buffer (2X), nuclease-free
water to a final volume of 150 ml was loaded on the flow cell and the 48-h
sequencing protocol was started. Additional aliquots of library were loaded after
4 and 24 h to increase yield.

Once the sequencing run had begun, the Metrichor program (https://
metrichor.com) was started and the raw data were automatically uploaded for base
calling (workflow 2D Basecalling rev 1.14).

References
1. Nathan, C. & Cars, O. Antibiotic resistance—problems, progress, and

prospects. N. Engl. J. Med. 371, 1761–1763 (2014).
2. Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. & Crook, D. W. Transforming

clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13,
601–612 (2012).

3. Gordon, N. et al. Prediction of Staphylococcus aureus Antimicrobial Resistance
by Whole-Genome Sequencing. J. Clin. Microbiol. 52, 1182–1191 (2014).

4. Segata, N. et al. Metagenomic microbial community profiling using unique
clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

5. Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of
metagenomic data. Genome Res. 17, 377–386 (2007).

6. Leopold, S. R., Goering, R. V., Witten, A., Harmsen, D. & Mellmann, A.
Bacterial whole genome sequencing revisited: portable, scalable and
standardized analysis for typing and detection of virulence and antibiotic
resistance genes. J. Clin. Microbiol. 52, 2365–2370 (2014).

7. Kohl, T. A. et al. Whole-genome-based Mycobacterium tuberculosis
surveillance: a standardized, portable, and expandable approach. J. Clin.
Microbiol. 52, 2479–2486 (2014).

8. Koser, C. U. et al. Whole-genome sequencing for rapid susceptibility testing of
M. tuberculosis. N. Engl. J. Med. 369, 290–292 (2013).

9. Pop, M. Genome assembly reborn: recent computational challenges. Brief.
Bioinform. 10, 354–366 (2009).

10. Bertels, F., Silander, O. K., Pachkov, M., Rainey, P. B. & van Nimwegen, E.
Automated reconstruction of whole-genome phylogenies from short-sequence
reads. Mol. Biol. Evol. 31, 1077–1088 (2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10063

12 NATURE COMMUNICATIONS | 6:10063 | DOI: 10.1038/ncomms10063 | www.nature.com/naturecommunications

https://metrichor.com
https://metrichor.com
http://www.nature.com/naturecommunications


11. Steiner, A., Stucki, D., Coscolla, M., Borrell, S. & Gagneux, S. KvarQ: targeted
and direct variant calling from fastq reads of bacterial genomes. BMC Genomics
15, 881 (2014).

12. Inouye, M. et al. SRST2: rapid genomic surveillance for public health and
hospital microbiology labs. Genome Med. 6, 90 (2014).

13. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44,
226–232 (2012).

14. Everitt, R. G. et al. Mobile elements drive recombination hotspots in the core
genome of Staphylococcus aureus. Nat. Commun. 5, 3956 (2014).

15. Howe, R. A., Andrews, J. M. & Testing, B. W. P. O. S. BSAC standardized disc
susceptibility testing method (version 11). J. Antimicrob. Chemother. 67,
2783–2784 (2012).

16. Piddock, L. J. V., Jin, Y. F., Webber, M. A. & Everett, M. J. Novel ciprofloxacin-
resistant, nalidixic acid-susceptible mutant of Staphylococcus aureus.
Antimicrob. Agents Chemother. 46, 2276–2278 (2002).

17. FDA. Class II Special Controls Guidance Document: Antimicrobial Susceptibility
Test (AST) Systems; Guidance for Industry and FDA (Food and Drug
Administration, Rockville, 2009).

18. Haveri, M., Suominen, S., Rantala, L., Honkanen-Buzalski, T. & Pyorala, S.
Comparison of phenotypic and genotypic detection of penicillin G resistance of
Staphylococcus aureus isolated from bovine intramammary infection. Vet.
Microbiol. 106, 97–102 (2005).

19. El Feghaly, R. E., Stamm, J. E., Fritz, S. A. & Burnham, C. A. Presence of the
bla(Z) beta-lactamase gene in isolates of Staphylococcus aureus that appear
penicillin susceptible by conventional phenotypic methods. Diagn. Microbiol.
Infect. Dis. 74, 388–393 (2012).

20. Kaase, M. et al. Comparison of phenotypic methods for penicillinase detection
in Staphylococcus aureus. Clin. Microbiol. Infect. 14, 614–616 (2008).

21. Lina, G. et al. Involvement of Panton-Valentine leukocidin-producing
Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect.
Dis. 29, 1128–1132 (1999).

22. Maiga, M. et al. Failure to recognize nontuberculous mycobacteria leads to
misdiagnosis of chronic pulmonary tuberculosis. PLoS ONE 7, e36902 (2012).

23. Jun, H. J. et al. Nontuberculous mycobacteria isolated during the treatment of
pulmonary tuberculosis. Respir. Med. 103, 1936–1940 (2009).

24. Stucki, D. et al. Two new rapid snp-typing methods for classifying
Mycobacterium tuberculosis Complex into the main phylogenetic lineages.
PLoS ONE 7, e41253 (2012).

25. Comas, I. et al. Out-of-Africa migration and neolithic coexpansion of
Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182
(2013).

26. Walker, T. M. Whole-genome sequencing for prediction of Mycobacterium
tuberculosis drug susceptibility and resistance: a retrospective cohort study.
Lancet Infect. Dis. 15, 1193–1202 (2015).

27. Maschmann, R. D. et al. Performance of the genotype MTBDRplus assay
directly on sputum specimens from brazilian patients with tuberculosis
treatment failure or relapse. J. Clin. Microbiol. 51, 1606–1608 (2013).

28. Rodwell, T. C. et al. Predicting extensively drug-resistant Mycobacterium
tuberculosis phenotypes with genetic mutations. J. Clin. Microbiol. 52, 781–789
(2014).

29. Chryssanthou, E. & Angeby, K. The GenoType(R) MTBDRplus assay for
detection of drug resistance in Mycobacterium tuberculosis in Sweden. APMIS
120, 405–409 (2012).

30. Miotto, P. et al. GenoType MTBDRsl performance on clinical samples with
diverse genetic background. Eur. Respir. J. 40, 690–698 (2012).

31. Sun, G. et al. Dynamic population changes in Mycobacterium tuberculosis
during acquisition and fixation of drug resistance in patients. J. Infect. Dis. 206,
1724–1733 (2012).

32. Ohno, H., Koga, H., Kohno, S., Tashiro, T. & Hara, K. Relationship
between rifampin MICs for and rpoB mutations of Mycobacterium
tuberculosis strains isolated in Japan. Antimicrob. Agents Chemother. 40,
1053–1056 (1996).

33. Gagneux, S. et al. The competitive cost of antibiotic resistance in
Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

34. Mariam, D. H., Mengistu, Y., Hoffner, S. E. & Andersson, D. I. Effect of rpoB
mutations conferring rifampin resistance on fitness of Mycobacterium
tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294 (2004).

35. Song, T. et al. Fitness costs of rifampicin resistance in Mycobacterium
tuberculosis are amplified under conditions of nutrient starvation and
compensated by mutation in the beta’ subunit of RNA polymerase. Mol.
Microbiol. 91, 1106–1119 (2014).

36. Malshetty, V. et al. Novel insertion and deletion mutants of RpoB that render
Mycobacterium smegmatis RNA polymerase resistant to rifampicin-mediated
inhibition of transcription. Microbiology 156, 1565–1573 (2010).

37. Canetti, G. et al. Advances in techniques of testing mycobacterial drug
sensitivity, and the use of sensitivity tests in tuberculosis control programmes.
Bull. World Health Organ. 41, 21–43 (1969).

38. Van Deun, A. et al. Mycobacterium tuberculosis strains with highly discordant
rifampin susceptibility test results. J. Clin. Microbiol. 47, 3501–3506 (2009).

39. Van Deun, A. et al. Rifampin drug resistance tests for tuberculosis: challenging
the gold standard. J. Clin. Microbiol. 51, 2633–2640 (2013).

40. Zhang, Z., Wang, Y., Pang, Y. & Liu, C. Comparison of different drug
susceptibility test methods to detect rifampin heteroresistance in Mycobacterium
tuberculosis. Antimicrob. Agents Chemother. 58, 5632–5635 (2014).

41. Rigouts, L. et al. Rifampin resistance missed in automated liquid culture system
for Mycobacterium tuberculosis isolates with specific rpoB mutations. J. Clin.
Microbiol. 51, 2641–2645 (2013).

42. Williamson, D. A. et al. Clinical failures associated with rpoB mutations in
phenotypically occult multidrug-resistant Mycobacterium tuberculosis. Int. J.
Tuberc. Lung Dis. 16, 216–220 (2012).

43. Ho, J., Jelfs, P. & Sintchencko, V. Phenotypically occult multidrug-resistant
Mycobacterium tuberculosis: dilemmas in diagnosis and treatment.
J. Antimicrob. Chemother. 68, 2915–2920 (2013).

44. Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium
tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis.
13, 137–146 (2013).

45. Bhowmick, T. et al. Controlled multicenter evaluation of a bacteriophage-based
method for rapid detection of Staphylococcus aureus in positive blood cultures.
J. Clin. Microbiol. 51, 1226–1230 (2013).

46. Lagace-Wiens, P. R. et al. Identification of blood culture isolates directly from
positive blood cultures by use of matrix-assisted laser desorption ionization-
time of flight mass spectrometry and a commercial extraction system: analysis
of performance, cost, and turnaround time. J. Clin. Microbiol. 50, 3324–3328
(2012).

47. Votintseva, A. A. et al. Mycobacterial DNA extraction for whole-genome
sequencing from early positive liquid (MGIT) cultures. J. Clin. Microbiol. 53,
1137–1143 (2015).

48. Organization, W. H. Antimicrobial Resistance: Global Report on Surveillance
(World Health Organization, 2014).

49. Judge, K., Harris, S. R., Reuter, S., Parkhill, J. & Peacock, S. J. Early insights into
the potential of the Oxford Nanopore MinION for the detection of
antimicrobial resistance genes. J. Antimicrob. Chemother. 70, 2775–2778
(2015).

50. Laabei, M. et al. Predicting the virulence of MRSA from its genome sequence.
Genome Res. 24, 839–849 (2014).

51. Chewapreecha, C. et al. Comprehensive identification of single nucleotide
polymorphisms associated with beta-lactam resistance within pneumococcal
mosaic genes. PLoS Genet. 10, e1004547 (2014).

52. Gosden, P. E. et al. Comparison of the modified Stokes’ method of susceptibility
testing with results obtained using MIC methods and British Society of
Antimicrobial Chemotherapy breakpoints. J. Antimicrob. Chemother. 42,
161–169 (1998).

53. Villar, M. et al. Epidemiological and molecular aspects of rifampicin-resistant
Staphylococcus aureus isolated from wounds, blood and respiratory samples.
J. Antimicrob. Chemother. 66, 997–1000 (2011).

54. Dordel, J. et al. Novel determinants of antibiotic resistance: identification of
mutated loci in highly methicillin-resistant subpopulations of methicillin-
resistant Staphylococcus aureus. MBio. 5, e01000 (2014).

55. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and
evolution in R language. Bioinformatics 20, 289–290 (2004).

56. Marlowe, E. M. et al. Evaluation of the cepheid xpert MTB/RIF assay for direct
detection of Mycobacterium tuberculosis complex in respiratory specimens.
J. Clin. Microbiol. 49, 1621–1623 (2011).

57. Ritter, C. et al. Evaluation of the AID TB resistance line probe assay for rapid
detection of genetic alterations associated with drug resistance in
mycobacterium tuberculosis strains. J. Clin. Microbiol. 52, 940–946 (2014).

58. Plinke, C. et al. embCAB sequence variation among ethambutol-resistant
Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob.
Chemother. 65, 1359–1367 (2010).

59. Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M. & Posey, J. E.
Overexpression of the chromosomally encoded aminoglycoside
acetyltransferase eis confers kanamycin resistance in Mycobacterium
tuberculosis. Proc. Natl Acad. Sci. USA 106, 20004–20009 (2009).

60. Feuerriegel, S. et al. Sequence analysis for detection of first-line drug resistance
in Mycobacterium tuberculosis strains from a high-incidence setting. BMC
Microbiol. 12, 90 (2012).

61. Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast
mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).

62. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics
25, 2078–2079 (2009).

63. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44,
226–232 (2012).

64. Leopold, S. R., Goering, R. V., Witten, A., Harmsen, D. & Mellmann, A.
Bacterial whole-genome sequencing revisited: portable, scalable, and

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10063 ARTICLE

NATURE COMMUNICATIONS | 6:10063 |DOI: 10.1038/ncomms10063 | www.nature.com/naturecommunications 13

http://www.nature.com/naturecommunications


standardized analysis for typing and detection of virulence and antibiotic
resistance genes. J. Clin. Microbiol. 52, 2365–2370 (2014).

Acknowledgements
We would like to thank Michel Doumith and Angela Kearns for helpful discussions,

Sebastian Gagneux and Andreas Steiner for help running KvarQ and Dag Harmsen for

help running SeqSphere. We are also grateful to the MinION Access Program from

Oxford Nanopore Technologies, which enabled us to trial their new sequencer.

We acknowledge funding from UK Clinical Research Collaboration (Wellcome Trust

(grant 087646/Z/08/Z), Medical Research Council, National Institute for Health Research

(NIHR grant G0800778)), NIHR Oxford Biomedical Research Centre, NIHR Oxford

Health Protection Research Unit on Healthcare Associated Infection and Anti-microbial

Resistance, EU FP7 Patho-Ngen-Trace (FP7- 278864-2) and Wellcome Trust

Core Award Grant Number 090532/Z/09/Z. Z.I. and D.J.W. were funded by two

Wellcome Trust/Royal Society Sir Henry Dale Fellowships (grants 102541/Z/13/Z and

101237/Z/13/Z, respectively). P.B. was funded by a Wellcome Trust PhD studentship,

and S.E. was funded by an MRC funded prize studentship to the Nuffield Department

of Medicine, University of Oxford. D.W.C. and T.E.A.P. acknowledge NIHR funding

their Senior Investigators awards. G.M. was funded by grant 100956/Z/13/Z from the

Wellcome Trust.

Author contributions
Designed the study: Z.I., G.M. and P.B. Wrote the paper: Z.I. Designed and wrote core

software: P.B. and Z.I. Windows/android support: B.H. and P.B. Performed computa-

tions/data analyses: P.B. Determined clinical requirements: N.C.G., T.M.W., T.E.A.P.,

D.W.C., L.J.P. and D.H.W. User interface: S.H. Reviewed drafts of paper:

G.M., A.S.W., D.H.W., D.W.C., L.J.P., N.C.G. and T.M.W. Phylogeny construction:

T.G., S.E., P.B. and D.J.W. Phenotyping: L.D. and N.C.G. Sample preparation

for MinION and MiSeq: L.A. and A.A.V. MinION runs: P.P. and M.d.C.

Resources for MinION: D.B., Z.I. and D.W.C. Lab resources for phenotyping and

samples: R.D., S.N., T.A.K., S.V.O., N.I. and E.G.S. All authors reviewed final draft.

Additional information
Accession codes: All the sequencing data is available at the European Nucleotide Archive

and National Center for Biotechnology Information’s SRA. Accession codes are listed,

together with phenotyping data, in Supplementary Data 1–10.

Supplementary Information accompanies this paper at http://www.nature.com/

naturecommunications

Competing financial interests: Z.I. and P.B. are potential beneficiaries of licensing of

Mykrobe predictor by the University of Oxford. The remaining authors declare no

conflict of interest.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

How to cite this article: Bradley, P et al. Rapid antibiotic-resistance predictions from

genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat.

Commun. 6:10063 doi: 10.1038/ncomms10063 (2015).

This work is licensed under a Creative Commons Attribution 4.0

International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise

in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10063

14 NATURE COMMUNICATIONS | 6:10063 | DOI: 10.1038/ncomms10063 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Using population genome graphs for genotyping
	S. aureus species identification
	Comparing S. aureus predictions with consensus phenotype

	Figure™1Representation and analysis of bacterial genetic variation.(a) Reference construction methods. Left: chromosomes with SNPs (black circles) and genes (coloured blocks) from strains of a bacterial species. Option (i) picks strain 1 to be reference, 
	Figure™2Species and susceptibility predictions for S. aureus.(a) Species classification results on species validation set StB (n=692). Red shading of box indicates errors we wish to minimize. S.aur, S. aureus; S.epi, S. epidermidis; S.hae, S. haemolyticus
	Table 1 
	Simulating minor infections with empirical data
	Virulence elements
	Identification of mycobacterial species in clinical samples

	Figure™3Photograph of BSAC disc test showing heteroresistant phenotype.Seen on re-running Erythromycin disc test on a sample (accession: ERS398183) where Mykrobe predictor had called a false positive (resistant) that neither disc nor Phoenix had called
	M. tuberculosis predictions match commercial assays
	Slow-growth rpoB SNPs and limitations of the gold standard

	Figure™4Power to detect minor populations.(a) Simulation 2: power to detect minor resistant alleles in 27,000 in silico mixtures created by taking 1,000 pairs of S. aureus samples and mixing each pair in 27 different ratios. As above, we do not estimate f
	Minor alleles increase power to distinguish XDR from MDR TB
	Nanopore sequencing of S. aureus

	Figure™5Species predictions for mycobacteria and resistance predictions for MTBC.(a) Species classification results on a validation set (MTBCA2+MycoRetro, n=1,304). Colours indicate misclassifications between NTMsolMTBC (red), concordance with ’truthClose
	Software performance and usability

	Discussion
	Figure™6Percentage of true positive resistant calls in M. tuberculosis validation set due to minor alleles.Confidence intervals are calculated using the Clopper-Pearson interval. Drugs with lt10 resistant samples were excluded to avoid overly large confid
	Table 2 
	Figure™7Timelines for sequencing-based analysis and culture-based DST.The timelines are shown for (a) S. aureus and (b) M. tuberculosis. In (a) both culture-based (a,i) and sequencing-based (a,ii) options involve 12thinsph of blood culture. After this, th
	Methods
	Study design
	Phenotyping and sequencing of S. aureus data sets
	Species identification in general
	Identification of staphylococcal species
	S. aureus resistance panel
	Data structures for genotyping
	Genotyping at mutations
	Resistance calling at mutations
	Genotyping at genes
	Resistance calling at genes
	Identification of mycobacterial species
	M. tuberculosis phylogeny
	M. tuberculosis resistance panel
	Software
	Contamination in S. aureus genome sequence data
	Phylogeny of S. aureus
	Simulation 1: detecting staphylococcal contaminants
	Simulation 2: detecting low-frequency alleles in S. aureus
	Analysing S. aureus samples with discrepant disc retests
	Running other software for comparison
	Heterozygosity in M. tuberculosis set MTBCB
	Nanopore sequencing

	NathanC.CarsO.Antibiotic resistance--problems, progress, and prospectsN. Engl. J. Med.371176117632014DidelotX.BowdenR.WilsonD. J.PetoT. E.CrookD. W.Transforming clinical microbiology with bacterial genome sequencingNat. Rev. Genet.136016122012GordonN.Pred
	We would like to thank Michel Doumith and Angela Kearns for helpful discussions, Sebastian Gagneux and Andreas Steiner for help running KvarQ and Dag Harmsen for help running SeqSphere. We are also grateful to the MinION Access Program from Oxford Nanopor
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information


