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Abstract

The statistical significance of gapped local align-
ments is characterized by analyzing the extremal
statistics of the scores obtained from the align-
ment of random amino acid sequences. By identi-
fying a complete set of linked clusters, "islands,"
we devise a method which accurately predicts the
extremal score statistics by using only one to a few
pairwise alignments. The success of our method
relies crucially on the link between the statis-
tics of island scores and extremal score statistics.
This link is motivated by heuristic arguments, and
firmly established by extensive numerical simula-
tions for a variety of scoring parameter settings
and sequence lengths. Our approach is several
orders of magnitude faster than the widely used
shuffling method, since island counting is triv-
ially incorporated into the basic Smith-Waterman
alignment algorithm with minimal computational
cost, and all islands are counted in a single align-
ment. The availability of a rapid and accurate
significance estimation method gives one the flex-
ibility to fine tune scoring parameters to detect
weakly homologous sequences and obtain optimal
alignment fidelity.

Keywords: sequence alignment, homology search,
statistical significance, extremal statistics

Introduction

Modern molecular biology needs accurate determina-

tions of sequence homology for the identification and
classification of proteins, and the reconstruction of phy-

logenic trees (Waterman 1994; Doolittle 1996). Compu-
tationaily efficient sequence alignment algorithms have
been developed to accomplish this task. These algo-

rithms come in two classes. For database searches, the
most commonly used are gapless alignments such as
the original BLAST (Altschul et aL 1990). More so-
phisticated is the Smith-Waterman algorithm (Smith
and Waterman 1981) which allows for the insertion of
gaps. The latter is needed to detect weakly homologous
sequences (Pearson 1991).

Copyright ©1999, American Association for Artificial
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Both alignments with and without gaps are designed
to work in the "local alignment" regime, where the
alignment scores of unrelated sequences are typically
very small, so that the occurrence of "unusually" large
scores in this regime can be attributed to sequence ho-
mology. However, even unrelated sequences can occa-
sionally give large scores in the local alignment regime.
Although these events are rare, they become important

when one attempts a search over the ever-expanding se-
quence databases. It is therefore imperative to under-
stand quantitatively the statistics of these rare, high-
scoring events, in order to estimate the statistical sig-
nificance of a high-scoring alignment.

In the case of gapless alignment, it is known rig-
orously (Karlin and Altschul 1990, 1993; Karlin and
Dembo 1992) that the distribution of alignment scores

of random sequences is the Gumbel or extreme value
distribution (Gumbel 1958), which has a much broader
(i.e., exponential) tall than that of the Gaussian dis-
tribution. The Gumbel distribution is specified com-
pletely by two constants, whose values can be computed
exactly by solving some algebraic equations involving

the scoring matrix used. Assuming that the align-
ments of unrelated biological sequences can be mod-
eled by that of random sequences, one can then specify
the probability of observing high-scoring alignments by
chance alone, thereby quantifying the statistical signif-
icance of an alignment.

For the case of gapped alignment, there is no theory
available to predict the distribution of alignment scores
for random sequences. It has been conjectured (based
on ample numerical evidence) that the score distribu-
tion is still of the Gumbel form (Smith et aL 1985;
Collins et al. 1988; Mott 1992; Waterman and Vin-
gron 1994a, 1994b; Altschul and Gish 1996). However,
estimating the two Gumbel parameters for arbitrary
scoring systems has turned out to be a very challeng-
ing task. The straightforward method is to generate a
background population of alignment scores by rcpeated
alignments of shuffled copies of the two sequences in
question. This is enormously time-consuming, as thou-
sands of such shuffles are needed for each set of scoring
parameters (i.e., point-substitution matrices and gap
costs). Consequently, current generations of gapped
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alignments have been restricted to only a few scoring
parameter settings for which the background distribu-
tion has been precomputed (Altschul and Gish 1996;
Altschul et aL 1997).

The availability of a significance measure at the pre-
set scoring parameter settings alleviates the problem of
false-positives in database searches. However, it does
not address the issue of false-negatives. More specifi-
cally, a statistically insignificant result obtained at the
preset scoring parameters does not necessarily mean
that the two sequences being aligned are unrelated.
Also, a statistically significant "optimal alignment" ob-
tained at the preset parameters does not necessarily
mean that the alignment is truly the best possible one.
Indeed, the detection of weak sequence homology re-
quires careful choice of scoring parameters. This has
been investigated empirically by Vingron and Water-
man (1994) for sequences whose "true homology" 
known. Systematic studies of alignment "fidelity" (i.e.,
the extent to which sequence homology is retrieved) for
alignment of correlated synthetic sequences have also
been reported by Drasdo et aL (1998a, 1998b) and
Olsen et al. (1999). For the purpose of detecting weak
sequence homology, it is necessary to scan in the space
of scoring parameters to look for the alignment with the
highest statistical significance. This demands a method
for rapid and accurate assessnmnt of gapped alignment
statistics, which is the subject of this study.

In an attempt to circumvent the time-consuming
shuffling method, Waterman and Vingron (1994a) pro-
posed a "declumping" method, which extracts a list of
"clurnps" for each pair of random sequences. By fitting

the scores of the top several hundred large clumps to
Poisson statistics, they were able to estimate the two
Gumbel paranmters using only 10 shuffled sequences.
Unfortunately, the declumping procedure has to pro-
ceed clump by clump in order to extract the top scor-
ing clumps, and finding these clumps is rather time
consuming, especially if the aligned segment becomes
long. For practical purposes, the shuffling method is in
fact recommended over the declumping method since it
turns out that the declumping procedure takes about
the same time per clump as another alignment of the
whole lattice (Hardy and Waterman 1997).

In this manuscript, we present an efficient alterna-
tive to the shuffling or declumping method: For each
pairwisc alignment of random sequences, we identify, a
population of "islands" whose peak scores determine
the statistics of the alignment score. These islands
are conceptually similar to the clumps of Waterman
and Vingron. However, unlike the clumps, the is-
lands can be easily found by adding a few lines to the
Smith-Waterman algorithm. Consequently, hundreds

and thousands of islands can be scored and extracted in
a single alignment with minimal computational effort.
This leads to a gain of > 100 times in speed over the
shuffling method of significance estimation. Our main
assertion, that the statistics of such island scores can
be used to predict the extremai statistics of the align-
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ment score of unrelated random sequences, is supported
by a heuristic argument along with extensive muneri-
ca] simulations for a variety of score parameter settings
and realistic sequence lengths of several hundred amino
acids.

The paper is outlined as follows: First we review the
theory of extremal statistics, the main analytic results
on gapless alignments of random sequences, and the ba-
sics of gapped local alignment. We then focus on the
alignment of random amino acid sequences. The no-
tion of "island" is introduced; we describe how they

can be identified and discuss some of their properties,
in particular, their (lack of) mutual correlations. Next,
the statistics of the islands are investigated in detail.

We demonstrate through extensive numerical simula-
tion that the island score statistics are directly related

to the extremal statistics of alignment scores. This
empirical fact is then used to predict extremal score
statistics based on the island statistics generated from
one or a few pairwise alignments. A number of details
concerning the theory of extremal statistics, the con-
struction of point-substitution scoring matrices, and a
simple algorithm for island counting are relegated to
the appendices.

Alignment Statistics

Rare Event Statistics

The general theory of the statistics of rare events is

well established (Gumbel 1958; Galambos 1978). Since
this theory will be crucial to the method of significance
assessment that we will present in this study, we will
first review briefly its basic aspects.

Given a set of independent and identically distributed

(lid) random variables xl,x2,..., with a distribution
which decays reasonably fast for large values of the xi’s,
e.g., Pr{xi > x} oc exp(-ax~) for x --~ oo and a,7 > O,
the distribution of the random variables

X,~ - ma-x{xl,..., x,~} (1)

for large n is known to obey the Gumbel distribution

Pr{X, > x) = 1 - exp(-~ce-X~). (2)

The distribution (2) is universal, in that its form does
not depend on the specifics of the distribution of the

xi’s: It is, first of all, completely independent of the
details of the distribution of the xi’s at small values.
Moreover, the form of (2) does not depend on the values
of the parameters such as a, 7 and n. The latter only
enter (2) through the values of A and a, the only param-
eters of the Gumbel distribution. Given the asymptotic
distribution of xi, the corresponding Gumbel parame-
ters can be straightforwardly derived, as given explicitly
in Appendix A. Especially simple is the case of asymp-
totically Poisson-distributed xi’s, where the expected
number of these variables exceeding a certain value x is
given by

X(x) = .N’o -"= +,V1 (x ),   (3)



with Afl(x) << 3/(x) for x -+ oo. In this case, 
Gumbel parameters become simply

A = a and ~ = 3/0. (4)

Gapless Alignment

A well understood application of the statistics of ex-
treme values to sequence alignment is gapless align-
ment as implemented, e.g., in BLAST (Altschul et al.
1990). In this case, it has been rigorously shown (Karlin
and Demho 1992) that the distribution of the maximal
score of the alignment of two random sequences is of
tile Gumbel form (2); furthermore, explicit formulae are
given for thc two Gumbel parameters. In order to set up

the framework we will use to discuss Smith-Waterman
alignment with gaps, we start with a non-rigorous re-
view of the treatment of gapless alignment by Karlin
and Dembo.

Consider two query amino acid sequences .d =

{ala2...aN}, and ‘4’ = {a~a~2...a~N,}, where a and
a’ each denotes one of the twenty amino acids, and N,
N’ ~ N denote the lengths of the sequences. Gap-
less alignment compares all consecutive amino acids

aiai-1 ... ai-! in a segment of the sequence A with a
segmentajaj_ 1’ I ... aj_tl of the sequence .4’. The com-
putational task is to find the i, j, and t which give
the highest total score E for a given "scoring matrix"

sa,a,. The scoring matrix reflects one’s prior knowledge
of the likelihood of a mutation between the amino acids
a and a’; exanlples are the PAM or BLOSSUM matrices
(Dayhoff et al. 1978; ttenikoff and Henikoff 1992).

The optimization task called for in gapless alignmcnt
can be easily accomplished by introducing an auxiliary
quantity, Si,j, and using the algorithm

Si,j = max{Si-l,j-1 -I- Sai,a}, 0}, (5)

with the "initial condition" So,k = 0 = Sk,0. The quan-

tity Si,j is the optimal score of the above consecutive
subseqnences (optimized over e); and the global optimal
score is obtained as

E = max Sid. (6)
I<i<_N,I~j<_N’

In order to evaluate the statistical significance of the
resulting E, it is necessary to know the distribution of
E for the gapless alignment of two random amino acid
sequences, whose elements ak’s are generated indepen-
dently from the same frequencies p~ as the query se-
quences, and scored with the same matrix sa.~,. For
random sequences, one can take j = i in (5) without loss

of generality. Eq. (5) then becomes a discrete Langevin
equation, with

Si.i = S(i) = max{S(i 1)+ s(i ), 0}, (7)

where the "noise" s(i) =__ sa,,a~ is uncorrelated and giwm
by the distribution

Pr{si > s} = E PAP,,’. (8)

{~,a’l~o,,, >.q

From the construction of the scoring matrices (see Ap-
pendix B), the noise has the property

20

Vopo’Sa,o’ < o.
a,a’=l

The "dynamics" of the evolution equation (7) is qual-

itatively as follows: The score S(i) starts at zero. If t~
next local score s(i + 1) is negative -- which is the morn
typical case due to the condition (9) -- then S remain.
zero. But if the next local score is positive, then S w~
increase by that amount. Once it is positive, S(i) peJc-
forms a "random walk" with independent incremeat’s
s(i). Due to the condition (9), there is negative dr ift
which forces S(i) to eventually return to zero. After
it is reset to zero, the whole process starts over agafm~
The qualitative "temporal" behavior of the score S{i~
is depicted in Fig. 1. ,

1

Figure 1: Sketch of the total score as a function of sequence
position in gapless local alignment.

From the figure, it is clear that the "score landscape"
can be divided into a series of islands of positive scores,
separated by "oceans" where S = 0. Each such island

originates from a single jump out of the zero-score state
and ternfinates when the zero-score state is reached
again. Since each of these islands depends on a dif-
ferent subset of independent random numbers s(i), the

islands are statistically independent of each other. The
same statistical independence applies to the maxima of

different islands. Let the maximal score of the kth is-
land be ak. Since the global optimal score in (6) can
be alternatively written as E = max{~rl,a2,...}, the
distribution of E is given by the distribution of the

ak’s through the theory of extremal statistics described
above.

Karlin and Dembo (1992) have shown that this is-
land peak score distribution is given by the asymptotic ’
Poisson form (3), with a = A .(see (4)) given implicitly
by the the unique positive solution of the equation

2O

PAP,,’ exp(Asa,~,) = (10)
a,at~l

and 3/o = KNN’, K given by a more complicated func-

tion of the scoring matrix. Thus the distribution of
E can be calculated exactly for gapless alignment for
any scoring matrices satisfying (9), making the statis-
tical analysis of gapless alignment results straightfor-
ward. For the set of PAM score matrices (Dayhoff et
al. 1978) used throughout this study, the formula (10~
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giy#s A = In 2 independent of the PAM distance d. This
simple result originates from the fact that PAM scores

are log-odd scores; see Appendix B.

Samith-Waterman Alignment

We now turn to the Smith-Waterman alignment algo-
rithm which allows for insertions and deletions (indels).
In ;,addition to the scoring matrix s,,a, which we will
ta~e to be the PAM matrices parameterized by the
P.a2M distance d, gap penalties need to be provided.

the sake of clarity, we concentrate on the simplest,
linear gap function, which increments the gap cost by
g I~er length of the gap. Our method easily generalizes

to affine gap functions, which include an additional gap
initiation cost, as we will demonstrate towards the end.

Alignment Paths and the Dynamic Program-
ruing Algorithm. It will be convenient to adopt the
directed path representation for sequence alignment
(Needleman and Wunsch 1970); an example is shown
in Fig. 2 for a specific pair of sequences. In this figure,
¯ all the diagonal bonds correspond to gaps. So the score
of an alignment path (high-lighted in the figure) gets
a contribution -~ for each diagonal bond along that
path. The horizontal bonds of the lattice correspond

a,

(r,z)=
(0,0)

(r,z)=

~~~/-(0,10)

~ z)=(-3,7)

r

¢
I

Figure 2: Local alignment of two sequences aza2a3a4a5 and
I ! I I tala2a3a4a.~ represented as a directed path on the alignment

lattice: the diagonal bonds correspond to gaps in the align-
ment. The horizont’ed bonds axe amino acid comparisons.
The highlighted alignment path r(r) therefore corresponds
to one possible alignment of subsequences, nalnely a2-aza4

! ! I tto aia2a3a4. This path contains one gap. It is also shown
how the coordinates r and z are used to identify the nodes
of the lattice.

to pairings of alnino acids from the two sequen(:es. As
in gapless alignment, such a bond contributes a score
s To simplify the notation, we will refer to the
¯ CZl ,(tj

nodes and bonds of the lattice via the coordinates r
and z ms shown in Fig. 2, and use

s(r,z) =- s~+~+, .’¢.-~+1" (11)

With this representation, the task of local gapped
alignment is to find the highest scoring path in the lat.-
tice for a given set of {s(r, z)}. The Smith-Waterman
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algorithm (1981) does this by computing the maximal
score S(r, z) of an alignment path ending at the lattice
point (r, z) using the dynamic programming scheme

S(r - 1,z) - 
S(r, z + 1) = max S(r, z - 1) + s(r, z) ’ 

0

supplemented by the global conditions that S(0, 0) 
0 and S(r,z) = -oo beyond the boundaries of the
diamond-shaped lattice. The global optimal score is
again w. = inax~,~ S(r, z).

Gapped Local Alignment. As in the dynamics of
gapless alignment (7), the possibility to choose zero 
Eq. (12) prevents the score S(r, z) from becoming neg-
ative, thereby "filtering out" very unrelated sequences.

In order to detect weak similarities, it is also undesir-
able to have this score grow arbitrarily for unrelated
sequences. While the latter is ensured by the condi-
tion (9) for gapless alignment, the same condition 
not sufficient for gapped alignment. This is because the
alignment path has the possibility of gaining large pos-
itive scores in s~,a, by using lots of gaps, if the gap cost
is sufficiently small. In this case, it is known (Water-

man et al. 1987; Arratia and Waterman 1994) that the
score S (and hence Z) for the alignment of two random
sequences will grow linearly with the sequence length
N, unless the gap cost ~ exceeds a finite critical value
(f~ > 0. The value of ~c depends strongly on tile scoring
matrix used and the alnino acid frequencies. Approx-

imate analytical expressions for ~ have been obtained
for simple scoring matrices (Bundschuh and Hwa 1999).

However, for the PAM inatrices used here, the thresh-
old ~i~(d) is known only nmnerically. In this study, 
will be concerned exclusively with the regime cf > eft(d)
where the score S does not run away h~r unrelated se-
quences; this is called the regime of local alignment.

In this regime, the statistics of the optimal score
for random sequences is not known theoretically, other
than the scaling of its mean,

<E) ~ log N, (13)

where <...) denotes average over the ensemble of ran-
dom sequences. Numerically, there is ample evktence

(Smith et al. 1985; Collins et al. 1988; Mott 1992; Wa-
terman and Vingron 1994a, 1994b; Altschul and Gish
1996) that the distribution of E is again of the Gumbel
form (2). [Note that (13) is compatible with the 
bel distribution (2), if n scales as a power of N as what
appears to be the case based on the numerics.] These
findings al’e not so surprising given the universality of
the Gumbel distribution mentioned in the beginning of
this section, even though no proof of this result exists so
far. From a practical stand point, a more relevant issue
is to devise an efficient way of estimating the parame-
ters X and n of the conjectured Gumbel distribution for
gapped local alignment. This is what we will address

from here on.



Islands in Gapped Local Alignment

Defining the Islands

From the general discussion on extremal statistics given

above, it is clear that if the notion of "islands" used
in gapless alignment can be properly generalized, then
the statistics of E can be straightforwardly derived from
the distribution of the island peaks. More precisely, the
notion of an island refers to a specific way of grouping
the scores S(r,z) into non-overlapping sets, with the
requirement that

(a) the maximal scores {ai, a2,...} of the islands are
independent of each other;

(b) E = max{ak}.

The requirement (b) is easily satisfied if the islazlds
are defined such that each lattice point (r,z) with
S(r,z) > 0 belongs to an island. The condition (a)
is more subtle and lead Waterman and Vingron (1994a,
1994b) to the introduction of their clumps. Below, we
suggest a candidate which is conceptually similar but
can be obtained much more efficiently. We will give a
simple algorithm to find such islands and show empir-
ically that they yield the correct extremal statistics of

E.

In the local alignment regime, the dynamics of Smith-
Waterman alignment is conceptually very similar to
the dynamics of gapless alignment: There is a gen-
eral trend to drive down the score S(r,z), although
the fourth alternative in Eq. (12) prevents it from
ever becoming negative. By random occurrence of
a positive pairing score s(ro,zo) at a point (r0,z0),
S(ro, z0 + 1) can remain positive by the third alterna-
tive in Eq. (12), thereby leading to a series of positive
scores at S(ro, zo + 3), S(ro, zo + 5), etc. It can also lead
to positive scores at S(ro + 1, z0 + 2), S(r0 :t= 2, Zo +4),...
due to the first and second alternative in Eq. (12). Be-
cause of the general tendency towards decreasing scores
eventually all positive scores originating from the point
(r0, z0) will be driven back to zero. We propose each
collection of positive scores originating from the same
starting event to be an "island" for gapped alignment.
These islands can be identified by slightly modifying
the dynamic programming algorithm (12) and come 
virtually no cost in computation time and memoryi;

an example of the necessary algorithm is given in Ap-
pendix C.

By our construction, every lattice point of the align-
ment lattice which has a positive score belongs to ex-
actly one island. In the rare cases where degeneracy
arises, i.e., when more than one of the four alternatives
in Eq. (12) leads to the same maximum, the implemen-
tation in Appendix C provides an explicit hierarchy to

1Note that the minimum memory requirement for the
islands scales linearly with the length of the sequences being
aligned, while the memory requirement for the declumping
method scales quadratically with the lengths; see Appendix
C.

island assignment~. Thus the islands we defined satisfy
the requirement (b) stated above.

Correlation Between Islands

We next examine the mutual correlation of the islands:
Recall that each score S(r, z) represents the total score
of the optimal path r* (r) ending at the lattice point
(r, z). From our definition of the islands, the other end
of this optimal path is at the point (ro, zo), the initia-

tion point of the island to which the point (r, z) belongs.
Thus, an island is a collection of lattice points linked to-

gether to their common initiation point respectively by
their associated optimal paths. Fig. 3 shows a typical
collection of the islands along with the optimal paths

linking each point of the island to its initiation point
(the solid circles). Note that there is no overlap of the
linked clusters, although the clusters can be situated
next to each other. Since each score S(r, z) represents
the sum of the random pairing scores s(r*(r),T) 
gap costs along its associated optimal path r* (r), it fol-
lows that S(r, z) from different islands do not share any
common pairing scores in their compositions. Tiros, if

all the horizontal bonds s(r, z)’s are uncorrelated, then
we expect the scores S’s from different islands (and
hence the peak score ak of the different islands) to be
uncorrelated as well.

Figure 3: Sketch of some islands on the alignment lattice.
The lattice sites with a positive score are marked with small
dots. The bonds which have been chosen in the maximiza-
tion process Eq. (12) are highlighted and together show the
optimal path which ends at each point with a positive ~ore.
Each of these paths goes back on an island initiation event
which is marked by a large dot.

In fact, subtle correlations in s(r, z)’s do exist even
for random sequences, due to the fact that there are

2In our numerics to be reported below, the degeneracies
are actually resolved by the use of random numbers. Since
these cases are very. rare given the variety of different entries
in the scoring matrices, the precise way they are resolved
should make no difference.
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N x N’ different entries of the pairing scores on tile
alignment lattice, while the two random sequences con-
tain only N 4- N’ elements. In several recent studies
(Hwa and L/issig 1996; Drasdo et al. 1998a; Bundschuh

and Hwa 1999), we have found that this subtle form of
correlations was very weak and practically made no dif-
ference to a number of statistical properties which one

can compute for the case of completely independent s.
We do not expect this correlation effect to be important
for island statistics either.

To test our assertion of the statistical independence of
the islands, we numerically computcd the correlation of
nearby island peak scores. More precisely, we computed
the ratio

n - (aa’) - (a)2 (14)
<a’) - <a>2

where {a) and (a 2) are the first and second moment
of the distribution of the island peak score a’s, as ob-

tained from tile array a(i) defined in the algorithm of
Appendix C. (aa’) denotes the moment of the joint dis-
tribution of the scores of one island peak a with the

island peak a’ of its nearest neighbor on the alignment
lattice. If the scores of nearby island peaks are strongly
correlated, then the ratio R should approach 1, while

if they are completely uncorrelated, R = 0. This ratio
was computed for gapped local alignment with ~ = 2.9
and PAM-250 matrices; we found R ~ 0.1 upon av-
eraging over 300 pairwise alignments. If we consider
larger islands, e.g., if we compute R using only those
a’s above a threshold value ao, then the correlation ef-
fects decreases significantly. For example, at a0 = 7.5,
the correlation ratio is reduced to R ~ -0.001 for the
sanle paranmter setting.

Accepting the statistical independence of the islands,
we can predict the statistics of G from the empirically
measured island-peak distribution. In this way, ex-
tremal alignment statistics can be obtained from one
or a few pairwise alignment of random sequences, while
a direct estimate will require an enormous number of
pairwise alignments. In the following section, we will
compare our predictions with the direct estimates for a
range of parameter settings.

Extremal Statistics Prediction

As mentioned in the previous sections, the global op-
timal score ~ for gapped local alignment of random
sequences is expected to be Gumbel distributed. We
have also verified this empirically in the numerics be-
low. Moreover, we extract the Gumbel parameters for
various scoring paran~eters, and compare them to the
prediction of extremal value theory using the (indepen-
dently measured) statistics of peak island scores.

Direct Empirical Estimate

For each of the various scoring parameter settings we
studied, we ran many (i.e., over one million) pair-
wise alignments of random amino acid sequences gen-
crated according to the tmown background frequencies
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p~. The global optimal score Z from eacli alignment
was recorded, and a histogram of ~ was constructed

for each scoring parameter setting; see Fig. 4. The
histogram was then fitted to the Gumbel probability
density function, obtained by taking the derivative of
the distribution (2). The Gumbel paranmters A and
were the only free parameters of the fit. The quality of

the fit can be seen from an inspection of Fig. 4. Note
in particular the good agreement between the data and
the fit deep in the exponential tails of the distributions.

10°

10-~

I0

[] 8 = 10.8
O8= 4.3
VS= 2.9

20 30 40 50
z

Figure 4: Semi-log plots of the measured probability den-
sities p(E) for the global optimal score ~ of an alignment
with a PAM-250 scoring matrix and a sequence length of
N = 700. The symbols denote measured values at different
gap costs. The solid lines are best fits to the Gumbel prob-
ability density p(~) = A~ exp(-A~ n.e-~). The values of
A and ~ derived from these fits are summarized in Table 1.

These empirical estimates of the Gumbel parame-
ters were carried out using Smith-Waterman alignments
with PAM-120 and PAM-250 scoring matrices, at the
gap cost3 of ~f = co, 10.8, 4.3, and 2.9. The alignment
was performed for sequences of lengths N = N’ = 350
and N = N’ = 700. Table 1 gives the extracted val-
ues of the Gumbel parameters A and ~ for the different
scoring parameter settings. The dependence of ~ on the
sequence length N is expected; however, a weak but no-
ticeable dependence of A on N is also observed, even for

= co where the exact result )~ = In 2 is expected (see
Appendix B). This is aal example of the "finite-size ef-
fect" resulting from the fact that the finite alignment
grid N limits the size of the longest possible island and
hence its associated scores. By examining the empirical
values of A for increasing N’s, we verified that A(N) in-
deed converged towards the expected asymptotic value
for the case 5 = co. Similar finite-size effects exist for
alignnmnt at finite gap cost. We did not pursue the

3This work was done using symmetrized natural log ver-
sions of the PAM matrices. All results have been re-scaled
to the log base 2 scoring system to be consistent with pre-
vious works in the literature. The gap penalties used corre-
sponded to 5 = co, 7.5, 3, and 2 on the natural log scale.



PAM 120

A
6 N=350 N = 700 N = 350 N=700
(x) 0.6991 0.6938 20800 78400

10.8 0.6983 0.6943 20500 79200
4.3 0.6458 0.6401 14000 53000
2.9 0.5123 0.5035 5600 20300

PAM 250

A /£

N = 350 N = 700 N=350 AT = 700
(X3 0.7075 0.7016 11000 43400

10.8 0.7043 0.6977 1O6OO 40900
4.3 0.6395 0.6286 6500 24200
2.9 0.4758 0.4391 2190 5700

Table 1: Values of the Gumbel distribution parameters ex-
tracted by collecting global optimal scores from more than
a million alignments. Thc errors are estimated4 to be 0.25%
for A and 1.5% for t~.

asymptotic values of A for these cases, as amino acid
sequences are rarely an5, longer than the length scale
we probe here.

Island Peak Distribution

We next examined the statistics of the islands. From
the algorithm presented in Appendix C, we obtained in
the array a(i) the peak score of each islaald i after every
pairwise alignment. From this array, we recorded the
number N’(a) of the score a(i)’s exceeding a value 
The result is shown in Fig. 5 for a representative param-
eter setting. One sees that. Af(a) has ml exponential-
like tail, although the finite number of islands in a single
alignment limits a clear resolution of the tail. To ob-
tahl better statistics, we repeated this process for 1000
pairs of random amino acid sequences, and computed
the ensemble averaged function (Af(a)). The results 
shown in Fig. 6 for the different paraaneter settings.

From Fig. 6, we see that the island peak scores are ev-
idently well described by the asymptotic Poisson statis-
tics (3) for sufficiently large scores (e.g, a > 8). 
statistics is definitely not Poisson for the smaller scores

and can be absorbed into the .’~1 term of (3). There,
the island peak distributions are dominated by the large
number of onc~-site or few-site islands initiated by the
large positive pairing scores appearing in the entries
of the scoring matrix s~,,,. Thus, the distributions at
small a’s largely reflect the distribution of scores as
specified by the scoring matrices themselves and are

4For seven of the paranmter settings the 1.1 million high-
scores were generated in subsets of 100,000 alignments. A’s
and n’s were computed by fits to these subset distributions.
We then had seven distributions of A’s and n’s. From each of
these we calculated the error in the mean. The error values
quoted above are the largest of the seven errors in the mean
of ,k and to.

N(o)

l0s

104

103

102

10t

I 0°
2O

Figure 5: Semi-log plot of the island distribution of a single
alignment of two random sequences of length N = 700 with
a PAM 250 scoring matrix and a gap cost, of 6 = 2.9.

not related to the introduction of gaps’~. We will re-
fer to the statistics associated with the small islands as
"microscopic" statistics.

Given the empirical form of N(a), we can compute
the extremai statistics of the global optimal score E, as-
suming the (numerically verified) independence of the
peak island scores. The asymptotic Poisson form shown
in Fig. 6 then immediately leads to the Gumbel distri-
bution of E, with the two Gumbel parameters A and

given by the exponential tails of A/(a) via Eq. (4).
Since we already have the values of the Gumbel paranl-
eters from the direct empirical estimate of the extremal
statistics, we directly plotted s;c-x~ onto each of the is-
land distributions shown in Fig. 6 for the corresponding
parameter settings. We find a remarkable agreement of
tim slope and amplitude of (A;(a)) with these exponen-
tials beyond the small-a regime for a variety of scoring
parameters. Note that this agreement is like glue: it
holds even in the presence of non-negligible finite size
effects (e.g. the raised values of the A’s of the length
350 sequences relative to those of the length 700 se-
quences). In this sense, the Gumbel paranmters as ob-
tained from the exponential tail of Af(a) are even more
reliable than the exact asymptotic result of Karlin and

Altschul (1990) for gapless alignment [ The latter 
course does not provide a finite-size correction, which,
however, is relevant if one is comparing short sequences.

The congruence between the asymptotic statistics
of the island peaks a and the global optimal score E
strongly indicates that it is the high scoring population
of the peak island scores that generates the Gumbel dis-
tribution of the global optimal scores ~. This becomes

even more remarkable when one notes the score scales

aIn fact, a moment of reflection reveals that for a < ~,
At(a) must be independent of &. Therefore, the distribution
,~/(a) converges to that of the gapless distribution at the
small cr end for all ~’s. Clearly, no information about gapped
alignment can be extracted from the small islands.
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Figure 6: Island distributions for different scoring parameters. The symbols are the measured distributions (squares: 6 = 10.8;
diamond.s: 3 = 4.3; triangles: 6 = 2.9.) The lines arc not fits to thc data but they denote the Poisson distribution t~e-~, using

the values of A and t¢ from Table 1. The latter are extracted from thc distribution of the alignment score ~’s, as obtained
directly from over a million pairwise alignments of random sequences. The diffcrent plots are for different PAM distances and
system sizes: (a) PAM 120, N = 350; (b) PAM 120, N = 700; (c) PAM 250, N = 350; (d) PAM 250, 

for the two asymptotic regimes: Take for example the

alignments at ~ = 2.9 and PAM-250. The asymptotic

statistics of a for this parameter setting is obtained

in the range 10 < a < 30 (see Fig. 6(d)), while 

asymptotics in Z (Fig. 4) extended to the score value 

40 ,-- 50, which was not yet reached by the island scores

collected in Fig. 6(d). Thus, we infer that the Gumbel

distribution of ~ is in fact generated by the very large

(and rare) islaalds at a = 40 ~ 50, and these large is-

lands arc described by the same statistical law (namely,

the asymptotic Poisson statistics) as the intermediate-
sized islands found in Fig. 6(d). The correspondence

between the intermediate and large score statistics is

certainly not a coincidence. It is a manifestation of the

fact that there exists only one single scale, the typicaJ
score scale A-l, which governs the score statistics. This

single-scale property is apparently a robust statisticM

property of local gapped alignment; it has been veri-

fied in a different context by Hwa and L/kssig (1998)
and Drasdo et al. (1998b), who used scaling theory 

relate scores at different paranleter settings 6. It is a

very useful property which we will exploit in the next

section, in order to extrapolate the large-score statistics

from the behavior at much smaller scores.

It shouht be noted here that the correspondence be-

tween the peak island score statistics .,~,"(a) and the ex-
tremal statistics of Z does not. necessarily rely on the

asymptotic Poisson form of N’(a). As indicated in Ap-

pendix A, the Gumbel parameters can be computed

fi’om any reasonably fast decaying function 7 N’. How-

¢;ln the work of Hwa and L/i.ssig (1998), the quantity
which played the role of the typical score A-l was the sat-
uration score Ssat-

rSince the scores S(r, z) are themselves hmg-range cor-

related in z (Hwa and Lfissig 1996), the asymptotic distri-
bution of the island peaks may not be Poisson according to

recent works of Duffield mid O’Connel (1995) and Naravan
(1999). This however, would not be observable unless one
is aligning very long sequences very close to the boundary
of the local alignment regime, i.e., for g -~ 3+, not relevant
for the practical purpose of aligning biological sequences of
finite lengths.
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ever, since the results we obtained in Fig. 6 are so well
described by the asymptotic Poisson form, we will as-
sume this form in the following section.

Rapid Assessment of Extremal Statistics

From the results presented in the previous sections, we
have established two empirical findings for gapped lo-
cal ahgnment: the statistical independence of the peak
island scores and their asymptotic Poisson statistics ex-

tending from intermediate to the very large score scales.
We have provided heuristic arguments and independent
numerical tests supporting both findings, although no
mathematical proof is available. In what follows, we
shall take these findings as assumptions, and exploit
them for rapid assessment of extremal statistics.

We wish to extract the asymptotic island-peak distri-
bution (and hence the Gumbel parameters) using very
few pairwise alignments. The difficulty is that Af(a) 
limited on the small-a side by the microscopic statis-
tics and on the large-a side by the limited number of
counts (see Fig. 5). To illustrate what can be achieved,
we took the island-peak distribution from a single align-
ment (such as the one shown in Fig. 5), and fitted the
exponential form ~e-~ to an intermediate regime of
peak scores, ¢rlower < 6t < auppper. The upper cutoff

aupper was chosen such that Af(a) is above 30 counts,
and the lower cutoff glower was chosen according to the
largest positive entry of the scoring matrix used. Specif-
ically, we chose alower = 1.3 ¯ max{sa,~, }, which takes

on the value of 7 for the PAM-250 matrix and 8 for the
PAM-120 matrix.

The results of the extracted values of A and In
from 1 and 10 pairwise alignments are listed in Ta-
ble 2. Compared to the empirical values (the second
column of Table 2) taken from the direct estimate us-
ing over one million alignments, we see that a single
alignment gives a reasonable prediction of the Gumbel
parameters. For example, the statistical uncertainty on
the (more important) A-parameter is +8%, with prac-
tically no systematic bias. It can be further reduced
if several alignments (of shuffled sequences) are used:
for 10 alignnmnts the statistical uncertainty is reduced
to approximately ±4% (see column 4 of Table 2). 
similar accuracy range was obtained for In a, which de-
termines the mean of the Gumbel distribution.

We also implemented our island counting method for
an affine gap function on the regular diamond shaped
scoring lattice. We studied the value of A for a PAM-
250 scoring matrix and a gap cost of 12 + 3k for a
gap of length k which corresponds to the parameter
settings s of Waterman and Vingron (1994a, 1994b).
The direct empirical estimate using more than a mil-
lion alignments gives A = 0.2128 for sequences pairs of
length N = 300 and A = 0.2024 for N = 900. Obtain-

Sin order to be able to compare directly to Waterman and
Vingron’s results we here use their scoring system in which
the scoring matrix has been rescaled by an extra factor of
10 log2 10.

PAM 120 A-values

direct 1 AI. 10 A1.
OO 0.6938 0.697 ± 0.055 0.693 ± 0.026

10.8 0.6943 0.697 + 0.055 0.693 + 0.026
4.3 0.6401 0.645 + 0.050 0.640 ± 0.025
2.9 0.5035 0.517 + 0.037 0.509 + 0.019

PAM 120 In R-values
5 direct 1 A1. 10 AI.
C~ 11.27 11.3 + 0.5 11.3 + 0.3

10.8 11.28 11.3+0.5 11.3 + 0.3
4.3 10.88 10.9 + 0.4 10.9+0.2
2.9 9.92 10.1 ± 0.3 I0.0 + 0.2

PAM 250 A-values

direct 1 A1. 10 A1.
(X3 0.7016 0.691 ± 0.076 0.697 + 0.031

10.8 0.6977 0.691 ± 0.076 0.697 + 0.031
4.3 0.6286 0.628 + 0.069 0.627 + 0.027
2.9 0.4391 0.463 + 0.049 0.448 + 0.021

PAM 250 ln~-values
direct 1 A1. 10 AI.

(3O 10.68 10.6 + 0.6 10.6 + 0.3
10.8 10.62 10.6 ± 0.6 10.6 ± 0.3
4.3 10.09 10.1 ± 0.6 10.1 ± 0.2
2.9 8.65 8.8 ± 0.4 8.8+0.2

Table 2: Average values of the Gumbel distribution param-
eters extracted by fitting an exponential law to the tall of
the island distribution collected from 1 and 10 alignments
of sequences of a length N = 700.

ing the histogram of the island score distribution from
a single alignment and fitting a Poisson distribution in

the region O’lowe r < (7 < ¢rupper as defined previously,
we find A = 0.211 + 0.049 for the length 300 sequences
and A = 0.202 ± 0.024 for the length 900 sequences.
These result indicate that our method can be reliably

extended also to the affine gap function using a single
alignment. Computationally, island counting costed ap-
proximately 30% extra in time over the bare minimum
affine-gap algorithm. Our results agree well with the
values obtained by Waterman and Vingron (1994a) us-
ing the more time consuming declumping method, on
10 sequence pairs of 300 clumps each. However, we
were not able to explicitly compare the time factors of
the two methods, since no clump search algorithm was
provided there.

Summary and Outlook

In this study, we investigated the extremai statistics
of local gapped alignments of random amino acid se-
quences. We identified a complete set of linked clusters
-- the islands -- which can be very efficiently counted

with minimal addition to the Smith-Waterman align-
ment algorithm. We established a firm empirical link
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between the statistics of the peak island scores and the
extremal statistics of the alignment score for a variety
of scoring parameter settings. The validity of this link
hinged upon the statistical independence of the islands,
which was supported by heuristic arguments along with
direct uumerical computation of nearby island correla-
tions. Accepting their independence, the island statis-
tics can be used to predict the parameters of the ex-
tremal Gmnbel distribution. By further extrapolating
the intermediate score statistics to the very large score
values, one can accomplish the Gumbel parameter pre-.
diction by using only a single to a few pairwise align-
ments. The success for such extrapolation is grounded
upon the scaling properties of score statistics as dis-
cussed by Hwa and L~sig (1996, 1998) and Dra~sdo et

al. (1998a, 1998b).
Our method is conceptually similar to the declump-

ing method of Waterman and Vingron (1994a, 1994b),
but is faster: In our approach, the collection of island
statistics can be directly incorporated into the align-

nmnt algorithm, resulting in oldy ~ 30% increase in
computational time over the most stripped down ver-

sion of the Smith-Waterman algorithm. This is an im-
provement over the declumping method which removes
the clumps one by one after the main scoring process
is completed, and thus has to find the highest scoring
clump on the lattice after each removal of the previous
chnnp. We have not been able to make a direct time
comparison with the declumping method. However, it
is by orders of magnitude faster than the recommended
shuffling method. Additionally, our method can be im-
plemented with a memory ,’equirement which is linear
in the length of the sequences while the dechlmping
method inherently requires O(N2) memory.

We have thus demonstrated the feasibility of a
method for the rapid and accurate assessment of gapped
alignment statistics. The availability of such a method
will make it possible to find optimal scoring parame-
ters quickly, i.e., on the tty. This capability is central
to detecting and enh;mcing the fidelity of alignlnents
of weakly homologous sequences (Vingron and Water-
man 1994; Drasdo et al. 1998a, 1998b; Olsen ct al.
1999). High-fidelity alignment has not been practical
so far due to the extraordinary amount of computing
resources needed to evaluate the statistical significance.
It is hoped that the results reported here will promote
the implementation of this general approach to yMd
~digmnents of much higher quality than those attain-
able using the available search toms.
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Appendices

Appendix A: Parameters of the Gumbel Distri-
bution. We wish to compute the parameters of the
Gumbel distribution (2) satisfied by the random vari-
able X~ = max{xl,...,x,~}, for independent random
variable xi %. The statistics of the xi’s is given via

~r(x) = .~ox~ exp[-c~x’q + .,~ (x), (15)

which is the expected number of the xi’s exceeding some
value x. Here a,7 > 0 and $ are arbitrary constants,
and 5/1 (x) is assumed negligible compared to the first

tern, for large enough x. The parameters of the Gum-
bel distribution of the Xi’s can be calculated using the
scheme presented by Galambos (1978). Applied to the
distribution (15) these parameters depend on the solu-
tion y of the equation

.,~Z0y’Z exp[-c~y~] = 1, (16)

which is easy to find numerically once the parameters a,
,3, % and ,~’0 are given. The parameters of the Gumbel
distribution can then be calculated as A = c~2y~-1 and
= exp [aTy~].

In the special case without a power law prefactor, i.e.,
¯ 3 = 0, Eq. (16) can be solved for y and we get

A = 7a*/~(ln.&’o) ’-¼ and ~ =,~%~, (17)

which, for 7 = 1, reproduces the result (4) quoted for
the asymptotic Poisson distribution.

Appendix B: PAM Matrices and Gapless Align-
ment. In this appendix, we review the properties of
PAM matrices which we used as the scoring matrices
for amino acid comparison. PAM (percent accepted
nmtations) matrices are constructed assuming that all
the amino acids in a protein sequence mutate indepen-
dently fro*** their neighbors. The nmtation is described
by a 20 x 20 transition matrix t~,~, which gives the prob-
ability to find a mutation to amino acid a given that the
original amino acid was a~. This PAM transition ma-
trix is normalized such that each application of it leads
to a change in an amino acid in 1% of the cases. Sub-
stitution rates exceeding one percent can be generated
by repeated application of tim transition matrix. These
powers t d of the basic transition matrix t are transition
matrices q,,,,, themselves, i.e., they have the interpre-
tation of probabilities to find amino acid a given that
the original amino acid was a’.

By definition of relative probabilities any such tran-
sition matrix fidfills the conditions

2O

%.~, = 1 and q~,,e "P,,’ = %’.,~’P, (18)
a-l

where p,~ are the rmfino acid frequencies.
The log-odds scoring matrix connected to a given

transition matrix q,,,,,, is defined by

s,,,a,=log2[q"’a’]. (19)
LPa J
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Note that the scoring matrix s is symmetric due to the
second relation in (18). The symmetry in s is necessary

since in scoring, one doesn’t usually know which of the
amino acids a and a’ is the ancestor. We get the scoring

matrix at a PAM distance d by applying this general
scheme to the special transition matrix p = td.

If one applies the condition (10) for the solution 
the Gumbel parameter A to the above-defined scoring
matrix, one finds the identity

Ep’’p’~’exp[As~,~’]=20 ~-~’2°
(qa,a,~-~Q(A)=_

~t~at ~1 Q,at=l

due to the second condition in (18). ~rther apply-
ing the first property in (18), one finds that Q(A) 
for A = ln2, which is the unique positive solution
of Eq. (10). Note that the solution is independent
of the choice of the transition matrix and thus, espe-
cially of the PAM distance d. This result underscores
the "naturalness" of log-odd scores in the context of
gapless alignment, the meaning of which has been ex-
plored in detail by Altschul (1991). Note also, that
the condition (9) is automatically fulfilled for ,an ar-
bitrary log-odds scoring matrix, since the relative en-

2Otropies- ~a=l P, l°g2[qa,a’/P~] of the distributions Pa

and q,,~, for fixed a’ on the right hand side of the rela-
tion

20 20 20

Z popo’s..,,’ = F_, po’ E p,, 1,,g Iqo,o,/v,,l
a,a’=l a~ =1 ¢~=I

cannot be negative.

Appendix C: Algorithm for Island Assignment.
The assignment of the different points of the alignment
lattice to the different islands can be included very
straightforwardly into the dynaanic programming
algorithm (12) with minimal computational effort.
We introduce an additional axray I(r, z) which, upon
completion of the algorithm, will contain the "island
number" the lattice point (r, z) belongs to. We ’also

need all array or(i) which holds the maximum score
of the i th island. The basic dynamic progranlming
algorithm is expanded as follows:

number_o ~_iMands:=O
loop over all z
loop over all r
maximum: -0.0
island:=O
if S(r + 1, z) - 5>maximum then

rnazimum: =S(r + 1, z) 
island:=l(r "5 1, z)

end if
if S(r -- 1, z) -- 6>maxirnum then

maximum: =S(r - 1, z) - 
island:=I(r -- 1, z)

end if
if S(r, z -- 1) s( r, z) >maximum then

maximum:=S(r, z -- 1) + s(r, z)
if S(r, z -- 1) = 0 then

number_o ]_iMands:=nuTr~ber_o f_islandMrl
island:=nurnber_o f _islands
a (island) :=rna~irnum

else
island:=l(r, z -- 1)
if maximum > a(island) then

(is land) :=maximum
end if

end if
end if
S(r, z + 1) :=maximum
I(r, z + 1):=island

end loop
end loop

The lines not set in bold face constitute the usual dy-
namic programming algorithm (12) for linear gap cost.
In order to calculate the island peak distribution, we
only need to insert those lines in bold face. Their func-
tion is to assign the island number to the point (r, z+l).
This island number depends on which alternative of

Eq. (12) gives the maximum. If the last alternative

of (12) is chosen and the score is set to zero, then there
is no island at, (r, z + 1) and the island number is set
to zero. Otherwise, the path from one of the points
(r + 1, z), (r - 1, z), or (r, z - 1) is responsible for 
maximum in Eq. (12). In this case, the island number
of the point the path comes from is assigned to (r, z+ 1),

or if it is an island initiation event, a new island num-
ber is generated and assigned. If the maximum score
of the current island might have changed, it has to be
updated, too.

Note that the arrays S(r, z) and I(r, z) as presented
here for notational simplicity are of the size N. N’. For
the purpose of constructing a histogram of the island
score distribution, it is sufficient to keep track of only

the "current" configuration S(r), island number I(r),
and the maximum score a of the "currently" active is-
lands at each "time" step t. This renders the memory
requirement linear in the length of the sequences. Note
also that this algorithm can be easily extended to the
case of affine gap cost. We found that the inclusion of
island counting and island statistics resulted in a net
increase of approximately 30% compared to the bare
minimum Smith-Waterman algorithm with affine gap

function.
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