
Cytotechnology 21: 23 1-241, 1996. 
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

Rapid authentication of animal cell lines using pyrolysis mass spectrometry 
and auto-associative artificial neural networks 

Royston Goodacre,* Deborah J. Rischert, Peter M. Evans & Douglas B. Kell 
Institute of Biological Sciences, University of Wales, Aberyshvyth, Dyfed, SY23 3DA, Wales, U.K. 

Received 21 November 1995; accepted in final form 9 April 1996 

Key words: authentication, auto-associative neural networks, chemometrics, feature extraction, pyrolysis mass 
spectrometry, cell line 

Summary 

Pyrolysis mass spectrometry (PyMS) was used to produce biochemical fingerprints from replicate frozen cell 
cultures of mouse macrophage hybridoma 2C11-12, human leukaemia K562, baby hamster kidney BHK 21lC13, 
and mouse tumour BW-0, and a fresh culture of Chinese hamster ovary CHO cells. The dimensionality of these 
data was reduced by the unsupervised feature extraction pattern recognition technique of auto-associative neural 
networks. The clusters observed were compared with the groups obtained from the more conventional statistical 
approaches of hierarchical cluster analysis. It was observed that frozen and fresh cell line cultures gave very 
different pyrolysis mass spectra. When only the frozen animal cells were analysed by PyMS, auto-associative 
artificial neural networks (ANNs) were employed to discriminate between them successfully. Furthermore, very 
similar classifications were observed when the same spectral data were analysed using hierarchical cluster analysis. 
We demonstrate that this approach can detect the contamination of cell lines with low numbers of bacteria and 
fungi; this approach could plausibly be extended for the rapid detection of mycoplasma infection in animal cell 
lines. The major advantages that PyMS offers over more conventional methods used to type cell lines and to screen 
for microbial infection, such as DNA fingerprinting, are its speed, sensitivity and the ability to analyse hundreds 
of samples per day. We conclude that the combination of PyMS and ANNs can provide a rapid and accurate 
discriminatory technique for the authentication of animal cell line cultures. 

Introduction 

Within animal cell technology it is of paramount impor- 
tance to have a reliable source of pure authenticated 
cell cultures (Hay, 1988; Mowles & Doyle, 1990; 
Stacey et al., 1992a). Research conducted on either 
mixed cell lines or cultures that have been contaminat- 
ed with mycoplasma (Uphoff et al., 1992a; Uphoff et 
al., 1992b), bacteria, or virions (Nicklas et al., 1993) 
can be deceptive and therefore invalid. Moreover, if 
contaminated cultures were employed within the phar- 
maceutical industry for the production of vaccines or 
other therapeutics including the production of recom- 
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binant DNA-derived proteins (Werner & Noe, 1993), 
or for the testing of novel pharmacophores, then there 
would be obvious and major concern about both the 
safety of the products and the validity of the in vitro 
testing procedures (Werner et al., 1992). 

Cell lines have typically been characterised by a 
variety of different methods, one of the common pro- 
cedures used being isoenzyme analysis (Steube et al., 
1995); this method exploits the facts that isoenzymes 
from different cell lines have distinct molecular struc- 
tures, and that the isoenzymes can thus be separat- 
ed by electrophoresis and used to type the cell line. 
Alternatively, cells can be discriminated by karyotyp- 
ing (Flores & Donis, 1995); this cytogenetic analy- 
sis procedure involves the visual examination of the 



chromosomes, and if present, aberrations in chromo- 
some number and/or morphology may then be detect- 
ed. Finally, DNA fingerprinting has been exploited to 
identify specific cell lines (Stacey et al., 1992a; Stacey 
et al., 1992b; Park et al., 1995). This technique uses 
multilocus probes (Stacey et al., 1992b) allowing a 
wide range of repetitive DNA sequences to be detect- 
ed in many animal species. Isoenzyme analysis and 
karyotyping are slow and the inter-laboratory repro- 
ducibility poor; indeed the quality of the data from 
cytogenetic analysis are dependent on the experience 
of the operator (Stacey et al., 1992a). DNA finger- 
printing, although relatively rapid after the extraction 
of the DNA, also has some serious pitfalls. The repro- 
ducibility of data acquired are often dependent on tis- 
sue culture conditions and the effects of storing cells 
for long periods of time; however, provided the exper- 
imental conditions are stringently controlled the data 
obtained are considered to be acceptable (Stacey et al., 
1992a). A particular advantage of DNA fingerprinting 
cell cultures is that the banding pattern observed can be 
digitised and stored in a computer database; unfortu- 
nately, there has been limited success in the automatic 
screening of such databases to effect the identification 
of unknown cell lines. 

In addition to the characterisation of cell lines the 
methods outlined above have also been used to detect 
the infection of cell cultures with microorganisms. 
Perhaps the most significant and common group of 
microbes that have been found to contaminate ani- 
mal cell cultures are the mycoplasmas. It is proba- 
ble that these bacteria, which lack cell walls and thus 
are favoured by the prescence of penicillin and oth- 
er antibiotics in the standard tissue culture media, 
might change cell growth (Werner & Noe, 1993). 
Rather more specialised methods which exploit the 
polymerase chain reaction (PCR) have been developed 
to detect mycoplasma contamination in cell lines (Hop- 
ert et al., 1993a; Hopert et al., 1993b; Dussurget et al., 
1994). 

The ideal method for the rapid, precise and accurate 
analysis characterization of cell lines, would permit 
the simultaneous estimation of cell line authentication 
and/or microbial infection, would have minimum sam- 
ple preparation, would analyse samples directly (i.e. 
would not require reagents), and would be rapid, auto- 
mated, accurate and (at least relatively) cheap. Pyrol- 
ysis mass spectrometry (PyMS) is a rapid, automated, 
instrument-based technique which permits the acqui- 
sition of spectroscopic data from 300 or more samples 
per working day. 

Pyrolysis is the thermal degradation of complex 
molecules in a vacuum causing their cleavage to small- 
er, volatile fragments called pyrolysate (Irwin, 1982) 
separable on the basis of their mass-to-charge ratio 
(mlz) so as to produce a pyrolysis mass spectrum, 
which can then be used as a "chemical profile" or fin- 
gerprint of the complex material analysed (Meuzelaar 
et al., 1982; Magee, 1993; Goodacre, 1994). PyMS 
has been applied to the characterisation and identifica- 
tion of a variety of micro-organisms and their products 
(Magee, 1993; Goodacre, 1994; Snyder et al., 1994; 
Goodacre & Kell, 1996a) and, because of its high 
discriminatory ability (Goodacre & Berkeley, 1990), 
presents a powerful fingerprinting technique, which is 
applicable to any biological material. 

Recently there has been a number of important 
advances in the field of pyrolysis mass spectrome- 
try (PyMS), in particular the fact that the relatively 
new numerical techniques of artificial neural networks 
(ANNs) (see refs. Rumelhart et al., 1986; Kohonen, 
1989; Wasserman, 1989; Beale & Jackson, 1990; 
Hecht-Nielsen, 1990; Simpson, 1990; Hertz et al., 
1991; Zupan & Gasteiger, 1993; Haykin, 1994; Rip- 
ley, 1994; Werbos, 1994; Chauvin & Rumelhart, 1995; 
Goodacre et al., 1996c for excellent introductions) 
have been applied to pyrolysis mass spectra to gain 
quantitative, as well as qualitative, information about 
the chemical constituents of microbial (and other) sam- 
ples analysed. The first exploitation for discriminating 
biological samples from their pyrolysis mass spectra 
was the successful demonstration (Goodacre et al., 
1992; Goodacre et al., 1993) of the assessment of 
the presence of lower-grade seed oils as adulterants in 
extra virgin olive oils. This combination of PyMS and 
ANNs has now been employed to effect the rapid iden- 
tification of strains of Escherichia (Sisson et al., 1995), 
Eubacterium (Goodacre et al., 1996a), Mycobacteri- 
um (Freeman et al., 1994), Propionibacterium spp. 
(Goodacre et al., 1994b), and Streptomyces (Chun et 
al., 1993). 

Recently, we have also investigated the abili- 
ty of self-organising feature maps (Kohonen, 1989; 
Hecht-Nielsen, 1990; Hertz et al., 1991) to carry out 
unsupervised learning and hence classify the pyroly- 
sis mass spectra of canine Propionibacterium acnes 
isolates (Goodacre et al., 1994b) and I? acnes iso- 
lated from man (Goodacre et al., 1996b). Another 
neural network-based method for unsupervised fea- 
ture extraction called auto-associative neural networks 
(Kramer, 1991; Kramer, 1992; Leonard & Kramer, 
1993; Kuespert & McAvoy, 1994) has been used 



to reduce the dimensionality of the infrared spectra 
of polysaccharides and hence extract features due to 
polysaccharides (Jacobsson, 1994), to detect plasmid 
instability using on-line measurements from an indus- 
trial fermentation producing a recombinant protein 
expressed by Escherichia coli (Montague & Morris, 
1994), and to classify plant seeds from their pyrolysis 
mass spectra (Goodacre et al., 1996d). 

The aim of this study was therefore to use PyMS 
to determine whether one could type and discriminate 
animal cell cultures. We chose to examine three repli- 
cate cultures of four frozen animal cell lines and one 
fresh culture of Chinese hamster ovary cells. Whilst 
we recognise that the number of objects analysed in 
the present study was relatively small, they served 
more than adequately to illustrate the principles of our 
approach. Once data were collected auto-associative 
neural networks were employed to cluster the mass 
spectral data; the results obtained showed that PyMS 
could indeed be used to effect the rapid typing of cell 
cultures. The groups from the neural network-based 
methods were compared with the conventional mul- 
tivariate statistical approaches of hierarchical cluster 
analysis and the clusters produced by both methods 
were very similar. Finally, the replicate cultures from 
the frozen mouse tumour BW-0 cell line were found to 
give different pyrolysis mass spectra, rather than this 
being due to the effects of prolonged freezer storage 
it was found that this cell culture had become infected 
with bacteria and fungi. 

Materials and methods 

Animal cell lines and sample preparation 

Details of the animal cell lines that were used in this 
study are shown in Table 1. Baby hamster kidney cells 
BHK21lC13 were originally obtained from Flow Lab- 
oratories (Scotland), and K562c1.6 human leukaemia 
cells from the European Collection of Animal Cell Cul- 
tures (ECACC, Salisbury). The BW-0 tumour line is 
a non-invasive derivative of a mouse lymphosarcoma 
cell line (De Baetselier et al., 1984b); and the 2Cl l- 
12 macrophage line is a mouse x mouse fusion product 
resulting from somatic hybridisation of a sarcoma cell 
line with isolated macrophages (De Baetselier et al., 
1984a). The murine cell lines were originally supplied 
by courtesy of Prof. Patrick de Baetselier, Brussels 
Free University, Belgium. 

All cell cultures had been expanded in our labora- 
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Figure 1. Normalised and averaged pyrolysis mass spectra of human 
leukaemia K562 (A), baby hamster kidney BHK 21lC13 (B), and 
Chinese hamster ovary CHO (C). 

tory prior to freezing and stored for up to 6 years under 
N2. Triplicate samples of each of the four cell lines 
were taken from separate vials and a fresh sample of 
Chinese hamster ovary (CHO) cells was also included 
for comparison. Each cell line was harvested aseptical- 



Table I. Details of the animal cell lines used in this study 

Cell line Identifier used in 
Type of cell line identifier Date frozen multivariate analyses 

Mouse macrophage 
Mouse macrophage 
Mouse macrophage 
Human leukaemia 
Human leukaemia 
Human leukaemia 
Baby hamster kidney 
Baby hamster kidney 
Baby hamster kidney 
Mouse tumour 
Mouse tumour 
Mouse tumour 
Chinese hamster ovary 

2Cll-12 
2Cll-12 
2Cll-12 
K562 
K562 
K562 
BHK 21lC13 
BHK 21lC13 
BHK 21lC13 
BW-0 
BW-0 
BW-0 
CHO 

13 September, 1990 
13 September, 1990 
13 September, 1990 
14 October, 1989 
4 December, 1989 
4 December, 1989 
27 January, 1987 
3 February, 1988 
27 January, 1987 
15 December, 1989 
15 December, 1989 
15 December, 1989 
Fresh 

ly by centrifugation and washed in phosphate buffered 
saline (PBS). All cell lines were then resuspended to 
approximately 1.5 x lo6 cells per ml using PBS. The 
cells were then ready for analysis by PyMS. 

Pyrolysis Mass Spectrometry (PyMS) 

5 p1 of the washed cells were evenly applied onto iron- 
nickel foils to give a thin uniform surface coating. Pri- 
or to pyrolysis the samples were oven-dried at 50 OC 
for 30 min. Each sample was analysed in triplicate. 
The pyrolysis mass spectrometer used was the Horizon 
Instruments PYMS-200X; for full operational proce- 
dures see Goodacre et al. (Goodacre, 1994; Goodacre 
et al., 1994a; Goodacre et al., 1994b; Goodacre et al., 
199.5). The sample tube carrying the foil was heated, 
prior to pyrolysis, at 100 OC for 5 sec. Curie-point 
pyrolysis was at 530 "C for 3 sec, with a tempera- 
ture rise time of 0.5 sec. The data from PyMS were 
collected over the m/z range 5 1 to 200 and may be dis- 
played as quantitative pyrolysis mass spectra (e.g. as 
in Fig. 1). The abscissa represents the m/z ratio whilst 
the ordinate contains information on the ion count for 
any particular m/z value ranging from 51-200. Data 
were normalised as a percentage of total ion count to 
remove the influence of sample size per se. 

Hierarchical cluster analysis 

The normalised data were processed with the GEN- 
STAT package (Nelder, 1979) running under Microsoft 
DOS 6.22 on an IBM-compatible PC. The method has 

been previously described (Gutteridge et al., 1985; 
Goodacre, 1994; Goodacre et al., 1996d). In essence, 
the first stage was the reduction of the data by principal 
components analysis (Jolliffe, 1986; Causton, 1987; 
Flury & Riedwyl, 1988; Martens & Nas, 1989; Everitt, 
1993) keeping only those principal components whose 
eigenvalues accounted for more than 0.1% of the total 
variance. Canonical variates analysis then separated 
the samples into groups on the basis of the retained 
principal components and some a priori knowledge 
of the appropriate number of groupings (MacFie et 
al., 1978; Windig et al., 1983). The next stage was the 
construction of a percentage similarity matrix by trans- 
forming the Mahalanobis' distance between a priori 
groups in canonical variates analysis with the Gower 
similarity coefficient SG (Gower, 1971). Finally, hier- 
archical cluster analysis was employed to produce a 
dendrogram, using average linkage clustering (Gut- 
teridge et al., 1985). 

Auto-associative artijicial neural networks 

All artificial neural network (ANN) analyses were 
carried out under Microsoft Windows NT on an 
IBM-compatible PC. Data were normalised prior 
to analysis using the Microsoft Excel 4.0 spread- 
sheet. The back propagation neural network simu- 
lation program employed was WinNN version 0.96 
(Dr Yaron Danon, 14 Beman Lane, Troy New York 
12180, U.S.A. The program is available via ftp: 
ftp://sunsite.doc.ic.ac.uk/packages/windows3/progr~/, 
the most recent file name to down load is winnn97.zip). 



For in-depth descriptions of the analysis of PyMS data 
using back propagation ANNs the reader.is referred 
to Goodacre et al. (Goodacre et al., 1994b; Goodacre 
et al., 1995; Goodacre et al., 1996c; Goodacre et al., 
1996d). 

The structure of the ANN used in this study to 
analyse pyrolysis mass spectra consisted of 5 layers 
containing processing nodes (neurons or units) made 
up of the 150 input nodes (normalised averaged pyrol- 
ysis mass spectra), 150 output nodes (normalised aver- 
age pyrolysis mass spectra), and three "hidden" layers 
containing 8, 3 and 8 nodes respectively; this may be 
represented as a 150-8-3-8-150 architecture (Fig. 2). 
This ANN can be referred to as a fully interconnect- 
ed feedforward multilayer perceptron where each of 
the layers of nodes was connected to the next (hidden) 
layer using abstract interconnections (connections or 
synapses). Connections each have an associated real 
value, termed the weight, that scale signals passing 
through them. Nodes in the hidden layers and output 
layer sum the signals feeding to them and output this 
sum to each driven connection scaled by a "squash- 
ing" function (f) with a sigmoidal shape. Typically the 
function f = 141 + e-"), where x = Cinputs. 

These signals are then passed to the next layer 
which sums them and then they are in turn squashed by 
the sigmoidal activation function (Fig. 2); the product 
of the final layer of nodes was then fed to the "outside 
world". 

Before training commenced the values applied to 
the input and output nodes were normalised across the 
whole mass range such that the lowest ion count was 
set to 0 and the highest to 1. Finally, the connection 
weights were set to small random values (typically 
between -0.0001 and +0.0001). 

The algorithm used to train the neural network was 
the standard back-propagation (BP) (Rumelhart et al., 
1986; Werbos, 1994; Chauvin & Rumelhart, 1995). 
For the training of the ANN each input (i.e. normalised 
averaged pyrolysis mass spectrum) is paired with a 
desired output (i.e., the same pyrolysis mass spectrum); 
together these are called a training pair (or training 
pattern). An ANN is trained over a number of training 
pairs; this group is collectively called the training set. 
The input is applied to the network, which is allowed 
to run until an output is produced at each output node. 
The differences between the actual and the desired 
output, taken over the entire training set are fed back 
through the network in the reverse direction to signal 
flow (hence back-propagation) modifying the weights 
as they go. This process is repeated until a suitable 

level of error is achieved. In the present work, we used 
a learning rate of 0.05 and a momentum of 0.9. 

Each epoch represents the connection weight 
updatings and a recalculation of the root mean squared 
(RMS) error between the true and desired outputs 
(mass spectra) over the entire training set. During train- 
ing a plot of the error versus the number of epochs 
represents the "learning curve", and may be used to 
estimate the extent of training. Training may be said to 
have finished when the network has found the lowest 
error. Provided the network has not become stuck in a 
local minimum, this point is referred to as the global 
minimum on the error surface. In the present experi- 
ment we trained the auto-associative neural networks 
until the RMS error was 0.005; this was chosen because 
at this low RMS error point the output layer would be 
very similar to the mass spectra applied to the neural 
networks' input nodes. 

After training, each of the pyrolysis mass spectra 
were applied in turn to the input layer and the overall 
activation on the three nodes in the 'bottle-neck' layer 
calculated. The compression of the 150 inputs through 
only three nodes in the middle layer allows non-linear 
principal components analysis to be performed; plots 
of the activations of the nodes in the 'bottle-neck' layer 
therefore allow 'clusters' to be found in the data. For a 
more detailed account of this data compression through 
the 'bottle-neck' layer please refer to Kramer (1991; 
1992). 

Results and discussion 

After collection of the pyrolysis mass spectra the first 
stage was to normalise them to total ion count, to aver- 
age the three replicate spectra, and then to inspect 
them visually; Fig. 1 displays the normalised and aver- 
aged pyrolysis mass spectra of human leukaernia K562 
(Fig. la), baby hamster kidney BHK 2 1IC 13 (Fig. 1 b), 
and Chinese hamster ovary CHO (Fig. lc). It was seen 
that the spectra from the frozen and fresh cell lines 
were very different; the frozen samples all have intense 
peaks at 64 and 79 m/z which contribute between 15 
to 25% of the total ion count, whilst these peaks are 
very small (<2% of the total ion count) in the fresh 
sample. It is possible that this observation is due to 
the freezing process causing a permeabilty change in 
the cell walls and thus leakage of cellular components 
when washed. If true then provided the same number 
of cells were analysed the total ion count might be 
expected to be reduced in the frozen samples, this was 
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Figure 2. Architecture of an auto-associative neural network consisting of 5 layers. In the architecture shown, adjacent layers of the network 
are fully interconnected. The input and output layer are presented with identical PyMS data (in this figure there are 24 nodes in these layers; in 
the present work the number of nodes was actually 150 inputs/masses). A key feature of the auto-associative network is the data compression 
in the middle (third) bottle-neck layer of 3 nodes. The second and fourth layers each consisted of 8 nodes and these map and de-map the mass 
spectra allowing feature extraction in the bottle neck layer; this is equivalent to non-linear principal components analysis. Also displayed is the 
information processing by a node in one of the hidden layers or output layer. An individual node sums its input (the C function) from nodes in 
the previous layer, including the bias (8), transforms them via a "sigmoidal" squashing function, and outputs them to the next node to which it 
is linked via a connection weight. The bias has an activation which was always set to +1 and is applied to the 3 hidden layers and the output 
layer. 

not found to be the case. Indeed the method of freez- detailed analysis of the intense peaks found at 64 and 
ing was to reduce the temperature very slowly so as to 79 m/z.in the pyrolysates of the frozen cell lines might 
avoid the formation of ice crystals which are normally have been effected using either pyrolysis tandem mass 
thought to be to blame for the lysis occuring in frozen spectrometry or pyrolysis gas chromatography mass 
cell samples; moreover, the typical viability of animal spectrometry; however, these facilities were not avail- 
cell lines frozen in our laboratory is >90%. A more able to us. 



The next stage was to perform unsupervised learn- 
ing using auto-associative ANNs to effect the classi- 
fication of the 13 cell lines. The architecture of the 
multi-layer perceptrons employed was 150-8-3-8- 
150 (illustrated in Fig. 2), the training pairs consist- 
ed of the same normalised pyrolysis mass spectrum, 
and the 13 averaged pyrolysis mass spectra were then 
applied in turn to the 150 input and 150 output nodes. 
These ANNs were trained as described above until the 
RMS error was 0.005, this took approximately 1 x lo4 
epochs. 

After training to this point each of the averaged 
pyrolysis mass spectra were applied to the input lay- 
er of the auto-associative ANN and the activation on 
the three nodes in the 'bottle-neck' layer calculated. 
All the frozen cell lines gave activations of between 0 
and 0.000001 on all three nodes and the fresh cell line 
Chinese hamster ovary gave activations of 0.978947, 
0.978739, 0.97874 at each of the three nodes. It 
was therefore obvious that the major feature extracted 
reflected the freezing process rather than the different 
types of cell; since visual inspection alone could differ- 
entiate between frozen and fresh cell lines this result 
was not surprising. Therefore other auto-associative 
ANNs were used to perform unsupervised learning on 
the pyrolysis mass spectra from the 12 frozen cell lines. 

After training this ANNs until the RMS error was 
0.005, which took approximately 5 x lo5 epochs, each 
of the 12 averaged pyrolysis mass spectra were applied 
to the input layer of the auto-associative ANN and the 
activation on the three nodes in the 'bottle-neck' layer 
calculated and plotted as a pseudo-three dimensional 
graph (Fig. 3). In Fig. 3 it can be seen that for the cell 
lines mouse macrophage 2C11-12, human leukaemia 
K562, and baby hamster kidney BHK 21lC13 each of 
the three replicate samples from different vials group 
together and that the three different cell lines cluster 
separately. However, the replicate samples from the 
mouse tumour cell line BW-0, although frozen at the 
same time (Table I), were recovered separately. 

The samples from human leukaemia K562, baby 
hamster kidney BHK 21lC13, and mouse tumour BW- 
0 had all been stored for over four years and had 
been frozen between January 1987 and December 1989 
(Table 1). That the three replicate samples from the 
human leukaemia K562 and the triplicate samples from 
the baby hamster kidney BHK 21lC13 cell line clus- 
ter together shows that keeping the cell lines frozen 
does not significantly alter their pyrolysis mass spec- 
tra, therefore PyMS could be employed to characterize 
them. However, the three mass spectra from the mouse 
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tumour BW-0 cell line were different as judged by 
auto-associative ANNs (Fig. 3). Since neural compu- 
tation methods are relatively new to PyMS the question 
therefore arises as to whether these three mass spectra 
really are different, either due to the freezing process 
or some other phenomenon, or whether it is a failing 
in the feature extraction technique. 

The 12 spectra were therefore analysed using the 
standard statistical procedure of hierarchical cluster 
analysis, as detailed above. The resulting dendrograrn 
(Fig. 4) indeed shows congruence with the NLPCA 
plot; the replicates from the mouse macrophage 2C11- 
12, human leukaemia K562, and baby hamster kidney 
BHK 2 11C 13 cell lines group together and away from 
one another, and the replicate samples from the mouse 
tumour BW-0 cell line are recovered separately. In par- 
ticular, replicates D2 and D3 are 80% similar and only 
62% similar with Dl.  This result shows conclusively 
that auto-associative ANNs give very similar results to 
the classical approaches used to classify samples on 
their pyrolysis mass spectra, moreover it shows that 
the three replicate samples from the mouse tumour cell 
line are definitely different from each other. Since the 
three vials from this cell line were all frozen at the same 
time (15 December, 1989) the question therefore arose 
as to whether the cells had become contaminated. 

50 p1 samples from each of the 12 vials were 
lawned aseptically on to nutrient agar plates and incu- 
bated at 28 OC for 48 hrs. No bacteria or fungi grew 
on the samples taken from mouse macrophage 2C11- 
12, human leukaemia K562, and baby hamster kidney 
BHK 211C13 cell lines. However a mixture of unidenti- 
fied bacteria and fungi (approximately 1 x lo4 colony 
forming units ml-') were cultivated on the agar plates 
from the mouse tumour BW-0 cell line, and replicate 
Dl  was particularly contaminated with fungi. It was 
therefore evident that the differences observed in the 
pyrolysis mass spectra of these three replicate cultures 
of the same cell line was due to contamination with 
mixed microbial populations rather than an irrepro- 
ducible change in the biochemical profile during stor- 
age under N2. That PyMS was able to detect this very 
low level of contamination, 1 x lo4 ml-', in a relative 
large background population of 1.5 x lo6 cells ml-' 
is encouraging and highlights the exquisite sensitivi- 
ty of this technique. Because it is effectively studying 
the properties of a system in 150 dimensions (here 
the m/z values from 5 1-200) simultaneously, PyMS is 
a very high-resolution technique and it has been shown 
that one can even use PyMS to detect the prescence 
or absence of antibiotic plasrnids in Escherichia coli 
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Figure 3. Pseudo three-dimensional non-linear principal components plot based on PyMS data analysed by the 150-8-3-8-150 auto-associative 
neural network showing the relationship between the four cell lines. The activations of the three nodes in the bottle-neck layer are shown. ANNs 
were trained using the standard-back propagation algorithm, to a RMS error of 0.005 which typically took 5 x lo5 epochs. 
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Figure 4. Dendrogram representing the relationships between the four frozen animal cell lines based on PyMS data analysed by GENSTAT. 

(Goodacre & Berkeley, 1990). It is therefore likely that Concluding remarks 
the sensitivity of this technique is such that one could 
exploit it for the detection of mycoplasma infections These results show clearly that PyMS and auto- 
in animal cell cultures. associative neural networks, which carry out unsu- 

pervised learning, can be employed to discriminate 
between animal cell lines, and that very similar clas- 
sification was observed when the same spectral data 



were analysed using established multivariate statisti- 
cal procedures, viz. hierarchical cluster analysis. 

We also demonstrated that this approach can detect 
the contamination of cell lines with bacteria and fungi, 
and believe that this approach could be extended for 
the rapid detection of mycoplasma (and indeed other 
microbial) infection in animal cell lines. Moreover, we 
have previously shown that PyMS and ANNs trained 
using supervised learning can be used to measure the 
concentrations of tertiary mixtures of cells of the bacte- 
ria Bacillus subtilis, Escherichia coli and Staphylococ- 
cus aureus (Goodacre et al., 1994a); such an approach 
could also be exploited to quantify the level of conta- 
mination in infected animal cell lines. 

The major problem with PyMS is that long-term 
reproducibility (>30 days) is poor and the mass spec- 
tral fingerprints of the same material analysed at two 
different times may be different; this lack of repro- 
ducibility is largely due to instrumental drift in the 
mass spectrometer (and is not confined to PyMS). 
Therefore within clinical microbiology PyMS has real- 
ly been limited to the typing of short-term outbreaks 
where all micro-organisms are analysed in a single 
batch (Magee, 1993; Goodfellow, 1995). For PyMS to 
be used (a) for the routine identification of cell lines, 
new spectra must be able to be compared to those pre- 
viously collected. We have recently found that neural 
networks can be used successfully to correct for instru- 
mental drift so that models created using old previously 
collected data can be employed to give accurate esti- 
mates of determinand concentration or bacterial identi- 
ties from newly acquired spectra when calibrated with 
standards common to the two data sets (Goodacre and 
Kell, 1995; 1996b). Calibration samples were run at 
the two times, up to 2 years apart, and ANNs set up 
in which the inputs were the 150 'new' calibration 
masses and the outputs were the 150 calibration mass- 
es from the 'old' spectra. These neural networks could 
thus be used as signal-processing elements to effect the 
transformation of data acquired one day to those which 
would have been acquired on a later date. Therefore 
for the first time PyMS can be used to acquire spectra 
which could be compared to those previously collected 
and held in a library. 

The major advantages that PyMS offers over more 
conventional methods used to type cell lines and to 
screen for microbial infection, such as DNA finger- 
printing, are its speed, sensitivity and the ability to 
analyse many hundreds of samples per day. We con- 
clude that the combination of PyMS and neural net- 

works can provide a rapid and accurate discriminatory 
technique for the authentication of animal cell lines. 
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