
Rapid Authoring of Intelligent Tutors for Real-World and Experimental Use

Vincent Aleven, Jonathan Sewall, Bruce M. McLaren, Kenneth R. Koedinger

Human-Computer Interaction Institute, Carnegie Mellon University

{aleven|sewall|bmclaren}@cs.cmu.edu, koedinger@cmu.edu

Abstract

Authoring tools for Intelligent Tutoring Systems are

especially valuable if they not only provide a rich set of

options for the efficient authoring of tutoring systems

but also support controlled experiments in which the

added educational value of new tutor features is

evaluated. The Cognitive Tutor Authoring Tools

(CTAT) provide both. Using CTAT, real-world

”Example-Tracing Tutors” can be created without

programming. CTAT also provides various kinds of

support for controlled experiments, such as

administration of different experimental treatments,

logging, and data analysis. We present two case

studies in which Example-Tracing Tutors created with

CTAT were used in classroom experiments. The case

studies illustrate a number of new features in CTAT:

Use of Macromedia Flash MX 2004 for creating tutor

interfaces, extensions to the Example-Tracing Engine

that allow for more flexible tutors, a Mass Production

facility for more efficient template-based authoring,

and support for controlled experiments.

1. Introduction

Intelligent Tutoring Systems (ITSs) have been

proven to be successful in improving students’ learning

[7, 13]. Inspired by such results, many authoring tool

kits have been built for ITSs [1, 10, 11]. Typically, the

goal is to make the development of tutors easier and

faster. However, authoring tools may serve a second

important purpose, namely, to make it easier to use

ITSs as platforms for empirical experiments.

For example, researchers may want to test a

hypothesis stating that a certain feature in the design of

an ITS leads to deeper or more efficient learning on the

part of students. To do so, they develop two tutor

versions, one with the feature and one without, and

have different groups of students work with each tutor

version. They administer a pre-test and a post-test and

instrument the software to write detailed logs of

student-tutor interactions. Finally, they analyze the

data to see if there are differences in learning gains

between the conditions and differences in the

interactions students had with the tutor. This kind of

experimentation is of course not novel, but facilitating

it by means of better tools will help move the empirical

science of ITSs forward.

We are developing a set of authoring tools, called

the Cognitive Tutor Authoring Tools (CTAT) that

addresses these goals: easier and efficient creation of

tutors for both real-world use and use in experimental

scenarios [2, 6]. Currently, CTAT supports

development of two types of tutors: Cognitive Tutors,

which have a long and successful track record [7] but

require development of a cognitive model through AI

programming, and a new type of tutors, “Example-

Tracing Tutors,” which can be built entirely without

programming. To create an Example-Tracing Tutor,

an author demonstrates example solutions, generalizes

the recorded examples, and annotates them with hints

and feedback messages. CTAT also provides tools to

support experimental scenarios such as the one

described above, including facilities for detailed

logging of student-tutor interactions and log analysis

(see also [1, 11]).

In the current paper, we illustrate how CTAT

supports experiments involving Example-Tracing

Tutors, by means of two case studies, one in the area of

chemistry, in particular stoichiometry, and one in the

area of thermodynamics. The properties and authoring

process of Example-Tracing Tutors have been

described in a previous paper (Koedinger et al, 2004).

Here, we focus on a number of new features: (1) new

functionality to generalize recorded examples for more

flexible Example-Tracing Tutors, (2) use of

Macromedia Flash MX 2004 to create tutor interfaces,

(3) a template-based approach to facilitate authoring

and make it more efficient (4) support for delivering a

fixed sequence of tutor problems on the web, and (5)

support for experimentation: on-line tests and consent

forms, as well as log recording and analysis.

CTAT is freely available for research and

educational purposes (see http://ctat.pact.cs.cmu.edu).

We organize a free annual summer school to help

people get up to speed with CTAT. So far, over 200

instructors, researchers and students have used CTAT.

2. Brief overview of CTAT

When developing Example-Tracing Tutors for use

in an experiment, an author is likely to use the

following CTAT tools and components:

� the Behavior Recorder, a tool to create Behavior

Graphs, which are maps of the solution space used

by Example-Tracing Tutors (see Figures 1-3);

� a Mass Production facility for template-based

authoring of Example-Tracing Tutors (Figure 3);

� the Tutor Shop, a component used to sequence

tutor problems in a web-based environment and to

support experimental use of CTAT-based tutors;

� the Data Shop, a fully-integrated web-based

service for logging, log analysis, and reports.

A key advantage of Example-Tracing Tutors is that

a full-fledged, real-world tutor can be built “by

demonstration,” that is, without programming. An

author can either start with an existing problem-solving

environment or simulator (when the goal is to provide

tutoring within that environment), or create a new tutor

interface from scratch. Hooking up an external “tool”

requires some programming. Creating a new tutor GUI

on the other hand can be done without programming,

using a set of CTAT-compatible interface components

with off-the-shelf GUI building tools such as Netbeans

(for Java) or Flash MX 2004 (see Figure 2).

Next, the author must demonstrate examples of

correct and incorrect behavior for each problem on

which students will be tutored. The examples are

recorded by CTAT in a Behavior Graph with links and

nodes that represent problem-solving steps and states

respectively (see Figures 1-3). An author may

demonstrate alternative ways of solving a problem,

which are recorded as separate paths in the graph. An

author may also demonstrate common student errors

that the tutor must recognize. The corresponding links

in the graph must be marked as representing incorrect

actions. Finally, the author annotates the Behavior

Graph with hints, feedback messages, and skill labels.

CTAT’s Example-Tracing Engine uses the

Behavior Graph to guide a student through a problem,

comparing the student’s problem-solving behavior

against the graph. It provides positive feedback when

the student’s behavior matches steps in the graph, and

negative feedback otherwise. If the student’s input

matches a link in the graph that was marked as an

incorrect action, then any error feedback message

attached to that link is presented to the student. When

the student requests a hint, the hint messages attached

to a link out of the current state in the graph are

displayed. As discussed further in [6], Example-

Tracing Tutors thus provide the same key features in

tutor behavior as Cognitive Tutors. Our experience

gained during workshops, summer schools, and

courses indicates that non-programmers typically learn

to build Example-Tracing Tutors in an afternoon.

3. Case study 1: More flexible tutors

The first of our two case studies involves the use of

CTAT to add a tutor agent to an existing “articulate

simulator” for thermodynamics, called CyclePad,

shown on the left in Figure 1 [3, 5]. (The Behavior

Recorder is on the right.) The CyclePad simulator

enables students to build, analyze, and optimize

thermodynamic systems (or “cycles”), without having

to perform extensive manual computations. The case

study illustrates the use of CTAT to provide tutoring

within an external simulator and the options that the

Behavior Recorder provides for generalizing examples.

The goal of the thermodynamics project is to

evaluate the value of computer-generated natural

language tutorial dialogue in a context where, unlike

earlier tutorial dialogue systems, students have the

freedom to explore. We therefore added a dialogue

Figure 1: Use of CTAT to develop tutoring capabilities for the CyclePad thermodynamics simulator

component, built outside of CTAT. In a study with

mechanical engineering students at Carnegie Mellon

University in Pittsburgh (USA), it was shown that the

dialogues enhance the effectiveness of the system [8].

In addition to the dialogue component, an Example-

Tracing Tutor built in CTAT was added to the

simulator, to provide tutorial support at points in the

thermodynamics scenarios where dialogue was deemed

unnecessary. After doing some programming to hook

up the simulator [3], we created Behavior Graphs for

three scenarios dealing with different designs for

power plants. We took advantage of the options that

CTAT offers to generalize examples for the purpose of

flexible matching of student behavior. Early versions

of the Example-Tracing Engine required that the

student complete a problem scenario by exactly

replicating one of the solution paths in the Behavior

Graph, but that turned out to be too restrictive. Thus,

we extended the Example-Tracing Engine in a number

of ways. We added unordered and partially-ordered

modes in which the restriction is lifted that the student

must carry out the problem steps in the demonstrated

order. In unordered mode, the students can do the steps

in any order. In partially-ordered mode, “unordered

groups” can be defined; the groups themselves must be

completed in the order that they appear in the graph,

but the steps within a group can be carried out in any

order. The partially-ordered mode was useful for the

thermodynamics scenarios, which naturally break

down into two phases, one in which the student

initializes a cycle by setting parameters such as

pressure and temperature, and a second one in which

they optimize the thermal efficiency of the cycle by

adjusting the parameters. Within each scenario, we

created unordered groups corresponding to each of

these phases. As a result, the Example-Tracing Tutor

appropriately requires that students finish the two

phases in order, without placing any other constraints

on the order of the actions within each phase.

Second, we used CTAT’s “advanced matching

options,” which enable an author to generalize the

conditions under which a demonstrated step is

matched. For example, an author can specify that a

numeric value input by the student should be within a

certain range. This capability was useful, since in the

optimization phase of the thermodynamics scenarios,

we expect students to change the value of certain cycle

parameters, but we do not know exactly what the new

values will be, other than for example that they should

be higher than the given initial value. Further, CTAT

lets an author specify a regular expression. We used

that facility to deal with situations in which different

student actions essentially mean the same thing. For

example, the working fluid can be specified at many

different points within a thermodynamic cycle.

A third and final way in which CTAT allows an

author to generalize examples is by specifying that

certain steps in a problem solution are optional.

Although we did not use this facility in the

thermodynamics scenarios, we could have. In the

optimization phase, for example, a student may change

various cycle parameters an unspecified and

unpredictable number of times. Modeling these actions

as being optional will thus be very helpful.

4. Case study 2 : Flash and templates

We present a second case study [9] to illustrate two

further CTAT features: the use of Flash to create tutor

interfaces and the use of CTAT’s Mass Production

facility. Stoichiometry is the basic algebra used to

account for substance quantities in chemical reactions.

In this study, we explored how student learning with

stoichiometry tutors might be improved by (a)

personalized language in the tutor’s hints (e.g., hints

directly addressing the student using “you”) and (b) the

interleaving of worked examples and problem-solving

exercises, as opposed to just problem solving. Each of

Figure 2: Macromedia Flash MX 2004 used to create a GUI for an Example-Tracing Tutor

these interventions is supported by prior research (e.g.,

[4]) but has not been investigated in the context of

ITSs. The experiment involved a 2x2 design, based on

the two factors mentioned above. It was executed at the

University of British Columbia (Canada) as an

optional, online activity in two chemistry courses. The

69 subjects were randomly assigned to one of the four

conditions. All were given an online pre-test, then

worked on 15 tutor problems, presented according to

the different experimental conditions, and finally, took

an on-line posttest. We found, surprisingly, that

personalization and worked examples had no

significant effect on learning, although we did find a

significant improvement from pre-test to post-test [9].

The first CTAT innovation used in this study was

the use of the Flash programming tools in conjunction

with CTAT to create a student interface (see Figure 2).

Use of Flash led to a more modern user interface and

easier web deployment. The Macromedia Flash IDE is

also arguably easier to use than equivalent tools for

Java, such as NetBeans and CodeWarrior.

We also made extensive use of CTAT’s new “Mass

Production” facility, which addresses a limitation of

demonstration-based authoring of Example-Tracing

Tutors, namely, that a significant amount of problem-

specific authoring is necessary. While simply

demonstrating a large number of solutions is not

difficult, it is time consuming, especially when

multiple authoring iterations are required. Further,

maintaining consistency of hints and error messages

across problems is a formidable task. CTAT’s Mass

Production facility considerably streamlines this

process. Using this facility, an author first creates a

single Example-Tracing Tutor by demonstration, as

described above, and then turns it into a problem

template by inserting variables for items that vary

across problems, such as the values of steps, hints, and

error feedback messages. The author then can create

similar problems, of the same structure, simply by

providing problem-specific information in an Excel

spreadsheet. For each problem, values for all of the

variables must be provided. A merge step, akin to that

in Microsoft Word’s mail merge facility, completes the

process (see Figure 3). In the stoichiometry study, we

used the Mass Production facility to develop 48

stoichiometry problems, both tutor problems and items

for the on-line tests.

A significant advantage of Mass Production is that

all of the problem instances are represented in a single

file. This allows the author to easily copy across

problems, making it easier to keep hints consistent

across problems. It also facilitates maintenance: when

a change must be made across all problems, one (often)

only needs to change the problem template file. Of

course, mass production works only if problems share

the same interface widgets and the same problem

structure. In the stoichiometry study, we needed 4

different templates, so, in spite of this requirement, the

Mass Production facility was very helpful.

In the stoichiometry study, CTAT was used for the

first time to field on-line pre-test and post-tests with

automatic grading. We extended CTAT so that special

Example-Tracing Tutors could be created that evaluate

student input in the usual manner but do not provide

hints or feedback. Student actions are logged in the

usual manner (all CTAT-based tutors have logging

capabilities built in), together with the tutor responses

identifying correct and incorrect answers. Thus, the

tests are essentially graded on the spot, with results

stored in a database. Further, creating Behavior Graphs

for test problems is easier than creating them for

tutored problems. Since no hints or error messages are

displayed to the student in pre- and post-tests, the

author need only demonstrate correct solutions.

The stoichiometry study illustrates the use of two

more components. In order to have the students

Figure 3: CTAT’s Mass Production facility provides for template-based authoring using a spreadsheet

proceed through the problems in a fixed order, we

created a web-based module, the “Tutor Shop,” This

module controls problem sequencing, using a data base

to keep track of where each student is in the problem

sequence. It serves several other purposes as well.

First, it provides a programming interface to external

authentication systems. We used this interface to

permit the learner management system we were using,

OLI [12], to perform user authentication both for

account creation and subsequent login. Second, the

Tutor Shop assigns students to experimental

conditions. For our stoichiometry study, a simple

round-robin algorithm sufficed, but other condition-

assignment schemes are possible. Finally, the module

can handle (pluggable) presentation pages to deliver

content other than tutors, such as instructional videos,

in its sequencing. This facility was used to provide

online directions and to present the worked-out

examples, video clips with voice narration showing the

tutor interface as an expert solved problems.

A final component used in the stoichiometry study

was the Pittsburgh Science of Learning Center (PSLC)

Data Shop. The PSLC is an NSF-sponsored research

center spanning Carnegie Mellon and the University of

Pittsburgh (http://www.learnlab.org). The Data Shop is

the PSLC’s principal data repository: it bears the

responsibility for standardized data collection for all

experiments conducted in the center. It also provides

data reporting and analysis services, including:

� 24-hour data logging server with web access;

� security and backup of collected data;

� student identity-masking and other measures to

enforce privacy constraints;

� web access to queries that extract identity-masked

data by time, course, unit, etc.;

� broadly-applicable data analyses, such as reports

on error rates and learning curves, also available

on demand from the web site.

CTAT is fully integrated with the Data Shop, meaning

that CTAT-based tutors can automatically log the

student-tutor interactions into the Data Shop data base.

Thus, authors can obtain data extracts and view

standard reports on data from their studies minutes

after students finish with their tutors. In both the

stoichiometry and the thermodynamics studies, we

used the Data Shop to collect data about student-tutor

interactions. In the stoichiometry study, in addition, the

Data Shop was used to analyze the data and was

instrumental in implementing on-line tests with

automated grading.

Conclusion

The goals of the CTAT project are to make ITS

development fast and accessible to non-programmers

and to support the use of tutors in learning science

experiments, including those run over the web. The

CTAT tool suite supports authoring of two types of

ITSs, Example-Tracing Tutors and Cognitive Tutors.

Two case studies illustrate that Example-Tracing

Tutors provide a viable way to create tutoring

capabilities in advanced domains such as stoichiometry

and thermodynamics. They also illustrate the way

CTAT supports the use of tutors in learning science

experiments. The innovations that were developed in

support of the two experiments, meant to facilitate

authoring and to increase the flexibility of Example-

Tracing Tutors, are fully reusable in other projects.

References

[1] Ainsworth, S. & Fleming, P. (2005) Evaluating a mixed-
initiative authoring environment: Is REDEEM for real?
In Proceedings AIED 2005 (pp. 9-16). Amsterdam: IOS
Press.

[2] Aleven, V., McLaren, B., Sewall, J., & Koedinger, K. (in
press) The Cognitive Tutor Authoring Tools (CTAT):
Preliminary evaluation of efficiency gains. In
Proceedings ITS 2006.

[3] Aleven, V., & Rosé, C. (2005). Authoring plug-in tutor
agents by demonstration: Rapid, rapid tutor development.
In Proceedgins AIED 2005 (pp. 735-737). Amsterdam:
IOS Press.

[4] Clark, R., & Mayer, R. (2003). e-Learning and the
Science of Instruction. Jossey-Bass/Pfeiffer.

[5] Forbus, K., Whalley, P., Evrett, J., Ureel, L., Brokowski,
et al. (1999). CyclePad: An articulate virtual laboratory
for engineering thermodynamics. Artificial Intelligence
114(1-2), 297-347.

[6] Koedinger, K., Aleven, V., Heffernan, N., McLaren, B.,
& Hockenberry, M. (2004) Opening the door to non-
programmers: authoring intelligent tutor behavior by
demonstration. In Proceedings ITS-2004 (pp. 162-174).
Berlin: Springer.

[7] Koedinger, K., Anderson, J., Hadley, W., & Mark, M.
(1997). Intelligent tutoring goes to school in the big city.
International Journal of Artificial Intelligence in
Education, 8, 30-43.

[8] Kumar, R., Rosé, C., Aleven, V., Iglesias, A., &
Robinson, A. (in press). Evaluating the effectiveness of
tutorial dialogue instruction in an exploratory learning
context. In Proceedings ITS 2006.

[9] McLaren, B., Lim, S., Gagnon, F., Yaron, D., &
Koedinger, K. (in press) Studying the effects of
personalized language and worked examples in the
context of a web-based intelligent tutor. In Proceedings
ITS 2006.

[10] Murray, T., Blessing, S., & Ainsworth S. (Eds.) (2003).
Tools for Advanced Technology Learning Environments.
Amsterdam: Kluwer.

[11] Nuzzo-Jones, G., Walonoski, J.A., Heffernan, N., Livak,
T. (2005). The eXtensible tutor architecture: a new
foundation for ITS. In Proceedings AIED 2005 (pp. 902-
904). Amsterdam: IOS Press.

[12] Carnegie Mellon University Open Learning Initiative,
http://www.cmu.edu/oli.

[13] VanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A.,
Shelby, R. H., Taylor, L., et al. (2005). The Andes physics
tutoring system: Lessons learned. International Journal of
Artificial Intelligence and Education, 15(3), 147-204.

