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Rapid Automated Three-Dimensional Tracing of
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Abstract—Algorithms are presented for fully automatic
three-dimensional (3-D) tracing of neurons that are imaged by
fluorescence confocal microscopy. Unlike previous voxel-based
skeletonization methods, the present approach works by recur-
sively following the neuronal topology, using a set of4 2

directional kernels (e.g., = 32), guided by a generalized
3-D cylinder model. This method extends our prior work on
exploratory tracing of retinal vasculature to 3-D space. Since
the centerlines are of primary interest, the 3-D extension can be
accomplished by four rather than six sets of kernels. Additional
modifications, such as dynamic adaptation of the correlation
kernels, and adaptive step size estimation, were introduced for
achieving robustness to photon noise, varying contrast, and
apparent discontinuity and/or hollowness of structures. The end
product is a labeling of all somas present, graph-theoretic repre-
sentations of all dendritic/axonal structures, and image statistics
such as soma volume and centroid, soma interconnectivity, the
longest branch, and lengths of all graph branches originating
from a soma. This method is able to work directly with unpro-
cessed confocal images, without expensive deconvolution or other
preprocessing. It is much faster that skeletonization, typically con-
suming less than a minute to trace a 70-MB image on a 500-MHz
computer. These properties make it attractive for large-scale
automated tissue studies that require rapid on-line image analysis,
such as high-throughput neurobiology/angiogenesis assays, and
initiatives such as the Human Brain Project.

Index Terms—Aotomated morphometry, micrograph analysis,
neuron tracint, three-dimensional (3-D) image filtering, three-di-
mensional (3-D) vectorization.

I. INTRODUCTION

T HE quantitative morphology of linear branched structures
such as blood vessels and neurons is of broad interest

[1]–[7]. Of particular interest is the automated three-dimen-
sional (3-D) tracing and morphometry of neurons in thick slices
of brain tissue, imaged by 3-D microscopy [8]–[11]. Fig. 1
presents the projections onto the– , – , and – planes
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of a sample 3-D image of a selectively stained neuron. The
image has dimensions 512480 301 pixels with a depth of
8 bits/pixel (70 Mbytes). It is desired to trace the dendrites and
axon, and produce a graph-theoretic or tabular representation
that captures the essential topological characteristics. It is also
of interest to segment the soma (cell body) and relate the traces
to the soma. A number of topological and metric measurements
could then be made [1].

Capowski [1] has provided a detailed history of neuron
tracing methods. Briefly, current methods are semiautomatic.
A human interacts with a microscope enhanced with computer
imaging hardware and software [14]. The user performs
pattern recognition. The computer system records the data and
generates topological and metric analyses. In some cases, the
computer assists the human by automatically aligning a cursor
to the nearest image feature or by automatically focusing the
microscope [1], [12]–[14]. Cohenet al.[15] presented a method
for automatic 3-D tracing from confocal image stacks of selec-
tively stained neurons based on segmentation, skeletonization,
and graph extraction. Their work has been refined by Heet al.
[16], [17]. The new algorithms presented here are inspired by
methods that we developed for tracing vasculature in retinal
angiograms [18], [34]. They are superior in terms of speed,
automation, and robustness compared to skeletonization-based
methods for tracing neuronal structure. If smaller structures
such a spines are also of interest, skeletonization can still be
employed on a localized basis.

II. I MAGE ANALYSIS BACKGROUND

Three approaches exist for analysis of linear branched
structures such as neurons and vasculature. The first is based on
skeletonization and branch point analysis (e.g., [15], [19]–[23]).
The second is based on enhancing edge/line properties and then
identifying vessel contours by chaining edge pixels together.
Such a chaining process usually involves dynamic program-
ming to search for a minimum cost path, Markov chaining, or
maximizing the likelihood of a path [24]–[31]. Both approaches
require the processing of every image pixel with numerous
operations per pixel, hence, they tend to scale poorly with
image size. Cohenet al. [15] described methods to reduce
the computational effort by processing only the foreground
pixels selected by a segmentation operation. Nevertheless,
3-D skeletonization is computationally intensive. The third
approach, exemplified by this paper and others, is referred to
variously as vectorization, vectorial tracking, or tracing [18],
[23], [32], [33]. These methods first locate an initial point,

1089-7771/02$17.00 © 2002 IEEE
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(a)

(b)

Fig. 1. (a) Sample 512� 480� 301 image of a dye-injected neuron in a thick brain slice, presented by its projections (x–y, y–z, andx–z). The axial step
size is 0.5�m, and the zoom factor is 1.0. (b) The tracing result. Each tree emanating from the soma is labeled with a unique color. A unique number identifies
each segment. These numbers are correlated with the text output (Fig.8c). The color red is reserved for segments not connected to a soma (e.g., 52, lower right).
Intersection, branching, and starting points are indicated by blue dots.

and then exploit local image properties to trace the structures
recursively. They process only pixels close to the structures and
so are appropriately termed “exploratory algorithms” They are
particularly appropriate when processing speed is crucial, such
as in real-time image analysis [18], [34], or when the data sets
are very large.

Broadly, three categories of exploratory processing tech-
niques are described in the literature. In the first, commonly

used in quantitative coronary angiography (QCA), the initial
and end points of a vessel (sometimes also an initial centerline)
are entered manually [24]–[26], [28], [35]–[43]. Although very
accurate, these algorithms are designed to trace vessel segments
with no branching or intersections, and speed is not a concern.
In the second category, the algorithm starts with a manually
entered initial point and an initial direction, and recursively
traces the entire arterial tree [44], [45] using a breadth-first
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search. In the context of neurons, this would correspond to
tracing a single axon/dendrite tree that is efferent from a single
soma. Such methods are not suitable for images containing
several neurons with each neuron having several processes
efferent from it, and when neurons are larger than the field of
view. The third category consists of fully automated methods
[18] that overcome the limitations of the first two.

The bulk of the prior literature on vectorization is concerned
with two-dimensional (2-D) images, or projections of 3-D im-
ages [32], [37], [42], [43], [47], [48]. The method presented
here extends the prior work, especially [18], to handle 3-D (vol-
umetric) data. A second contribution of the present work is a
set of adaptations to handle the imaging artifacts prevalent in
fluorescence confocal microscope images, especially noise, the
point-spread function, and discontinuities in structures.

III. M ETHODS

The images are acquired using a laser-scanning confocal
microscope [49], [50]. This instrument scans thick (compared
to the depth of field) specimens in successive layers. The
3-D imaging can also be accomplished by deconvolution of
through-focus series from standard wide-field microscopes
[10], but generally not from such thick objects. The end result
in either case is a 3-D array of volumetric optical intensity
measurements. Typical imaging artifacts encountered include
variable quantum noise, point spread, signal attenuation with
depth, and nonuniformity of staining causing apparent discon-
tinuity in structures [49].

The large size of 3-D confocal images (50–100 MB) is a chal-
lenge. Even a modest operation can entail excessive computa-
tion if repeated at each voxel. This problem is circumvented by
avoiding operations that process each voxel. An adaptive ex-
ploratory search of the image is conducted, directly at the voxel
intensity level. This limits computations to just the sparse struc-
tures of interest and, therefore, scales with the complexity of
the neurons rather than image size. The resulting algorithms are
highly adaptive since they rely on local image information. This
is crucial since biological images are inherently variable.

Sections III-A–F describe the algorithms for tracing the den-
drites/axons, segmenting the soma, and generating a complete
graph-theoretic representation of the neuron.

A. A Generalized Cylinder Model of the Neuronal Structures

Over a short distance, the dendrites and axons in the image
field are well approximated by generalized cylinders, i.e., cylin-
ders with elliptical cross sections, and some curvature along the
axis. The nature of the confocal imaging process usually im-
plies that the images are nonisotropic, with maximum separa-
tion along the optical axis of the microscope, so the principal
axes of the generalized cylinder are aligned with the– plane
and/or the optical axis. This implies that it is sufficient to sample
these ellipses along just two, instead of three directions. The re-
sults shown in this paper demonstrate that this approximation
does not result in serious limitations.

Fig. 2. Illustrating the 2-D tracing algorithm. Starting from centerline pointppp ,
and initial directionuuu the perpendicular directionsuuu anduuu are searched
for the left and right boundaries, where the correlation responses are maximal. A
step is taken along the direction of maximal response to~p . This is corrected
by vectorvvv to the next centerline pointppp . The next tracing directionuuu
is a weighted average combininguuu and the directions of the maximal-response
kernels at stepi + 1. The kernel lengthsk andk are set adaptively and can
be different.

B. Directional Matched Low-Pass Differentiator Kernels for
Generalized Cylinders

The rest of this section provides a detailed description of the
algorithms. Nonmathematical readers may prefer to skim or skip
this material entirely. Table II summarizes the notation.

The 2-D tracing algorithms described in prior work [18],
[37], [44] used a set of correlation kernels of the form
[ 1 2 0 2 1] perpendicular to the structures being
traced and computed a moving average along their length.
These kernels are illustrated in Fig. 2, for the case when the
moving average is computed overpixels. The kernel
is referred to as a “template” in our work. Separate templates
are constructed for application at the left and right boundaries
of the structures and along different orientations. The possible
orientations are discretized to a small number of values;
typically 16 or 32. As illustrated in Fig. 2, the template whose
axis coincides with the boundary of the structure being traced
produces the highest correlation response. These maximal
responses guide the tracing, using an update equation of the
form

(1)

where is a step size [18]. The above update equation produces
nonsmooth traces, especially when the local curvature is high.
As illustrated in Fig. 2, smoother traces are obtained by adding
a fine-tuning step to (1), resulting in the following update equa-
tions:

(2a)

(2b)

where is a correction (fine-tuning) vector, and “ ” indi-
cates approximation. An extension of the templates to 3-D space
is illustrated in Fig. 3(a). Analogous to the 2-D case, the tem-
plates are applied along the length of the structure being traced.
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(a)

(b)

Fig. 3. Illustrating the 3-D tracing algorithm. (a) Four sets of kernels are used, instead of two. Starting from pointp , the left, right, top, and bottom boundary
points,p ,p ,p , andp , are detected. The response of each kernel is computed inN �N angular directions. The directions of the strongest kernel responses
are used to estimate the local centerline direction~u along which to take a step. The right-hand portion of (a) illustrates the notation used in the text. (b) The
coordinate system for specifying angular directions. A unit vectoru , also illustrated on the right-hand part of (a), is obtained by rotating the vectorOA by �
relative to thex axis in thex–y plane, and then rotating the resulting vector (i.e.,OB) by � relative to thex–y plane.

The third dimension is sampled in two perpendicular planes,
keeping in mind the generalized cylinder model described ear-
lier. Four sets of templates, labeled “right,” “ left,” “ top,” and
“bottom,” respectively, are defined. Similar to the 2-D case, the
templates most closely oriented along the generalized cylinder,
and centered on the boundary produce a maximum response.
This fact is exploited to conduct the tracing.

Directions in 3-D space are described in terms of two angles,
and . As illustrated in Fig. 3(b), describes a rotation around

the axis, and describes a rotation around the line (i.e.,
the axis after being rotated by around the axis). Note
that the angular directions in the coordinate system shown in
Fig. 3(b) follow theright-handrule. Both and are discretized
to values each, resulting in a total of angular direc-
tions. The value of can be set by the user to best sample the
curvature of the structures of interest. For the experimental re-
sults presented here, we used yielding an angular preci-
sion of 11.25 and a total of unique directions. The
total number of unique templates taking into account the four
sets (right, left, top, and bottom) is therefore . It
is convenient to refer to each of the discrete angular orientations
by integer indexes and , with and . A
unit vector with the orientation
is expressed as . For example, a unit vector along
the -axis, i.e., a vector with angles , and is ex-
pressed concisely as . With the above notation, a
template is specified by its orientation, denoted , a
perpendicular shift direction, denoted , and its length . The
perpendicular direction is the line along which the templates

are correlated repeatedly to search for boundaries. These direc-
tions are illustrated in the right-hand part of Fig. 3(a).

In our prior work with retinal images [18], the templates were
of fixed length, . For the present work, the length is al-
lowed to vary. Longer templates perform more averaging along
the structures, and are necessary to trace the noisier and discon-
tinuous structures encountered in confocal neuron images. On
the other hand, longer templates are unsuitable for tracing highly
tortuous structures. The number of angular quantization levels

imposes a lower bound on the value of template’s length
according to

(3)

At equality, templates along adjacent directions differ by at
most one voxel at their far end. Based on these considerations,
the template length was allowed to vary between 8 and 50 in the
present work. The method for selecting the optimal value of
adaptively, at each tracing step, is described in Section III-C.

As in prior 2-D work, the templates are correlated with
the image. Let denote the correlation response
of a right template of length, , and direction, , with the
image data when the template is centered at the
image point . Similarly, let , ,
and denote the responses of theleft, top, and
bottomtemplates, respectively. Henceforth, these quantities are
collectively referred to as the “template responses.”
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C. Application of the Templates to 3-D Neuron Tracing

Fig. 3 illustrates the procedure for tracing a 3-D generalized
cylinder structure. Starting from a pointon the centerline, and
an initial estimate of the direction , the structure is traced re-
cursively, estimating successive points , along the
centerline. This is repeated until a stopping criterion (defined
in Section II-D) is met. This procedure requires: 1) a collec-
tion of seed points along with initial directions; 2) a mechanism
for recursive application of templates; and 3) criteria to stop
tracing whenever a structure’s end is reached or erroneous back-
ground traces are being pursued. The procedure for obtaining
seed points automatically is described in Section III-E. We de-
scribe the tracing algorithm below.

For simplicity of presentation, we first describe the algorithm
using templates of fixed length. This restriction is relaxed
later. Denote a seed point on or near a centerline as. De-
note the initial estimate of the local direction as. The first
step is to refine these estimates. This is accomplished by com-
puting the responses of theright, left, top, andbottomtemplates
along the four perpendicular shift directions using ashift and
correlate procedure as in prior work [18]. Briefly, each tem-
plate is placed at a series of locations and their correlation with
the image is computed. By design, this value, also termed “re-
sponse,” is maximum at abrupt changes in brightness.

The points along the above-mentioned directions that
produce maximum template responses are estimated as the
boundaries . The orientations of the templates
that produce this maximum response yield a set of local direc-
tion estimates at the boundaries. For the top
and bottom templates, this can be described mathematically
as shown in (4) and (5) at the bottom of the page, whereis
the maximum expected axon/dendrite diameter, andis the
set of all possible directions. The equations for the other two
templates are analogous. For the experiments described here,

was estimated empirically as .
Let denote the maximal response of the

right template at the boundary point estimated by the above pro-
cedure. The notation for the other three template types is defined
in an analogous manner. With this notation, the method to refine
the location and direction estimatesand can be described
as follows:

(6)

(7)

Using these refined estimates for the location and direction of
the current centerline point, the location and direction of the next
centerline point are updated as follows:

(8)

(9)

The above computations can be reduced substantially. For in-
stance, it is not necessary to correlate the templates at all
points at each iterationsince most structures are narrower than

voxels. Also, correlating the templates at all points ex-
poses the tracing algorithm to the risk of being confused by the
boundaries of adjacent parallel structures as explained in [18].
Such problems are avoided by terminating the shift and correlate
procedure using a carefully defined criterion. Following [18] the
procedure is terminated when the maximum template response
so far is larger than a fixed threshold and the current response
falls below 20% of the maximum.

To further reduce the computations, note that it is unneces-
sary to compute the template responses for each of the-pos-
sible directions since most structures of interest have limited
curvature. With this in mind, the set can be limited to a small
number of directions that are adjacent to. This subset of di-
rection vectors denoted is given by

(10)
where is the maximum number of neighboring directions.
In the present work, this value was allowed to adapt between
2 and 3, depending on the estimated noise level in the image
and/or user-set preferences. Note that when , the set
contains only 25 directions, a substantial reduction compared to
1024 directions in .

Method for Dynamic Adaptation of Template
Length: Allowing the template length to vary enables
tracing past discontinuities and noisy segments while being
able to handle curvature. With a variable-length template, it is
important to normalize the template response by the length
so that meaningful comparisons can be made. Without such
normalization, it is not valid to estimate boundary points as
those maximizing template responses, since longer templates
tend to produce larger responses, even though the boundary
of a particular dendrite/axon might coincide better with a
shorter template. With this in mind, thelength-normalized
template responseis defined as the response per unit length of
a template. Incorporating this extension to (4), and also the
constraint on directions described in (10) yields (11), shown
at the bottom of the page, where is a function of as
defined in Table I and is the maximum allowed template
length. For the present work, was empirically set to 50. The

and
(4)

and
(5)
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TABLE I
SUMMARY OF THE PERPENDICULARSHIFT DIRECTIONSFOR THE TEMPLATES.
SEE THERIGHT-HAND PORTION OFFIG. 3(A) FOR A GRAPHIC IILLUSTRATION

equations for the other three cases are analogous. Table II
shows symbols used in this paper.

Finally, the tracing algorithm computes an approximation for
the location and direction of the next centerline point according
to (8) and (9). The step size[in (8)] is a function of the tem-
plates lengths and is determined according to

(12)

This favors larger step sizes for straight segments where the
longer templates fit well. Ideally, should also be a function of
the noise level in the image, but we leave this for future work.
Currently, the algorithm uses a step-size of three if the user in-
dicates that the image has a low signal-to-noise-ratio (SNR).

D. Stopping Criteria

Tracing is terminated upon reaching the end of the traced seg-
ment or upon straying away from the segment into the back-
ground. This situation is expressed asmultiple consecutive vio-
lationsof the following conditions, as explained below.

• The sum of the four maximum template responses is larger
than a threshold according to

(13)

where is the image contrast, as measured by the differ-
ence , between the foreground and overall
median intensities and , respectively. Notice that
correlationg a template of length at a unit step edge
yields , henge the constant 3 in (13)

• The average intensity of the traced structure is at least one
gray level higher than that of the local background. This
translates to requiring the maximum response of each of

the four templates to be larger than a threshold. For aright
template this is expressed as . Conditions for
other templates are analogous.

• The maximum template response at a boundary point
should be times larger than the response of a template
applied at the same point orthogonal to the boundary
and pointing into the interior of the segment. For aright
template this can be expressed as

(14)

where is a sensitivity factor that effectively imposes a
constraint on the uniformity of the interior of the traced
segment and is set empirically to two. The value of the
template length , on the right side of (14), is estimated
by the distance between the left and right boundaries

.
At each iteration, each of the above conditions is tested, and

the number of violations are counted. Tracing is stopped if the
number of consecutive violations is larger than a threshold. In
the experiments reported here,was set to three. The rationale
for this criterion is to tolerate responses that are characteristic
of the background as long as such responses are isolated events
due to noise and image artifacts.

E. Seed-Point Selection

The seed-point selection mechanism must ensure that
for every dendritic/axonal segment, the tracing algorithm is
provided with a seed point on or near the centerline of the
segment along with an initial direction. A seed point is used
twice, once in the specified direction and a second time in
the opposite direction. To ensure coverage, redundant seed
points are generated. The seed-point selection mechanism
is a two-step process. In the first step, a pool of seed-point
candidates is generated, and in the second step, unfit candidates
are eliminated. This eliminates unnecessary computation.

Step 1) Line Searches over a Coarse Grid: The 3-D neuron
image is projected onto the– plane using max-
imum projection and a grid of horizontal lines and

vertical lines are superimposed on the resulting
2-D image, denoted . Seed candidates are iden-
tified by performing a set of line searches
over the image . The distance between consecu-
tive lines, i.e., the grid spacing,, is set empirically
to 20 pixels based on the observation that most den-
drites and axons are narrower than 20 pixels. The
gray-level values on each line are low-pass filtered
using a one-dimensional (1-D) kernel of the form
[0.25, 0.5, 0.25] . Seed point candidates are iden-
tified as local intensity maxima on each line using a
1-D neighborhood of pixels. In addition to being

(11)
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TABLE II
A GLOSSARY OF THESYMBOLS USED IN THE PAPER

a local maximum, a seed-point candidate must have
intensity larger than , where is the me-
dian pixel intensity of , and is the standard
deviation around the median.

Step 2) Filtering the Results of Step 1: Many of the points
generated in the previous step correspond to noise
and must be rejected to avoid erroneous traces. For
a seed-point candidate located in the pro-
jection image , this is achieved as follows. The
shift and correlateprocedure is applied using all
right and left templates lying in the plane (i.e.,
templates with orientations ,

). This produces a total of 64right and
left boundary points. As illustrated in Fig. 4, let

, be the two max-
imal right responses. Similarly, let ,

Fig. 4. Illustrating the directions and locations of the four boundary points
associated with the seed-point candidateppp(x; y). The circular disk of radius
r is utilized in estimating the uniformity and intensity characteristics of the
segment’s interior.

, be the two maximal left responses.
Then we have the following conditions.

1) and must bealmost opposite, or
, where “ ”
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indicates the inner product. A similar relation
must also hold between and .

2) and must bealmostparallel, or
. A similar relation must

also hold between and .
3) The segment’s interior around the seed-point

candidate must be uniform. To illus-
trate, consider a circular disk, , of radius

centered at (see Fig. 4). Let be the
median intensity of image pixels in, and let

be the standard deviation around the me-
dian. Then we have the following uniformity
condition: .

4) The distance between and must be
less than pixels. Similarly, the distance be-
tween and must be less thanpixels.

5) The median intensity of the segment’s inte-
rior around the seed-point candidatemust
be larger than that of the 2-D image . In
terms of the disk defined above, this is stated
as .

Only seed-point candidates satisfying conditions 1 through 5
are considered valid. The points validated in the above proce-
dure were obtained from the projection 2-D image; hence
they lie in the – plane. The following procedure is used to
estimate the coordinates of such points to locate the corre-
sponding 3-D seed points.

Let be a valid seed point. Let be
the corresponding 3-D seed point with the sameand values.
The value of the -coordinate is estimated as the plane with
maximum local intensity in the neighborhood of , or
where a disk similar to the one defined in condition 3 above,
defines the local neighborhood. Let be a disk in
the – plane of radius and centered at the point .
Denote the intensity of a 3-D image voxel by and the
image depth by . The coordinate of the 3-D seed point is
estimated according to

(15)

It is not difficult to suggest a 3-D seed selection and vali-
dation procedure instead of the hybrid 2-D/3-D procedure de-
scribed above. However, such a procedure is computationally
expensive. In fact, it would involve searching for local maxima
along lines, and 4096 applications of theshift and
correlateprocedure at each of the detected maxima. Compare
this with the above procedure involving search lines and
64 applications at each detected maxima.

To make the tracing program more robust against seed-point
variations, valid seed points are ranked frombestto worst ac-
cording to their distance from the somas in the image (the far-
ther the better), and according to their prominence as measured
by the sum of the maximum template responses (i.e.,

). For other ways to prioritize seed points, the reader is
referred to [34].

Estimating Image Statistics:Both the tracing algorithm de-
scribed in Sections III-A–D and the soma detection procedure

described in Section III-F require a number of image statistics.
Such statistics are gathered during this phase of processing since
it takes place early on in the program. In particular, the following
statistics are estimated; the median of the 3-D image, the me-
dian of its foreground (i.e., the median of all disks centered
at valid seed points), the median of the background, and the
corresponding standard deviations, and , respectively.
In addition, we gather statistics about the average, maximum,
and minimum dendrite and axon dimensions near seed points.
These measurements determine the size of the structuring ele-
ment used for soma detection, as will be explained in the next
section. Finally, in earlier versions of these algorithms, seed
candidate validation was performed on demand while tracing.
Clearly, this is computationally more attractive because of the
large degree of redundancy in the number of seed points. How-
ever, this approach was abandoned in favor of the present ap-
proach because both the tracing and the soma detection algo-
rithms depend on the estimated image statistics.

F. Soma Detection

Soma detection is achieved through a combination of
grayscale closing, adaptive thresholding, and connected
component operations. Mathematical morphology [51], [52]
provides operations for enlarging, shrinking and filtering
image regions in a particular grayscale range. One operation,
grayscale closing, fills small gaps.1 Adaptive thresholding [51]
accommodates variable foreground and background regions in
converting grayscale to bi-level images. Connected component
analysis [51] separates foreground components from back-
ground components and provides a list of pointers to each of
the latter.2 However, such operations are computationally very
costly if performed on the entire 3-D image. Instead, the soma
detection algorithm estimates the soma projections first and
then performs the above operations on the volumes defined by
such projections. This is achieved as follows.

• The 3-D image is projected into the– , – , and –
planes, resulting in the images, , , and , respec-
tively.

• A circular structuring element3 is employed to perform a
grayscale closing operation on each of the projection im-
ages. The diameter of the structuring element is adaptively
set by the program to a value larger than the median width
of the dendrite/axon structures present in the image. In ad-
dition, the user has the option of manually setting a lower
bound on the area of detectable somas.

• The closed images are thresholded to produce a set of bi-
nary images. The threshold is set to

(16)

1First, all pixels within a neighborhood are replaced with the minimum pixel
value in that neighborhood. Second, all pixels within a neighborhood in the re-
sulting image are replaced with the maximum pixel value in that neighborhood.

2Connected component analysis is used for merging “connected” image re-
gions. This is achieved by assigning all such regions the same label or pixel
intensity. Two pixels are “connected” if they are adjacent. Several definitions
exist for the notion of pixel adjacency.

3The structuring element is a kernel defining the neighborhood used in the
closing operations.
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• Finally, connected component analysis is applied to the
binary images to produce a unique labeling for all soma
projections.

To determine the 3-D somas, the estimated 2-D soma pro-
jections are backprojected onto the 3-D image space, therefore
defining a set of intersection regions . The
above steps are then applied to all image voxels lying in such
regions, with the following modifications. First, a sphere is used
instead of the disk as structuring element. Second, an adaptive
threshold is used instead of the one in (16), and is defined as
follows. Let denote the median intensity of all image
voxels defined by the intersection of image planeand re-
gion . Let be the maximum of such medians over
all planes in . Then we have the following thresholding crite-
rion. For all 3-D image voxels, , lying in a region ,

, modify them according to (17) at the bottom
of the page, where is empirically set to 0.95. This thresh-
olding criterion is necessary to limit the effect of the signal from
out-of-focus planes in the image (i.e., the point-spread func-
tion), which effectively cause the soma to appear larger than it
is along the optical axis of the confocal microscope.

IV. EXPERIMENTAL RESULTS AND VALIDATION

For this study, 20 neuron images were traced. Typical exam-
ples are presented here. The brains of Wistar rats were perfusion
fixed and immersion postfixed in 4% paraformaldehyde in 0.1
M phosphate buffer with 4% sucrose. Brain slices 600m thick
were cut on a vibratome and individual neurons were impaled
with a glass micropipette and filled with Alexa 594 while being
observed in an Olympus fluorescent light microscope. Slices
were fixed again and resectioned at 250m. The neurons were
imaged using a NORAN Oz confocal attachment and the 40X
(NA 1.15) water immersion lens of an Olympus IX-70 inverted
infinity corrected microscope. Some images were deconvolved
with NORAN’s software, but validation studies revealed little
benefit from deconvolution.

The tracing algorithm does not require any special hardware.
The results presented here were obtained using a Pentium III
500 MHz PC, with 128 Mbytes of RAM. For a 70-Mbytes image
such as the one shown in Fig. 1, it took 1.3 min. This time in-
cludes image reading and writing, soma detection, tracing, and
structures creation and presentation. The actual tracing time for
this image is about 30 s.

For all examples, we adjusted the contrast of the 2-D pro-
jection images for presentation purposes only. The program la-
bels each tree emanating from the soma with a unique color and
each segment is assigned a unique identifying number. These
numbers can be correlated with the text-form of the program’s
output as will be illustrated shortly. Furthermore, the red color is
reserved for segments that cannot be traced to a soma. Fig. 5 il-
lustrates another neuron and its corresponding traces. The image
has the dimensions 512480 244. Fig. 6 illustrates an image

of the same neuron obtained using a different field of view. The
image has the dimensions 512480 281 (i.e., 37 more slices
than Fig. 5.) Figs. 1, 7, and 9 illustrate the effect of flipping and
deconvolving the image on the tracing result. Fig. 7 shows a
neuron image with its corresponding traces. The image in Fig. 7
was obtained by physically flipping the neuron of Fig. 1 top
to bottom on the microscope stage, and then reimaging it from
the opposite direction along the optical axis. Both images have
the dimensions 512 480 301. Fig. 9(a) illustrates the projec-
tions of a deconvolved version of the image in Fig. 7, and the
resulting trace projections are shown in Fig. 9(b).

In addition to the trace projections, the program generates two
text outputs. The first is a text representation of the somas and
the traces in a format compatible with the Neurolucida software
(Microbrightfield Inc., Colchester, VT). Incidentally, this com-
pany provides a free viewer for this file format on their web site.
The second output is a text summarization of neuronal struc-
tures found in an image. An excerpt of such output is shown
in Fig. 8(c). In particular, Fig. 8(c) lists soma statistics and de-
scribes the traces of the two trees identified by the red arrows
in Fig. 8(b). For each tree, the program lists its root, the sum of
all branch lengths, the longest path, its length, and the summed
length of segments branching from it. In addition, the program
lists the starting and ending points of each segment in the tree,
its length, and the sum of all segments branching from such seg-
ment. Soma volume and segment lengths are given in terms of
voxels, and are not corrected for the aspect ratios of a voxel.

A. Validation of Results

From a neuroscientist’s standpoint, several characteristics are
important, including the centroid of a soma, its volume, its sur-
face area, and its connectivity with other somas. In addition, it
is important to determine the centerlines of all dendritic/axonal
structures present, their lengths, branching point distributions,
surface areas and volumes. It is also of interest to determine the
topology of such structures. Clearly, quantitative evaluation of
an automatic system based on these characteristics requires the
availability of ground truth, which has to be established manu-
ally. In the context of 3-D neuron images such a manual process
is tedious and is often ambiguous. To alleviate the effect of such
ambiguity, it is necessary to have the same neuron traced by
several independent experts. It is also necessary to compare the
variability of the automatic system with interexpert variability.
Unfortunately, such ground truth data are currently not avail-
able. This motivated a validation approach based on consistency.

From an algorithmic point of view, a valid algorithm must be
consistent. For example, if branching points are to be used as
features for image registration, consistency is more important
than accuracy. In this context, we define consistency as invari-
ance under image variations. Two variations are of most interest.

Type-1 Variations: These arise from image transformations
after the image is collected, such as translation, rotation, scale,

if
otherwise.

(17)
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(a)

(b)

Fig. 5. (a) A different neuron imaged at a zoom of 1.0 and step size 0.5�m. The image dimensions are 512� 481� 244. (b) Projections of the traced image,
shown enlarged. Note that traces 9 and 32 are colored red because the program failed to connect them to the soma.

and gray-scale transformations. Figs. 7 and 8 illustrate Type-1
variations.

Type-2 Variations: These result from reimaging the neuron
sample, either from a different view point using a different
zoom, using a different step-size, with saturated/unsaturated
soma or after physically flipping the specimen top-to-bottom
on the microscope stage. Figs. 5 and 6, and Figs. 1 and 7 are
example pairs of Type-2 variations.

Fig. 9 illustrates the consistency of the algorithm in the
presence of physical image translation and variations in the
gray-level values. This is demonstrated by aligning the traces
of Figs. 5 and 6. Recall that the images in these two figures
are different fields of view of the same neuron, and also have
a different number of slices. Initial estimates for theX, Y,and
Z translations were obtained from the differences between
the soma centers as estimated by the program and are given
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(a)

(b)

Fig. 6. The same neuron as in Fig. 5, imaged using a different field of view. (a) The projections of the 3-D neuron image. (b) The projections of the resulting
traces, shown enlarged. As expected, dendrites/axons appearing in both images, are largely identical, with small differences (amounting to a mean squared error
of 1.08 voxels). This is partly due to the fact that this image contains more depth information, i.e., 281 slices, compared to the image of Fig. 5.

by
. Exhaustive search was then used in the neigh-

borhood of the initial translation estimates in order to maximize
the intersection between the traces of the two images. In this
particular example, the initial translation estimates were also
found to be optimal. Fig. 10 illustrates the results of aligning
these traces onto the field of view of each of the two images.

The mean squared error for Fig. 9(a) is 1.81 voxels, and for
Fig. 9(b) is 1.63 voxels, which are typical. The figure clearly
suggests a consistent tracing algorithm and focuses attention on
the feasibility of constructing mosaics of 3-D neuron images.

Fig. 10 illustrates the consistency of the tracing algorithm in
the presence of nonlinear image transformation. This is done
by aligning the traces of Fig. 7 with those of Fig. 8. Recall that
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(a)

(b)

Fig. 7. (a) This image was obtained by physically flipping the neuron of Fig. 1 under the microscope and re-imaging (zoom= 1.0, step size= 0.5 �m,
512� 480� 301). (b) The resulting traces. For example traces 50 and 44 correspond to traces 44 and 12 in Fig. 8, respectively. The differences are due to signal
attenuation as a function of the imaging depth. This explains why some segments appear shorter (longer) in the flipped version than in the original image.

the image in Fig. 8 is a deconvolved version of that in Fig. 7,
clearly a nonlinear transformation. With a mean squared error of
1.35 voxels, the tracing algorithm is very consistent in the sense
that traces present in both images either coincide or are very
close to each other in the aligned image. This also illustrates
that expensive deconvolution does not significantly improve the
results.

V. DISCUSSION ANDCONCLUSION

The present paper is a natural and complementary extension
to prior work from this group [15], [16], [18]. The proposed
algorithms are superior in terms of speed, automation, and
robustness to skeletonization-based methods for tracing the
gross neuroanatomy. If smaller structures such a spines are
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(a)

(b)

Fig. 8. (a) The result of deconvolving the image in Fig. 7. (b) The resulting traces, shown enlarged. The differences between these traces and those of Fig. 7 are
minimal. For comparison, trace 14 corresponds to trace number 14 in Fig. 7, while trace 28 does not appear in Fig. 7. Overall, the algorithm appears stable to the
point spread function.

also of interest, skeletonization can still be employed on a
localized basis. The robustness, efficiency, and ability to work
with unprocessed confocal images makes the proposed method
attractive for large-scale and real-time applications such as
high-throughput neuro-toxicology assays, and the Human
Brain Mapping Project [53]. Also of interest are attempts
to simulate computationally the electro-chemical behavior
of large neuronal ensembles [54] using actual, rather than

simulated neuro-anatomical data. Of long-term interest are
emerging studies of the development and growth of live neurons
observed over time. Also of interest are applications beyond
neurobiology. For instance, quantification of vascular changes
during angiogenesis is of interest.

The algorithms have shown consistent behavior in the pres-
ence of translations, nonlinear gray-scale transformations, and
imaging system variations. Such consistency is due to: 1) the
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(c)

Fig. 8. (Continued.) (c) An excerpt from the text output summarizing the traces in (b). The sample text shown here describes the soma and the traces pointed to
by the arrows in theX–Yprojection in (b).

(a) (b)

Fig. 9. Result of merging the traces from Figs. 5 and 6. (a)X–YProjection of the combined traces into the field of view. Overlapping regions are highlighted.
Segments falling outside the overlap region are colored in light Pink. Matching segments are colored in Yellow. Segments appearing in Fig. 5 only are colored in
Green, and segments appearing in Fig. 7 only are colored in Red. The mean squared error is 1.63 voxels. (b) Analogous to C, with a mean squared error of 1.63
voxels.

application of adaptive templates; 2) the use of a large number
of seed points; and 3) the application of a sophisticated stop-

ping criterion. Adaptive templates allow the algorithm to trace
over discontinuities in the dendrites and axons. Redundant seed
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Fig. 10. TheX–Yprojection of the merged traces from Figs. 7 and 8. Matching
trace centerlines are colored in Yellow. Trace centerlines appearing in Fig. 8 only
are colored in Green, and those appearing in Fig. 8 only are colored in Red. The
mean squared error is 1.35 voxels.

points are necessary to ensure complete traces. In particular, if
the algorithm failed to trace a segment completely, producing
only a partial trace, other seed points, located on untraced parts
of the same segment, will be used to provide other partial traces.
The two or more partial traces are then combined to form a com-
plete trace based on the local intensity information and the local
orientations of the partial traces.

Further work is needed to quantitatively validate the algo-
rithms against manual data. This is a difficult task given the con-
siderations mentioned above. We leave two aspects of the algo-
rithm for further research. The first is concerned with improving
the quality of the traces, possibly by incorporating the continuity
constraints of biological structure into the algorithm. Continuity
constraints simply state that biological structures such as den-
drites and axons or blood vessels do not undergo abrupt changes
in width, direction, and intensity. In fact such constraints en-
abled the 2-D version of the algorithm to trace very noisy arti-
fact-ridden 2-D neuron images.

The second aspect is concerned with a more robust stop-
ping criterion. This is a crucial aspect of the tracing algorithm.
Premature stopping results in incomplete traces, while overdue
stopping results in erroneous traces. The criterion presented here
improves upon prior work by using a combination of conditions,
rather than a singlemake or breaktest. Decisions are based on
the local history of the current trace. One could model the above
criterion as a Markov chain with each tracing step corresponding
to a state in the model. This would enable us to assign proba-
bilities for local traces (paths). For example, the present crite-
rion stops upon encountering a sequence of weak responses. The
suggested improvement will also base its decision on how weak
the responses are.

The proposed algorithms are being licensed to a commercial
vendor (MicroBrightfield Inc., Colchester, VT) for user-friendly
interface development and subsequent widespread dissemina-
tion.
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