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Abstract—Antenna noise temperature calculations of reflector
systems is often a slow process and makes direct optimization
of the sensitivity of these systems a difficult and time consuming
task. This paper presents an improvement to a recently proposed
method to speed up these calculations by several orders of
magnitude for large dish systems. The accuracy of the improved
method is tested for several types of offset Gregorian systems,
and errors are shown to be in the order of a few percent.
Comparisons of several layers of simplification to a standard
brightness temperature model are also presented to aid the
designer in the choice of model complexity to use.

Index Terms—Noise temperature, Radio astronomy, Reflector
antennas.

I. INTRODUCTION

Antenna noise temperature is an important metric in the

performance of reflector antenna systems used in, for instance,

radio astronomy and ground stations [1]. Modern radio tele-

scope instruments like the Square Kilometer Array (SKA) [2]

are required to operate over multiple octaves of bandwidth

using several feed antennas - all of which have to be optimized

for maximum sensitivity. The sensitivity is the ratio of effective

aperture area and system noise temperature, which in turn is a

combination of antenna and receiver noise. Calculation of the

antenna noise temperature requires integration of the product

of the radiation pattern of the antenna with the surrounding

scene brightness temperature over the entire 4π steradian

sphere. This so called noise integral is well known and used

to calculate the antenna noise temperature, which is simply

the radiated power normalized noise integral, as [1]

TA(f |r̂0) =

∫∫

4π
N(f, θ, φ|r̂0) sin θdθdφ

∫∫

4π
P (f, θ, φ) sin θdθdφ

, (1)

where TA denotes the antenna noise temperature and

N(f, θ, φ|r̂0) = Tb(f, θ, φ)P (f, θ, φ|r̂0), (2)

with P (f, θ, φ|r̂0) the total antenna radiation pattern when

pointing in the direction r̂0 at frequency f in the standard

spherical coordinate system with azimuthal and zenith angles

φ and θ. The brightness temperature distribution of the scene

surrounding the antenna is denoted by Tb(f, θ, φ). The de-

scription for N in (2) is valid for a single medium, and it

should, in general, be separated to account for the polarization
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Fig. 1. Symmetry plane cut of a general offset Gregorian reflector system
showing the base coordinate system as well as the feed coordinate system
(indicated by primes). The reflector is pointing in the θp direction, and rotated
in the feed-down configuration in this example (indicated by positive θp).

dependent ground emission and scattering. For electrically

large antenna systems a prohibitively large number of radiation

pattern samples may be required to ensure convergence of the

noise temperature integral, and the calculation of the antenna

noise temperature, especially when required for a range of

tipping angles (the polar angle of the pointing direction of

the antenna in a coordinate system with z-axis vertical to the

ground), thus becomes slow and a major bottleneck in any

sensitivity optimization algorithm.

The SKA will use an offset Gregorian reflector configuration

[3], with a symmetry plane cut of a general system shown in

Fig. 1. Rapid and accurate evaluation of the antenna noise

temperature of the system is imperative to facilitate sensitiv-

ity optimization of the feed antennas. First, the brightness

temperature of the scene surrounding the antenna must be

established. An excellent description of such a model, taking

into account most of the physical effects contributing to the

brightness temperature, is presented in [4], which will serve

as the basis for the brightness temperature used in this paper.

However, several simplifications to the model in [4] can be

made and have been used in the literature, and descriptions

and comparisons of several layers of simplification to the full

brightness temperature model in [4] will be presented here.

When the brightness temperature has been established, the

noise temperature of the antenna system must be calculated. A

method to rapidly approximate the antenna noise temperature

of offset Gregorian systems has been suggested in [5] and

the performance of the approximation evaluated in [6]. It has

been shown that the approximation suggested in [5] works

well for electrically large reflector systems, but that it typically
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underestimates the noise temperature with increasing error for

smaller systems. In this paper an extension to the basic idea of

[5] is presented which allows for more accurate approximation

of the antenna noise of smaller dishes without significant time

penalty. The extended method is also shown to work well

for non-standard (conic section) offset Gregorian systems with

extended sub-reflectors or shaped reflector surfaces.

II. BRIGHTNESS TEMPERATURE MODEL DESCRIPTION

A. General Formulation

The brightness temperature models are based on the formu-

lation in [4], with some core equations repeated with a slightly

different notation here for clarity.

The basic noise integral is given in (1) and (2), where the

role of the brightness temperature distribution is described.

Most models for the brightness temperature, including the ones

in [4], are rotationally symmetric, and therefore independent

of azimuthal variation. In this case different pointing directions

of the antenna beam may be accounted for by rotation of the

brightness temperature model around a horizontal axis by the

angle θp (tipping angle), as expanded in [1], [7], and described

in terms of the rotated coordinate θ′(θp, θ, φ). Equation (2)

may now be separated into two regions, the sky contribution

and the ground contribution, as

N(f, θ, φ|r̂0) =











T sky
b (f, θ′)P (f, θ, φ) θ′ ∈ [0, π/2)

Tb‖(f, θ
′)P‖(f, θ, φ)+

Tb⊥(f, θ
′)P⊥(f, θ, φ) θ′ ∈ [π/2, π].

(3)

The sky brightness temperature contribution is calculated as

T sky
b (f, θ′) =Tbo(f)e

−τf,θ′ (0,sa)

+

∫ sa

0

κa(f, z
′)T (z′)e−τf,θ′ (0,z

′)

√

1− (sin θ′/(1 + (z′/re)))
2
dz′,

(4)

and includes the effects of the absorption by water vapor [8],

κH2O(f, z), and oxygen [9], κO2
(f, z), as

κa(f, z) = κH2O(f, z) + κO2
(f, z). (5)

The z-dependence in (5) is used to implicitly include the

altitude variations of the atmospheric pressure and tempera-

ture, which are required in the calculations. The background

brightness temperature, consisting of the emission from the

cosmic microwave background (CMB) and the directional

averaged emission from the galaxy, is also included as

Tbo(f) = TCMB + Tgo(f0/f)
β , (6)

where TCMB = 2.73 K, Tgo = 20 K, f0 = 408 MHz and

β = 2.75 is suggested in [4]. The opacity of the medium,

compensated for a curved earth, is calculated as

τf,θ′(0, z) =
1

√

1− (sin θ′/(1 + (sa/re)))
2

∫ z

0

κa(f, ζ)dζ,

(7)

where the subscript θ′ indicates that the integral should be

taken over the path length through the atmosphere at the

angle θ′. A curved earth model is used in this work with

an earth radius of re = 6370.95 km and an atmosphere

height of sa = 100 km assumed. The atmospheric temperature

profile as a function of altitude, z, is denoted by T (z), and

any convenient standard atmosphere model may be used to

calculate the profile (and similarly for the pressure required in

(5)). Interpolants may be extracted for the sky temperature in

order to speed up the calculation of (4), as was done in [4].

The ground temperature contribution (due to scattering and

emission) is a polarization dependent process, which may be

expanded as

Tb‖(f, θ
′) = T sky

‖ + T gnd

‖

= Γ‖(θ1)T
sky
b (f, θ1) + [1− Γ‖(θ1)]Tgnd

Tb⊥(f, θ
′) = T sky

⊥ + T gnd
⊥

= Γ⊥(θ1)T
sky
b (f, θ1) + [1− Γ⊥(θ1)]Tgnd,

(8)

where θ1 = π−θ′. The subscripts ‖ and ⊥ indicate the parallel

and perpendicular polarizations with respect to the plane of

incidence at the surface interaction, as shown in [1], [4], with

explicit details on the calculation of P‖ and P⊥ from P given

in [4]. The ground temperature for all cases in this work is

assumed as Tgnd = 300 K. The reflection coefficients are

given by

Γ‖(θ1) =

∣

∣

∣

∣

∣

cos θ1 −
√

ǫ2 − sin2 θ1

cos θ1 +
√

ǫ2 − sin2 θ1

∣

∣

∣

∣

∣

2

Γ⊥(θ1) =

∣

∣

∣

∣

∣

ǫ2 cos θ1 −
√

ǫ2 − sin2 θ1

ǫ2 cos θ1 +
√

ǫ2 − sin2 θ1

∣

∣

∣

∣

∣

2

,

(9)

with ǫ2 ≈ 3.5 for dry land.

B. Brightness Temperature Model Simplifications

Five brightness temperature models (indicated by integers

from 0 to 4) of increasing levels of complexity are investigated

and compared. All the models assume axial symmetry, and a

short description of each is given below.

• Model 4: Ground and sky region temperatures calculated

using the full, polarization dependent, model (3), (4) and

(8). TA is calculated by using (1).

• Model 3: For unpolarized sources and a high gain an-

tenna not pointing at the ground a polarization averaged

reflection coefficient may be defined as

Γ(θ1) =
Γ‖(θ1) + Γ⊥(θ1)

2
, (10)

which simplifies (3) to

N(...) =







T sky
b P θ′ ∈ [0, π/2)

[

(

1− Γ
)

Tgnd + ΓT sky
b

]

P θ′ ∈ [π/2, π],

(11)

with the frequency and angular dependencies implied to

be similar to (3). The sky region temperature is still

calculated using (4), and TA is calculated using (1).

• Model 2: Ground region temperature simplified to 270 K

everywhere (see Fig. 2) and the sky region temperature

is calculated using (4). TA is calculated using (1).
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• Model 1: Ground region temperature simplified to 270 K

everywhere and the sky region temperature to 0 K for the

calculation of TA using (1). Only half the hemisphere is

needed in the integration due to the vanishing sky noise

temperature. After integration the sky noise temperature

calculated using (4), in the pointing direction, is added to

TA. This model assumes a high gain antenna where the

entire sky noise contribution is due to the main beam.

• Model 0: Ground region temperature simplified to 270 K

everywhere and the sky region temperature to 0 K for the

calculation of TA using (1). Only half the hemisphere is

needed in the integration due to the vanishing sky noise

temperature. After integration the background brightness

temperature, calculated using (6), is added to TA. This

model assumes a high gain antenna where the entire

sky noise contribution is due to the main beam, and a

negligible contribution from the atmospheric absorption

(typically only valid at frequencies below 10 GHz). This

model has been used for comparative studies during the

design phase of the KAT-7 [10] and the Green bank [11]

radio telescopes (with the sky temperature assumed 0 K).

C. Comparative Results

A comparison of the brightness temperature of the different

models is shown in Fig. 2.

Fig. 2. Comparison of the brightness temperature models at 350 MHz
(dashed), and 10 GHz (solid). The model number is shown next to the
corresponding trace, as several traces overlap in different regions. The region
θ < 90◦ corresponds to the sky, and θ ≥ 90◦ corresponds to the ground.

Note how the simplified Models 0-2 converges to the more

complete Models 3-4 towards 0◦ and 180◦. Also, even though

Models 1 and 2 appear identical, they are integrated differently

as described in the previous section. The effect of averaging

the two polarizations in Model 3 is also clearly visible in

the ground region. Finally, the well known increase in sky

temperature with decreasing frequency is obvious, while the

ground temperature remains virtually frequency independent.

A comparison of the antenna noise temperature produced

by using the different models in (1) and (2) is shown in

Fig. 3. From Fig. 1 positive tipping angles implies rotation

of the dish system with the sub-reflector towards the ground

(feed-down), and negative tipping angles with the feed towards

the sky (feed-up). For these calculations a simple Gaussian

Fig. 3. Comparison of the antenna noise temperature calculated using the
different brightness temperature models at 1 GHz. Both orthogonal linear
polarizations are shown, with the only significant difference seen in Model 4.
The bottom trace indicates the polarization in the symmetry plane.
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Fig. 4. Tipping angle averaged (over the range θp ∈ [−85◦, 85◦])
error between the antenna noise temperatures calculated using the different
brightness temperature models with Model 4 as base. Markers indicate
calculation frequencies. Both orthogonal linear polarizations are shown, with
the bottom traces of each type indicating polarizations in the symmetry plane.

feed with an edge taper of 11 dB was used to illuminate one

of the proposed SKA reflector systems described in [3]. All

simulations are performed with the commercial code GRASP

[12] using physical optics (PO) augmented by physical theory

of diffraction (PTD). The specific reflector case used for this

illustration has a sub-reflector subtended angle of θe = 58◦,

projected main reflector aperture diameter of Dm = 15 m,

maximum main and sub-reflector chord lengths of 18.2 m and

5 m respectively, and a projected clearance of 0.5 m between

the main and sub-reflectors. To show the performance of the

models as a function of frequency, the normalized error using

Model 4 as base, averaged over tipping angle, is plotted in

Fig. 4. Clearly Model 3 provides the most accurate approxi-

mation. Even though the differences between the models may

be significant, the simplified models may often be used to

find a relative comparison between different dish systems or

feeds. For absolute comparisons and noise calculations, the

more complete Models 3-4 may be required - depending on the

receiver noise temperature. Fig. 4 provides a handy guideline

when deciding which noise model to implement for a specific

application. Systems with dominant receiver noise can afford

less accurate calculation of the antenna noise temperature

without significant errors in the sensitivity, and the designer
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may therefore afford to use a simpler noise model in the design

process.

III. MAIN REFLECTOR MASKING

A. Basic Description

A recent conference paper has suggested a method to rapidly

approximate the antenna noise of offset Gregorian reflector

systems [5]. The crux of the method is to remove the main

reflector from the calculation domain by assuming all the

scattered energy from the sub-reflector (the transmit mode is

used for descriptions throughout this work) in the direction

of the main reflector is reflected into the main beam and

thus toward the sky. The validity of this assumption can be

illustrated by comparison of the radiation pattern produced

by the full system (including feed, sub-reflector, and main

reflector) with that produced by only the feed and sub-reflector

combination in Figs. 5 and 6. Note that the projection

Fig. 5. Radiation pattern (in dBi) at 1.5 GHz of the full dual reflector system.
The main reflector region is indicated by the region inside the white line.

Fig. 6. Radiation pattern (in dBi) at 1.5 GHz when only the sub-reflector
is included in the simulation. The main reflector region is indicated by the
region inside the white line.

used causes similar distortions to the well known Mercator

projection used in cartography, where the regions around the

poles are stretched. The main beam and first few side lobes in

Fig. 5, around θ = 0◦, are stretched to a long horizontal line in

φ. Comparing the radiation patterns of the two cases, the main

differences are the absence of the main beam around θ = 0◦,

and the presence of a large lobe in the direction of the main

beam when only the feed and sub-reflector are included in the

simulation. Forcing the fields in the main reflector region to

zero in Fig. 6 produces a good approximation to the fields

in Fig. 5 in the ground region (which, for all tipping angles,

has θ > 15◦ in practical applications). The main beam is

reconstructed by assuming all the energy in the main reflector

region is reflected to the sky, and thus, instead of seeing

the ground temperature which is behind the main reflector,

actually sees the sky temperature in the pointing direction.

It is important to note that a far-field approximation is used

here, even though the main reflector is typically in the near

field of the sub-reflector. Also, it is assumed that all the energy

from the sub-reflector and feed combination is radiated from

the origin of the radiation pattern coordinate system, which

corresponds to the main reflector primary focus and the sub-

reflector secondary focus.

A plot of the brightness temperature distribution assumed

for the main reflector masking method, when pointing at zenith

(the distribution is dependent on θp) and using Model 3, is

shown in Fig. 7. Calculation of T 0
A (with the superscript 0 used

to distinguish the approximated temperature from the actual

temperature TA) using (1) is thus accomplished by using this

brightness temperature distribution as Tb, and the radiation

pattern depicted in Fig. 6 as P .

Fig. 7. Model 3 brightness temperature distribution in K, for zenith pointing,
used in the main reflector masking approximation.

The integration grid required to ensure a converged noise

integral, (1), becomes finer with increasing antenna system

size, with a rule of thumb for the sample spacing given in [6].

Calculation of the radiation pattern and noise temperature of

the sub-reflector and feed combination is faster than for the full

system because only one reflector is required and fewer pattern

samples are needed for convergence of the noise integral. This

main reflector masking method has proved accurate for large

reflectors, with significant speed up over the standard method

achieved [5], [6].

When the electrical size of the system is reduced, the

accuracy of the main reflector masking method is also reduced.

This is due to edge diffraction effects from the main reflector

which are ignored in the basic geometric optics masking pro-

cedure described above and in [5]. Edge diffraction causes en-

ergy scattered from the sub-reflector to illuminate the shadow

region of the main reflector which is typically pointed towards

ground. Assuming all the energy from the sub-reflector in the

direction of the main reflector is reflected into the main beam

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAP.2015.2399933

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 5

Fig. 8. Radiation pattern (in dBi) at 500 MHz of the full dual reflector
system. The main reflector region is inside the white line.

will thus typically underestimate the noise temperature, since

some of this energy is not reflected towards the cold sky, but

diffracted towards the hot ground. This effect is illustrated in

Fig. 8, which is the same simulation as Fig. 5, but performed

at 500 MHz. Note the increased energy density in the region

behind the main reflector.

The rest of this section describes a simple method to

compensate for this diffraction effect and improve the low-

frequency accuracy of the main reflector mask noise tem-

perature approximation without significantly increasing the

calculation time.

B. Diffraction Compensation

When using the main reflector masking method to approx-

imate the antenna noise temperature, it is assumed all the

energy in the direction of the main reflector sees the sky

temperature in the pointing direction. Diffraction of energy

behind the main reflector, however, causes an effective increase

of background noise temperature for the energy in the direction

of the main reflector mask. Since the fine structure of the

diffracted energy is not available from simulations where the

main reflector is omitted, this increased temperature will be

compensated for in an average sense. Defining a correction

factor, α(f, θp) ∈ [0, 1], the effective brightness temperature,

Tα(f, θp), for all the energy propagating towards the main

reflector mask may be formulated as

Tα(f, θp) = [1− α(f, θp)]T
r + α(f, θp)T d

Tα
‖ (f, θp) = [1− α(f, θp)]T

r + α(f, θp)T
d
‖

Tα
⊥(f, θp) = [1− α(f, θp)]T

r + α(f, θp)T
d
⊥

(12)

with

T d =
T d
‖ + T d

⊥

2
. (13)

T d indicates the approximate brightness temperature behind

the reflector,

T d
‖ (f, θp) = Tb‖(f, θd)

T d
⊥(f, θp) = Tb⊥(f, θd),

(14)

with θp the tipping angle and θd = θp + π (wrapped), and T r

the brightness temperature in the direction of the main beam

T r(f, θp) = T sky
b (f, θp). (15)

Equation (2) may be expanded into the ground and sky

regions explicitly as

N = NGND +NSKY , (16)

where the frequency and angular dependence is implied, with

NGND = P g

‖ (MTα
‖ +WTb‖) + P g

⊥(MTα
⊥ +WTb⊥), (17)

and

P g
x (f, θ, φ) =

{

Px(f, θ, φ) ground region

0 sky region.
(18)

The subscript x indicates either ‖ or ⊥ implying the radiation

pattern power in the ground region in the parallel and perpen-

dicular polarizations (with respect to the surface interaction)

respectively. Only the feed and sub-reflector combinations are

used to calculate all radiation patterns in this section, unless

specifically stated otherwise. The functions M and W are used

to indicate the masked and unmasked regions respectively,

where

M(θ, φ) =

{

1 inside main reflector mask

0 outside main reflector mask,
(19)

and W (θ, φ) = 1−M(θ, φ).
For the sky region,

NSKY = P s(MTα +WT sky
b ), (20)

where the frequency and angular dependence is implied, and

P s(f, θ, φ) =

{

0 ground region

P (f, θ, φ) sky region.
(21)

The total power integral in the denominator in (1) is denoted

as

It(f) =

∫∫

4π

P (f, θ, φ) sin θdθdφ. (22)

By substituting (12) into (17) and (20), and expanding (16)

into (1), α may be solved as

α(f, θp) =
TAIt − Iw − Ir

Id − Ir
, (23)

with (integrand frequency and angular dependence implied)

Ir(f, θp) =

∫∫

4π

M(P s + P g

‖ + P g
⊥)T

r sin θdθdφ

Id(f, θp) =

∫∫

4π

M(P sT d + P g

‖ T
d
‖ + P g

⊥T
d
⊥) sin θdθdφ

Iw(f, θp) =

∫∫

4π

W (P sT sky
b + P g

‖ T‖ + P g
⊥T⊥) sin θdθdφ.

(24)

For the polarization averaged models (0 to 3), equations

(16) to (21) simplify to

N = P [MTα +WTb], (25)

and (24) reduces to

Ir(f, θp) =

∫∫

4π

MPT r sin θdθdφ

Id(f, θp) =

∫∫

4π

MPT d sin θdθdφ

Iw(f, θp) =

∫∫

4π

WPTb sin θdθdφ.

(26)
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Solution of α in (23) is, of course, dependent on the

availability of a solution for the antenna noise temperature,

TA. An approximate solution, α′(f, θp) ≈ α(f, θp) may be

constructed as

α′(f, θp) = α(f1, θp)
f1
f
. (27)

The inverse frequency dependence is deduced from the diffrac-

tion coefficients in the geometric theory of diffraction, since

the magnitude of α is proportional to the diffracted energy

behind the main reflector. An approximate correction factor α′

can thus be calculated by using (23) at a single frequency f1,

where TA is calculated using the full reflector system including

the main reflector, and expanded to a smooth function in

frequency using (27). The frequency f1 is normally chosen as

the lowest frequency of interest to minimize the time required

for the antenna noise calculation. Once α′ is known it is used

in (12) to calculate the effective brightness temperature for

the masked region M , which in turn is used in (16), (17),

and (20), or (25), to calculate the approximated antenna noise

temperature T ′
A using (1).

IV. RESULTS

To evaluate the performance of the approximation method

presented in Section III, different feed types were used to illu-

minate several offset Gregorian type dishes, and the accuracy

of the main reflector masking methods were evaluated. At each

frequency point the full dual reflector system radiation pattern

was simulated and used to calculate the reference antenna

noise temperature TA as well as the correction factor α for

a range of tipping angles θp ∈ [−85◦, 85◦]. Additionally, the

main reflector masking method was used to calculate T 0
A and

T ′
A corresponding to no compensation and compensation using

α′ respectively. GRASP PO and PTD simulations were used in

all cases. All 5 the suggested brightness temperature models

of Section II were evaluated, and similar performance was

achieved for all cases. To conserve space, results shown will

be limited to those obtained by using Model 3.

A. Ideal Feed Example

First, an ideal feed with assumed Gaussian radiation pattern

is used to illuminate the dish system described in Section II-C.

An 11 dB edge taper was used, and the frequency range

evaluated is f ∈ [0.4 GHz, 3.0 GHz]. A comparison of the

correction factors, averaged over tipping angles, is shown in

Fig. 9. The 1/f frequency response used in α′ is seen to be a

good approximation to α. Note here again that only the first

frequency point of α is used to calculate α′.

The percentage errors, normalized to TA, is shown for T 0
A

and T ′
A over frequency and tipping angle in Fig. 10. The

maximum and mean errors for the respective approximations

and compensations are given in Table I, where both orthogonal

linear polarizations are considered over the full frequency and

tipping domains. A significant improvement in accuracy of

the masking approximation is observed when the diffraction

compensation is used. Similar results were found for different

edge taper values and dish geometries. The speed-up factor

for this system when using the compensated approximation is

in the order of 130.

Fig. 9. Correction factors for an ideal Gaussian feed with 11 dB edge taper
averaged over tipping angle. The feed is linearly polarized orthogonal to the
plane of symmetry.

(a)

(b)

Fig. 10. Percentage errors in noise temperature when calculated using the
main reflector masking approximations for an ideal Gaussian feed with 11 dB
edge taper. Errors for T 0

A is shown in (a) and T ′

A in (b). The feed is linearly
polarized orthogonal to the plane of symmetry.

B. Horn Feed Example

The performance of the approximation was also evaluated,

on the same reflector system as before, when using corrugated

horn feeds of the type described in [13]. Three horns are

analyzed, with names and operating bands given by: Horn1

- [350 MHz, 640 MHz], Horn2 - [580 MHz, 1010 MHz],

and Horn3 - [950 MHz, 1760 MHz]. Here the feed patterns

have some variation with frequency, with the edge illumination

level of Horn1 varying between −18 dB and −8 dB, and

that of Horn2 and Horn3 varying between about −15.5 dB

and −12.5 dB. The back lobe radiation is relatively low

for all three horns, with the maximum front-to-back ratio of

Horn1 about −24 dB, Horn2 about −26 dB, and Horn3 about

−29 dB. From Fig. 11 and Table I it is clear that the diffrac-

tion compensation improves the approximation significantly.
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Again, in Table I both polarizations and the full tipping and

frequency domains are considered. The speed-up factor when

using the compensated approximation in the high band is in

the order of 90.
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Fig. 11. Correction factors for three overlapping corrugated horn feeds
averaged over tipping angle. The feeds are linearly polarized orthogonal to
the plane of symmetry. The discontinuities around 600 MHz and 1000 MHz
are due to the use of different horns on the same plot.

TABLE I
ERROR COMPARISON FOR MAIN REFLECTOR MASKING WITH AND

WITHOUT COMPENSATION

Feed Band (MHz)
Mean Error (%) Max Error (%)

T 0

A T ′

A T 0

A T ′

A

Gaussian 500-3000 3.6 0.4 8.7 2.2

Horn1 350-640 4.8 1.2 10.7 6.1

Horn2 580-1010 3.6 0.6 7.7 2.5

Horn3 950-1760 3.0 0.5 6.5 2.1

QRFH 500-2000 5.7 2.9 12.0 8.0

C. Wide Band Feed Example

When a feed with significant back lobe radiation is used,

the masking approximation is expected to perform poorly.

This is due to the assumption that the sub-reflector and feed

combination radiation mainly emanates from the secondary

focus of the sub-reflector which becomes invalid. Back lobe

radiation from the feed will not be handled correctly in

the masking approximation, since the main reflector mask is

defined in terms of the secondary sub-reflector focus, which

is not where the feed is placed. Considering Fig. 1, radiation

from the feed in the θp + π direction will actually miss the

main reflector, where the main reflector mask includes this

direction for the illustrated case. The examples considered in

the previous sections had very low back lobe radiation levels

with negligible effect on the results.

As an example of a system with significant back lobe

radiation a quad-ridged flared horn (QRFH), similar to the

type discussed in [14], is used to evaluate the performance

of the approximations over a 4:1 bandwidth. The specific

feed has a maximum front-to-back ratio of around −12 dB,

with a main beam showing significant frequency variation

with edge illumination levels varying between −8 dB and

−19 dB. A comparison of the correction factors is shown in

Fig. 12. Note how the reference correction factor, α, deviates

significantly from the expected 1/f response, since more of

the back lobe radiation is masked than should actually be

500 1000 1500 2000
0

2

4

6

8
x 10

−3

Frequency (MHz)

C
o

rr
e

c
ti
o

n
 f

a
c
to

r

 

 α’

α

Fig. 12. Correction factors for a QRFH averaged over tipping angle. The
feed is linearly polarized orthogonal to the plane of symmetry.

the case, causing underestimated masked noise temperature

approximations. The mean and maximum errors, over the full

range of tipping angles and frequencies, are shown in Table I.

Even in this extreme case the compensation still improves

the approximation by about 50 % reduction in average noise

temperature error.

D. Performance on Several Dish Systems

To evaluate the performance of the approximations on

different reflector systems, Horn3 used in Section IV-B was

used to illuminate a wide variety of offset Gregorian reflector

systems. In total 18 different unshaped systems, all described

in [3], were evaluated over the full feed horn operating

range. In addition to the unshaped systems, five shaped offset

Gregorian type systems were also evaluated using the same

feed horn. The shaping algorithm used is described in [15],

and the specific mapping chosen to maximize the sensitivity

of the system when a 12 dB edge taper Gaussian feed is used,

while maintaining second side lobe levels below -30 dB. The

unshaped results are summarized in the rows marked ”U”, and

the shaped results in the rows marked ”S”, in Table II. The

TABLE II
ERROR COMPARISON FOR MAIN REFLECTOR MASKING WITH AND

WITHOUT COMPENSATION USING A CORRUGATED HORN FEED

Mean Error (%) Max Error (%)

θp: −70◦ −35◦ 0◦ 35◦ 70◦ −70◦ −35◦ 0◦ 35◦ 70◦

U
T 0

A 5.3 7.0 4.8 2.9 1.8 7.7 10.4 9.2 4.5 3.0

T ′

A 0.9 1.3 0.9 0.6 0.5 2.7 4.2 3.8 1.8 1.3

S
T 0

A 10.5 13.8 6.2 3.0 1.5 12.7 17.0 9.8 5.6 2.5

T ′

A 1.9 2.7 1.2 0.8 0.5 3.8 5.6 3.2 1.8 1.0

improvement of the compensated approximations is again clear

and, importantly, the results for the shaped systems show that

the compensated approximations are still valid - albeit with a

slightly larger error. This result is significant, since for shaped

systems radiation from the origin is no longer focused.

E. Discussion

The parameter of interest when calculating antenna noise is

actually the sensitivity of the system, not the noise temperature

or the correction factor. For the frequencies of interest here

(below 10 GHz), the antenna noise temperature is typically

reduced with an increase in frequency, and large errors at high
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frequency may actually imply relatively small absolute errors.

Large errors on small antenna noise numbers may still lead to

accurate sensitivity results when the system becomes receiver

noise dominated, as is typically the case at higher frequencies.

Large back lobe radiation from the feed causes the cor-

rection to become less accurate and typically underestimate

the antenna noise. However, the correction still provides an

improved estimate over the simple masking method, since at

least the main reflector diffraction is accounted for.

Finally, the general main reflector masking method is more

accurate when rotating the reflector system feed down than

when rotating feed up. This is due to the fact that the majority

of the noise temperature contribution for the feed down case is

due to the sub-reflector diffraction cone, or feed energy spilling

past the sub-reflector, as described in [16]. For feed down

rotation, an increasingly smaller percentage of the antenna

noise contribution is due to the energy spilling past the main

reflector as the tipping angle is increased. Therefore errors in

the calculation of this contribution become less important, as

is seen through all the results presented where the masking

approximations become increasingly more accurate as the

tipping angle is increased in the feed down configuration.

V. CONCLUSION

An improved method for the rapid calculation of antenna

noise temperature in offset Gregorian reflector systems was

presented. The method relies on a previously described mask-

ing method, where the main reflector is removed from the

calculation domain, and the sky noise is projected onto the

region where the main reflector would have been. This method

typically under-estimates the noise since diffraction behind

the main reflector is ignored. A compensation method was

suggested to account for the diffracted energy behind the

main reflector, which only requires an additional analysis

of the full system at a single frequency. Several reflector

systems and feeds were simulated and results show that errors

in the order of a few percent can be expected for most

highly directional feeds - a significant improvement over the

non-compensated masking approximation. A set of brightness

temperature models and simplifications was also presented and

compared.
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