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When calculating the focusing properties of cylindrically symmetric focusing optics, numerical wave propagation
calculations can be carried out using the quasi-discrete Hankel transform (QDHT). We describe here an imple-
mentation of the QDHT where a partial transform matrix can be stored to speed up repeated wave propagations
over specified distances, with reduced computational memory requirements. The accuracy of the approach is
then verified by comparison with analytical results, over propagation distances with both small and large
Fresnel numbers. We then demonstrate the utility of this approach for calculating the focusing properties of
Fresnel zone plate optics that are commonly used for x-ray imaging applications and point to future applications
of this approach. © 2015 Optical Society of America
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1. INTRODUCTION

X-ray nanofocusing optics can be used in x-ray imaging and
spectroscopy techniques to provide new insights into the struc-
ture and functioning of cells and materials [1,2]. While there
have been impressive advances in the development of x-ray mir-
rors [3,4], compound refractive lenses [5–7], and multilayer
Laue lenses [8,9], Fresnel zone plates are used for the majority
of applications requiring sub-100 nm beam spots [10,11] due
to their high-quality focusing and simplicity of alignment.
Therefore, efficient simulations of zone plate focusing are use-
ful for developing new approaches and improvements in x-ray
microscopy and spectromicroscopy.

Zone plate focusing represents one example of a wide variety
of optics calculations involving the propagation of wavefields
with wavelength λ through free space a distance z from a plane
�x0; y0� to a plane �x; y�. The general topic is well treated in
textbooks (see, for example, [12]) and various papers describing
numerical wave propagation in cylindrical coordinates using
near-field expansions [13], Hankel transforms though without
beam focusing examples [14], Helmholtz equation solutions
for near-field propagation into waveguides [15], and mode
propagation within optical fibers [16–18] as well as in free space.
These approaches include mode expansions using Lanczos
[15,16] and Arnoldi [17,18] methods with great utility for those

applications. Our goal here is to describe numerical Hankel
transform methods that can later be applied to optics which are
less easy to characterize in terms of mode structures, such as
Fresnel zone plates with various errors in zone placement
[19,20] when cylindrical symmetry still applies, and departures
from the standard zone plate formulation [21]. We also discuss
criteria for choosing near-field versus far-field computational
approaches.

In 2D Cartesian coordinates and within the Fresnel approxi-
mation [12], wave propagation can be carried out using forward
and inverse 2D Fourier transform pairs of

F fg�x; y�g �
Z

∞

−∞

g�x; y�eiπ�xf x�yf y�dxdy; (1)

F −1fG�f x ; f y�g �
Z

∞

−∞

G�f x ; f y�e−iπ�xf x�yf y�df xdf y (2)

to describe forward propagation either with

ψ z�x; y� �
i

λz
h�x; y�F fψ0�x0; y0�h�x0; y0�g (3)

or as a 2D convolution using

ψ z�x; y� �
i

λz
�ψ�x0; y0� � h�x; y��

� F −1fF fψ0�x0; y0�gH �f x ; f y�g: (4)
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In both cases a uniform phase shift term e−i2πz∕λ has been
dropped. These expressions employ dimensionless propagator
functions of

h�x; y� � e−i
2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2�x2�y2
p

≈ e−iπ�x
2�y2�∕�λz�; (5)

H �f x ; f y� �
i

λz
F fh�x; y�g � e−i

2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2−λ2z2�f 2
x�f 2

y �
p

≈ eiπλz�f
2
x�f 2

y �; (6)

with

f x �
x

λz
and f y �

y

λz
(7)

as spatial frequencies [12]. Note that for the convolution ap-
proach of Eq. (4), we have incorporated the i∕�λz� prefactor
into the propagator function of Eq. (6).

In cases where cylindrical symmetry applies, the input plane
r0 and a plane r located a distance z away can be represented in
cylindrical coordinates. In this case, the transforms change from
the 2D Fourier transform pair of Eqs. (1) and (2) to a zeroth-
order Hankel transform pair of

Hfg�r�g � 2π

Z

∞

0

G�ρ�J0�2πρr�ρdρ; (8)

H−1fG�ρ�g � 2π

Z

∞

0

g�r�J0�2πρr�rdr; (9)

where J0 is a Bessel function of the first kind. Using the Hankel
transform, the expressions for wavefield propagation in cylin-
drical symmetry become

ψ z�r� �
i

λz
h�r�Hfψ0�r0�h�r0�g (10)

or, in the equivalent convolutional approach,

ψ z�r� � H−1fHfψ0�r0�gH �ρ�g: (11)

Here, the propagator functions in cylindrical coordinates be-
come

h�r� � e−i
2π
λ

ffiffiffiffiffiffiffiffiffi

z2�r2
p

≈ e−iπr
2∕�λz�; (12)

H �ρ� � i

λz
Hfh�r�g � e−i

2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2−λ2z2ρ2
p

≈ eiπλzρ
2
; (13)

with

ρ � r

λz
�14�

representing a radial spatial frequency, similar to Eq. (7). As
with Eqs. (4) and (6), the i∕�λz� prefactor for the cylindrically
symmetric convolution approach of Eq. (11) has been incorpo-
rated into Eq. (13).

The two analytically equivalent methods of Eqs. (10) and
(11) are useful in different regimes for optics with cylindrical
symmetry. With the Hankel transform approach of Eq. (10),
the input plane wavefield ψ0�r0� is multiplied by the real space
propagator given in Eq. (12). In the convolution approach,
the Hankel-transformed input plane wavefield is multiplied
by the reciprocal space propagator of Eq. (13). It then becomes
important to consider the nature of oscillations in the two
propagator functions when deciding which method to use. This

is shown in Fig. 1, which indicates that the reciprocal space
propagator is slowly varying at shorter propagation distances
(so that it minimizes aliasing artifacts when applying to dis-
cretely sampled functions), while the real space propagator is
slowly varying at longer propagation distances.

To find the crossover point between the two approaches,
consider the problem of propagating a monochromatic, coher-
ent plane wave from a Fresnel zone plate to a plane a distance z
away. In real space, the argument of the real space propagator of
Eq. (12) [appropriate for propagation using Eq. (10)] is
πr2∕�λz�, so the total number of Fresnel zones N real (number
of π phase shifts) within a radius R � rmax is

N real �
R2

λz
� N 2hΔri2

λz
; (15)

where N is the number of sampling points and hΔri is an aver-
aged sampling pixel size of R∕N . Similarly, the argument of the
Fourier space propagator of Eq. (13) [appropriate for propaga-
tion using Eq. (11)] is πλzρ2. A Nyquist sampling interval of
hΔri in real space corresponds to a maximum spatial frequency
of P � ρmax � 1∕�2hΔri� in Fourier space. Therefore, the
maximum number of Fresnel zones in Fourier space NHankel is

NHankel � λzP2 � λz

4hΔri2 : (16)

The matching distance z0 at which we arrive at an identical
number of Fresnel zones in real and Fourier space, or N real �
NHankel, is found from Eqs. (15) and (16) to be

z0 �
2RhΔri

λ
� 2R2

λN
: (17)

The Fresnel number F for propagation from an aperture of
radius a over a distance L is given by

Fig. 1. Real space [Eq. (12)] and reciprocal space [Eq. (13)] propa-
gators shown for two different propagation distances z with
λ � 1 nm. In each case, the real part is shown in blue and the imagi-
nary part in green. The dots are the positions of N � 1000 sampling
points over a radius of R � 50 μm, for which Eq. (17) gives
z0 � 5 mm. The reciprocal space propagator is more slowly varying
at short propagation distances, while the real space propagator is more
slowly varying at longer distances.
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F � a2

λL
: (18)

If we solve Eq. (17) for N , we obtain

N � 2
R2

λz0
� 2F 0; (19)

where we see that the number of sampling points N required at
the matching distance z0 is equal to twice the Fresnel number
F 0 if the aperture a spans over the whole space R.

The propagation distance z0 does not set a hard boundary
between the two propagation approaches of Eqs. (10) or (11);
instead, both approaches are valid. However, it does suggest an
approximate boundary for which approach will work with
fewer Fresnel zones N real or NHankel and thus more sampling
points per π phase shift. For propagation over distances z ≲ z0,
we prefer to use the convolutional approach of Eq. (11) which
can be written as

ψ0�r0� → Hfg → ×eiπλzρ
2
→ H−1fg → ψ z�r� �z ≲ z0�;

(20)

which has ψ z�r� → ψ0�r0� as z → 0. For z ≳ z0, we prefer to
use the Hankel transform approach of Eq. (10) written as

ψ0�r0�→×e−iπr
2
0∕�λz�→Hfg→×

i

λz
e−iπr

2∕�λz�
→ψ z�r� �z≳z0�;

(21)

which has ψ z�r� tending toward the Hankel transform of
ψ0�r0� as z → ∞, which is the usual result for Fraunhofer
diffraction. Consider the example of a Fresnel zone plate with
radius R and outermost zone width drzp; its focal length is
found from 2Rdrzp � λf in the paraxial approximation. One
must have enough sampling points, or N ≫ R∕drzp, to have
good sampling of the wavefield within the outermost zone.
When propagating a monochromatic, coherent plane wave
to its focal plane, using Eq. (17) we have

f �
2Rdrzp

λ
>

2R2

λN
� z0; (22)

which indicates that the Hankel transform approach is pre-
ferred.

2. QUASI-DISCRETE HANKEL TRANSFORM

AND THE SAMPLING THEOREM

We now wish to consider the discrete form of the Hankel trans-
forms of Eqs. (8) and (9). In this case the integration limits will
be set to R and P for real and reciprocal space, respectively,
and the wavefield will be sampled over N discrete values. By
using a Fourier–Bessel series to approximate the Hankel trans-
form over a finite integral region, quasi-discrete Hankel trans-
form (QDHT) methods have been developed by Yu [22] in
zeroth order and Guizar–Sicairos [23] at higher orders. The
QDHT uses discrete sampling points at

r → αn∕�2πP� in real space; (23)

ρ → αm∕�2πR� in reciprocal space (24)

to yield

G�αmP∕S� �
1

πP2

X

N

n�1

g�αnR∕S�
J21�αn�

J0�αnαm∕S�; (25)

g�αnR∕S� �
1

πR2

X

N

m�1

G�αmP∕S�
J21�αm�

J0�αmαn∕S�; (26)

with

S � 2πRP; (27)

where R and P are the radial integration limits of g�r� and
G�ρ�, respectively, and where αm is the mth root of the
zeroth-order Bessel function J0�α�.

A disadvantage of the QDHT is that one cannot calculate
values at arbitrary radii r or ρ; instead, one must use the sam-
pling points of the QDHT shown in Fig. 2. Because no sam-
pling points are close to α � 0, one cannot directly calculate
wavefields at axial positions, where (for example) the intensity
of a focused beam is strongest. To address this limitation,
Norfolk used a generalized sampling theorem [24] which we
restate as follows. The functions sampled on the grid rn, where
rn � αn∕2πP � �αn∕αN�1�R [22], can be reconstructed at an
arbitrary point r as

g�r� �
X

∞

n�1

g�rn�K n�r�; (28)

with the sampling kernel

K n�r� �
rnJ0�2πPr�

πP�r2n − r2�J1�2πPrn�
: (29)

We may therefore reconstruct the function g�rn� of Eq. (26) as
g�r� at any arbitrary point in r, including r � 0 with

g�r � 0� �
X

N

n�1

g�rn�
πPrnJ1�2πPrn�

; (30)

which is important for preserving overall wave intensity. The
generalized sampling theorem of Eqs. (28) and (29) is also very
useful for obtaining a smooth intensity distribution from
coarser sampling.

3. RAPID CALCULATION USING PARTIAL

TRANSFORMS

To perform the Hankel transform (HT), the zeroth-order HT
and inverse HT can be rewritten with rn and ρm sampled over
ranges up to R in real space, and P in reciprocal space, at the
roots of the Bessel function:

  

Hankel

samples

Regular

samples

No sample at =0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sampling position 

Fig. 2. Sampling grid of the QDHT (red cross marks) and FFT
(blue square marks). The QDHT sampling points are nonequally
spaced and do not include α � 0.
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�

G�ρm� �
P

N
n�1

g�rn�
πP2J21�αn�

J0
�

αnαm
S

�

g�rn� �
P

N
m�1

G�ρm�
πR2J21�αm�

J0
�

αmαn
S

� : �31�

By defining an N × N transform matrix CN;N whose �m; n�th
element is

Cm;n �
J0
�

αnαm
αN�1

�

J21�αm�
; (32)

we can simplify Eqs. (31) in terms of matrix multiplications on
g and G of

�

G�ρ�1;N � 1
πP2 �g�r�1;N · CN ;N �

g�r�1;N � 1
πR2 �G�ρ�1;N · CN ;N �

: �33�

However, calculations of the full wavefield have large computa-
tional demands. Consider the case of simulating focusing from
a Fresnel zone plate with 300 μm diameter and drzp � 20 nm,
where one might want hΔri � 1 nm in order to get a smooth
intensity profile at the focus. Though the QDHT uses a non-
uniform grid especially at low radial values, when N is large the
sampling point spacings approach a mean value of hΔri �
R∕N . If done with the same fine sample spacing and total field
of view at both input and output planes, this would require
determination of a matrix CN ;N with N � 300; 000 which
would occupy about 670 GBytes as single precision floating
point complex numbers and require considerable computation
time. As a result, previous work has involved simulations of
small diameter zone plates with high resolution [25] or large
diameter zone plates with low resolution [26].

In order to overcome this limit, we have implemented the
QDHT using partial transform matrices. Consider the case of
calculating the focus spot profile of a Fresnel zone plate with a
focal length f > z0, where the Hankel product approach of
Eq. (21) is preferred. To propagate an entire wavefield within
a radial distance R from the zone plate to the focal plane, we
would require a transform matrix CN ;N which could be pro-
hibitively large as noted above. However, in many cases what
we are interested in is the detailed focal profile near the optical
axis, with less need for a detailed calculation of the wavefield at
larger radii. In this case we can use a matrix CN ;M with
M ≪ N , as shown in Fig. 3. For example, we might need only
M � 50 points to see the detailed focal profile (including sev-
eral Airy fringes) of our example zone plate at hΔri � 2 nm
calculation grid size. This saves a factor of 3000 in computation
time and required storage over the example given above. The

choice of M depends on the radius range of the output plane
that we want to see; it should be at least large enough to see the
focus. We show such an example calculation in Fig. 4 which
uses M � 100; this involved a time of less than 0.1 s for a
single propagation distance when using a server with dual Intel
Xeon X5550 processors and 48 GB RAM. We note that for the
convolution method, a full transform matrix is required as it
involves both forward and inverse transforms.

4. COMPARISONS AGAINST ANALYTICAL

CALCULATIONS

In order to check the accuracy of the QDHT propagation
method described above, we have compared it against a situa-
tion with a well-known analytical result: the Airy pattern
that results from far-field diffraction of light by a pinhole.
This comparison was done with the single transform approach
of Eq. (21), using a pinhole with a diameter of a � 5 μm on a
calculation grid of spacing hΔri � 10 nm extending to a dis-
tance of R � 270 μm so that N � 27; 000 samples were in-
volved. The far-field diffraction pattern for λ � 0.124 nm x
rays at z � 50 cm involved a Fresnel number of 0.1 and
was calculated using M � 500 calculation points at a spacing
of hΔr 0i � 115 nm. The results shown in Fig. 5 show that the
maximum error in the far-field diffraction intensity was about
0.12%. At a farther distance of Z � 250 cm, the maximum
error goes down to 0.08% as it is even farther away from having
any non-Fraunhofer terms contributing.

We have shown in Fig. 4 an example calculation of the in-
tensity distribution produced around the focal point of a
Fresnel zone plate, which again should follow an Airy intensity
profile [27]. In Fig. 6, we show both the intensity distribution,
integral of intensity with radius, and percentage difference from
the analytical result for a binary, fully absorptive Frensel zone
plate with a diameter of 45 μm and outermost zone width of
drzp � 25 nm used to focus λ � 0.124 nm (10 keV) x rays.
The position of the first minimum of the Airy pattern for such a
zone plate is at a multiple of the first root of J0 divided by π

times the outermost zone width, or �3.83∕π�drzp � 1.22drzp,
which is 30.5 nm in this example, while the integrated energy
fraction should approach 1∕π2 � 10.1% [28]. For the numeri-
cal QDHT calculation of Eq. (21), N � 27; 000 sampling
points were used within a maximum radius R � 54 μm, while
in the output plane M � 100 points were used at a spacing of

Fig. 3. Schematic of the partial transform matrix CN;M . If one wishes to calculate the wavefield over only a subset of M points on the output
plane, a nonsymmetric matrix CN;M [Eq. (32)] can be used to reduce computational time and memory requirements in Eq. (33).
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hΔri � 2 nm. Again, the numerical results are in good agree-
ment with the expected values.

The calculations of Figs. 5 and 6 show the fraction of in-
cident energy present near the center of the Airy pattern (the
diffraction pattern from a pinhole in Fig. 5 and the first-order
Fresnel zone plate focus in Fig. 6). To check the accuracy of
calculating the total energy leaving an input plane, one must
integrate out to larger radii and compare it with the incident
energy. Two such calculations are shown in Fig. 7. For the
calculation of diffraction from a pinhole shown on the left,
a λ � 0.124 nm wavelength was propagated a distance of

50 cm downstream, using a calculation grid with N � 27; 000
points at hΔri � 10 nm spacing on the input plane, and
M � 440 points up to a maximum radius of 500 μm at the
output plane. As can be seen, this captures 99.7% of the energy,
which is in excellent agreement with the analytical result. For
the calculation for a binary absorption Fresnel zone plate, one
can see that about 10% of the total energy is located on the
optical axis in the form of the first focal order. About 25%
of the energy is captured within the positive focal orders near
the optical axis, and 50% of the beam energy is transmitted
over all radii, as expected.

5. COMBINED PROPAGATION WITHIN AND

BEYOND z0

While both the near-distance convolution approach of Eq. (20)
and the far-distance single Hankel transform approach of
Eq. (21) are valid at all distances, as described above they offer
different sampling properties on either side of the distance z0 of
Eq. (17). Consider the case of first-order focusing from a
Fresnel zone plate, where one can write z0 � f �hΔri∕drzp�,
where f is the focal length of the zone plate, hΔri is the sam-
pling interval in real space, and drzp is the width of the finest,
outermost zone of the zone plate. Because one desires to have
hΔri be much smaller than drzp in order to have many samples
within the width of the outermost zone, the focal length f is
always in the far-distance location (that is, f is large compared
to z0). In Fig. 8, we show the radial and longitudinal focus
intensity profile of a Fresnel zone plate calculated using both
approaches. As can be seen, the far-distance method leads to a
smooth intensity profile, whereas the near-distance method
leads to irregularities in the intensity profile on the optical axis
due to the fast oscillations in the reciprocal space propagator
function, as shown in Fig. 1. Even so, the near-distance ap-
proach gives the correct result for the integrated intensity and
indeed for intensities away from the optical axis.

Sometimes it is desirable to do calculations with multiple
propagations over various distances. One might wish to propa-
gate a wavefield ψ0�r0� to ψ z�r� over a distance beyond z0 from
a lens to a cylindrically symmetric object near the focus, and

Fig. 4. Rapid QDHT calculation of the focusing of λ � 0.124 nm
(10 keV) x rays by a fully absorptive Fresnel zone plate with 320 μm
diameter and drzp � 20 nm outermost zone width. The image shows
the intensity as a function of radial distance r and axial and defocus
distance Δz, with a grid spacing of hΔri � 2 nm in radius and Δz �
1 μm in defocus positions (intensities at negative radii are simply cop-
ied from the positive radii calculation points). The wavefield exiting
the zone plate is used as the input wavefield to generate output wave-
fields at various distances.
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Fig. 5. Comparison of the numerical QDHT calculation of far-field diffraction intensity of a pinhole using Eq. (21), versus the analytical result of
the Airy pattern. The image on the left shows the radial intensity distribution along with the integral of intensity with radius, while the image on the
right shows the intensity distribution along with the percentage difference from the analytical result. As is shown, the QDHT calculation with
parameters as described in the text is accurate to within 0.12% of the expected analytical result.
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then carry out a series of multislice propagations [29] over short
distances through the object; or propagate a wavefield through
several zone plates stacked a short distance from each other and
then on to their common focus point located some farther dis-
tance away [25]. In these cases, one will want to use a mixture of
both the near-distance propagation approach of Eq. (20) as well
as the longer-distance propagation approach of Eq. (21), so the
sampling grid and range must be considered. While in the con-
tinuous case we wrote the input and output radii as r0 and r,
respectively, we will write their discrete counterparts as rn and r

0
n.

For propagation over shorter distances z < z0, the convolu-
tion approach of Eq. (20) samples an input wavefield ψ0�rn�,
transforms it to reciprocal space as Ψ�ρn� where it is multiplied
by a real space propagator [Eq. (13)], and inverse transforms it
back to real space as ψ z�r 0n� on the same calculational grid. If

we sample the input wavefield in N points over a radial extent
R, the real space sampling interval is hΔri � R∕N , and the
maximum value of the Hankel function argument is P �
αN�1∕2πR � S∕2πR [Eq. (27)]. When N is large, S can be
chosen as αN ≃ πN , so

P � πN

2πR
� N

2R
(34)

becomes the maximum spatial frequency, which when divided
by the number of samples N yields an interval Δρ in reciprocal
space of

Δρ � 1

2R
: (35)

Multiplication with the propagator exp�iπλzρ2n� of Eq. (13)
modifies Ψ�ρn� but does not change its sample positions.
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Fig. 6. Comparison of the numerical QDHT calculation of the radial intensity distribution near the focus of a Fresnel zone plate (D � 45 μm
diameter, drzp � 25 nm outermost zone width using λ � 0.124 nm or 10 keV x rays, yielding a focal length of f � Ddrzp∕λ � 9 mm ) using
Eq. (21), versus the analytical result of the Airy pattern. The image on the left shows the radial intensity distribution along with the integral of
intensity with radius, while the image on the right shows the intensity distribution along with the percentage difference from the analytical result.

Fig. 7. Verification that the QDHT preserves energy over sufficiently large radii of integration. The image on the left shows the intensity calcu-
lated from propagating a λ � 0.124 nm wavefield through a 5 μm diameter pinhole to a distance 50 cm downstream (Fresnel number F � 0.1).
The image on the right shows the calculation for a binary absorption Fresnel zone plate with a diameter of 45 μm and outermost zone width of
drzp � 25 nm, at a distance of 9 mm which is one focal length away. As can be seen, about 1∕π2 � 10% of the total energy is located on the optical
axis in the form of the first focal order, and about half of the transmitted energy is located near the optical axis in the form of the positive (converging)
focal orders. The integrated intensity increases up to the point of the radial extent of the zone plate at 22.5 μm, with the remaining energy arriving in
the -1 focal order (extending to twice the radius or 45 μm) until nearly all of the 50% nonabsorbed energy is contained within a 60 μm radius, as
expected.
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The inverse QDHT brings the wavefield back to real space, and
the discretely sampled, propagated wavefield ψ z�r 0n� extends to
a maximum radius R 0 � πN

2πP � R with interval hΔr 0i � hΔri.
Therefore, the new array ψ z�r 0n� is in real space with unchanged
sampling and extent.

For propagation over longer distances z > z0, the single
Hankel transform method of Eq. (21) is preferred. We start
with the discrete 1D array ψ0�rn� in real space and multiply
it by the real space phase propagator exp�−iπr2n∕�λz�� of
Eq. (12). We then perform the QDHT to bring the wavefield
into reciprocal space Ψ�ρn�, with the same extent P as Eq. (34)
and interval Δρ as Eq. (35). In this approach there is no second
QDHT; instead, the reciprocal space array Ψ�ρn� is multiplied
by �i∕�λz�� exp�−iπr 02n ∕�λz�� where the real space positions are
found from r 0n � �λz�ρn. The propagated wavefield ψ z�r 0n�
extends to a maximum radius of

R 0 � �λz�P � λz

2R
N ; (36)

with sampling interval

hΔr 0i � R 0

N
� λz

2R
� λz

2N hΔri : (37)

Obviously, the output plane real space sampling interval hΔr 0i
might differ from the input plane interval hΔri. As an example,
consider a zone plate with diameter D and outermost zone
width drzp, where again the paraxial approximation gives
Ddrzp � λf . For propagation of a wavefield from the zone
plate to the focus, or z � f , Eq. (37) becomes

hΔr 0i �
Ddrzp

2R
�

Ddrzp

2N hΔri : (38)

If we want to keep the sampling interval constant, or
hΔr 0i � hΔri, we need to choose the number of sampling
points N to be

N �
Ddrzp

2�hΔri�2 : (39)

Equation (37) can be used to choose N for maintaining
hΔr 0i � hΔri at other propagation distances z as well.

6. CONCLUSION

We have described here an approach for the numerical propa-
gation of cylindrically symmetric wavefields with increased
speed and reduced array size requirements and demonstrated
its accuracy by comparison with analytical results. For propa-
gation over distances less than z0, as given by Eq. (17), the
convolution approach of Eq. (20) which involves two QDHTs
is preferred, while for longer distances the single QDHT ap-
proach of Eq. (21) is freer of aliasing artifacts. When simulating
the focusing properties of Fresnel zone plates or other cylindri-
cally symmetric optics, one can either choose a small number of
output sampling points M on a fine sampling interval hΔr 0i to
calculate the detailed profile of the beam focus near the optical
axis, or one can use a coarser sampling yet still recover the
efficiency of the optic as demonstrated in Fig. 7.

Calculations of this sort play an important role in the pre-
diction of the performance of optics such as Fresnel zone plates,
which are commonly used for high-resolution x-ray focusing
[1,27]. In order to improve focusing efficiency within the limits
of high aspect ratio nanofabrication approaches, several zone
plates can be aligned onto successive axial positions, either
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Fig. 8. Comparison of the focused intensity profile of a Fresnel zone plate (which is a far-distance calculation) as calculated using the near-distance
convolution approach of Eq. (20), and the far-distance single Hankel transform approach of Eq. (21). The radial intensity distribution and energy
integral is shown on the left, while the longitudinal intensity distribution about the focal point is shown on the right. These calculations assumed a
zone plate with diameter D � 45 μm and outermost zone width drzp � 25 nm, and an x-ray wavelength of λ � 0.124 nm, yielding a focal length
of f � Ddrzp∕λ � 9 mm. The input plane sampling was done with N � 27; 000 points over a radius of R � 54 μm, so that the distance z0 for
preferring near-distance or far-distance approaches [Eq. (17)] was z0 � 1.7 mm. As can be seen, the far-distance method leads to a smooth intensity
profile, whereas the near-distance method leads to irregularities in the intensity profile on the optical axis due to the fast oscillations in the reciprocal
space propagator function, as shown in Fig. 1. The far-distance calculation approach works better for propagating by a distance of 9 mm when
z0 � 1.7 mm, but the near-distance approach still gives the correct overall intensity distribution at points away from the optical axis.
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in the near field [30] or at greater separation distances [25].
While this approach has recently been used to achieve 19%
diffraction efficiency for focusing 25 keV x rays [31], there are
several questions on the optimization of these approaches that
we plan on addressing in future work. As zone plate thickness
is increased further, one must begin to adjust the zones to
meet the Bragg condition for volume diffraction [32,33], and
QDHT multislice propagation calculations may provide a way
of rapidly estimating focusing properties with subsequent val-
idation using rigorous coupled-wave theory.
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