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Rapid changes in Atlantic grey 
seal milk from birth to weaning – 
immune factors and indicators of 
metabolic strain
Amanda D. Lowe1, Sami Bawazeer2, David G. Watson2, Suzanne McGill3, Richard J. S. 

Burchmore3, P. P (Paddy) Pomeroy4 & Malcolm W. Kennedy1

True seals have the shortest lactation periods of any group of placental mammal. Most are capital 

breeders that undergo short, intense lactations, during which they fast while transferring substantial 

proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected 

from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein 

profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature 
phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until 

weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate 

immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation 

by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These 

oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine 

levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive 

depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, 

such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore 

possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.

Milk is the sole source of nutrition and passive immune protection for neonatal mammals. Milk changes dramat-
ically in composition in the immediate postpartum period from colostrum to mature phase milk that, in euthe-
rians (‘placental mammals’), then changes little until weaning1,2. �at initial transition may take about 48 hours 
(as in cattle, sheep, camel3,4,89), or it can extend to 30–40 days (as in at least one species of bear5). �e composition 
of colostrum varies among species, particularly in the concentration of immunoglobulins (antibodies) that are 
a sample of those in circulation in the mother. �e class of immunoglobulin that predominates in colostrum is a 
function of the type of placenta possessed by a given species2.

Immunoglobulins are not the only form of maternally-derived immune protection. Others include several 
anti-microbial proteins and oligosaccharides. �e latter may not be digested for energy provision but instead act 
against colonisation by potentially pathogenic microorganisms by competitively blocking their mucous and cell 
surface attachment receptors6,7,12. Importantly, oligosaccharides are also important for the establishment of a gut 
microbiome appropriate for the neonates of a species (to both aid digestion of milk and compete with incoming 
pathogens), and can be heterogeneous and polymorphic between individuals7–10. Like the proteins present during 
the colostrum to mature milk transition, oligosaccharides may change in composition with time a�er birth, some 
appearing early, then disappearing, and others may show the inverse5,11. �e diversity and changes in oligosaccha-
ride content during lactation has, however, been investigated in only a few species.
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We recently reported on the dramatic changes in the proteins, oligosaccharides, metabolites and lipids in the 
species of eutherian mammal with the longest colostrum to mature milk transition known, the giant panda5,70,13. 
�is prolonged transition time may be associated with the altriciality of ursid neonates5,96, which is the most 
extreme known amongst eutherians, though not as pronounced as in marsupials14,15.

We now report on the opposite extreme, in true seals (Phocidae), which give birth to large, precocious pups 
that are, in many species, nursed without the mother leaving to feed16. �e pups are typically deserted a�er a 
very short lactation, such that weaning is sudden and there is no period of mixed feeding. As a whole, the true 
seals are remarkable in these highly abbreviated lactation periods relative to their body masses, the most extreme 
case being hooded seals that lactate for the shortest time known for any mammal, three to �ve days16, the longest 
amongst marine seals being between �ve and seven weeks in Weddell seals16. �e lactation strategies of marine 
phocids are distinct from other pinnipeds, the otariids (sea lions and fur or eared seals) and odobenids (walrus) 
despite the fact that they occupy super�cially similar marine environments and ecological positions (see sum-
mary in Supplementary Figure S1). Otariids lactate for considerably longer (4 to 18 months) during which time 
some mothers cease lactation for periods while foraging in distant feeding grounds, and, remarkably, re-start 
lactation on their return14,16,17. Odobenids may nurse for up to two years, and, unusually amongst pinnipeds, 
nurse their young while at sea16,17.

True seals are considered to be capital breeders, in that maternal body reserves are transferred to their neo-
nates with little or no replenishment until weaning17–19. During this period of fasting there is a dramatic loss of 
maternal body mass to fund a doubling of pup body mass18,20. �e adaptive advantage of this intense, abbrevi-
ated lactation is under debate but represents a strategy by which a capital breeder can rapidly transfer food with 
reduced energy expenditure associated with foraging17.

Here we chose a species of true seal with a lactation period before weaning that is in the mid range amongst 
phocids, and in which females do not forage at sea during lactation. �is is the Atlantic grey seal, Halichoerus gry-
pus, that lactate for approximately 16 days, though this varies regionally16,21, and our sampled population lactated 
for between 17 and 23 days. In this we had two aims. First, to establish the time course of colostrum to mature 
phase lactation in a true seal, and, secondly, to seek components indicative of changes in maternal metabolism 
and potential signals of approaching weaning. We found that the colostrum to milk transition is extremely rapid 
in this species, in terms of establishment of mature protein and oligosaccharide pro�les. On the other hand, we 
found that other micronutrients and metabolites change more gradually through lactation, some of which may be 
indicative of alterations in maternal metabolism leading to weaning.

Results and Discussion
Proteins. We �rst compared the protein pro�les of milk samples taken at intervals postpartum from several 
seals, and typical results from single mothers are shown in Fig. 1 and Supplementary Figure S4. �ese show 
that the mature, main phase lactation pattern appeared very rapidly a�er birth, with some major protein bands 

Figure 1. Changing protein pro�les of grey seal milk with time a�er birth. Gradient SDS-PAGE of milk 
samples obtained from a single mother seal on the days indicated, stained with Coomassie Blue. �e protein 
bands indicated by numbers were excised from the gel and subjected to proteomic identi�cation, the results are 
given in Table 1. See Figure S1 for a similar protein gel analysis of a sample series from a di�erent seal mother 
that shows closely similar pro�les. M, size reference proteins with their molecular masses given in kiloDaltons 
(kDa). Samples reduced with β-mercaptoethanol where indicated. An electronic image of the stained gel was 
made as described in Materials and Methods with no subsequent electronic manipulation except for cropping 
and assembly to improve clarity and conciseness of presentation, and the full-sized, uncropped gel image is 
presented in the Supplementary.
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changing in intensity. Establishing the precise times of birth is di�cult in the �eld, but in a subsequent season 
we were able to obtain samples from mothers that gave birth between 10 and 19 hours before, and compared the 
protein pro�les with those of two 7-day postpartum samples (Fig. 2). �is emphasised the very rapid development 
of the mature protein pro�le, which was essentially complete within a day. �e protein bands numbered in Fig. 1 
were excised from that gel and submitted for proteomics, the results of which are given in Table 1, along with the 
putative functions of each protein. �e identities of the proteins found were provided with additional con�dence 
from a 2-dimensional protein electrophoresis gel (Supplementary Figure S5 and Supplementary Table S1).

�e main proteins segregate between those for adaptive and innate immune protection, and those for nutri-
tional support. Among the former were three immunoglobulin classes (IgG, IgM and IgA), as detected by the 
presence of their eponymous heavy chains, along with their associated light chains. �e immunoglobulins gen-
erally appeared in greatest amounts early a�er birth, such as seen in Fig. 1. �ey were accompanied by the poly-
meric immunoglobulin receptor that mediates the trans-epithelial transport of immunoglobulins into secretions, 
predominately IgA, which it then protects against proteolytic cleavage22–24. In all species, IgA appears to be con-
tinuously present in both colostrum and mature phase milk, presumably to protect the mammary gland and 
the oral and gastrointestinal tracts of the neonate24,25. IgA tends to be the predominant immunoglobulin in the 
colostrum of species in which trans-placental transfer of IgG occurs (such as in humans and rodents, which 
have haemochorial placentae26,27) using the FcRn transporter system28,29. In contrast, IgG tends to be particularly 
enriched in the colostrum of species in which trans-placental transfer does not occur (e.g. cattle, sheep, horses, 
camels; epitheliochorial placentae; ref.26). In these species, IgG (along with IgM) crosses the gut epithelia directly 
into the neonate’s circulation for the short period before the gut cell layer closes (24 hours post-partum or less), it 
then appears at much lower levels from the time at which the colostrum period ends (~24–36 hours)30.

�e zonary discoid endotheliochorial placentae of many Carnivora have peripheral haemophagous zones 
through which transfer of large plasma proteins such as immunoglobulins may occur, possibly by pinocytosis and 
phagocytosis of maternal blood rather than mediated by FcRn31,32. Among the Carnivora, trans-placental transfer 
of IgG occurs to a limited degree in dogs33, but apparently not in cats34, and trans-placental transfer of IgG to 
only 3% of maternal levels has been reported in harbour seals35. Surprisingly, IgG appears to persist at high levels 
throughout lactation in grey seal milk (Figs 1, 2 and Supplementary Figure S4). In some mammals, such as rats28, 
IgG is actively transported across the gut mucosa (using the same FcRn receptor system as for trans-placental 
transfer28), so it may be that this also applies to seals. If so, then this would be an unusual adaptation in seals that 
might relate to immune protection of a rapidly growing pup that will soon be deserted and exposed to infections 
circulating in a breeding colony.

Figure 2. Protein pro�les of grey seal milk soon a�er birth. Milk samples were collected between 10 and 
19 hours a�er birth (numbered tracks), except for tracks 4 and 8 (underlined) which were instead loaded with 
comparator samples taken 7 days a�er birth from di�erent mothers in a previous year. Note the absence of the 
band indicated by the arrow in track 2 and that this band was of lesser intensity in all tracks relative to that in 
the day 7 samples. Information on the proteins in the two minor bands appearing in the 30 kDa region of track 
2 is given in the Supplementary. �e milk sample for track 2 (and, to a lesser extent, track 7) had the smallest fat 
layer following centrifugation at 4 °C (Supplementary Figure S3). Di�erent mothers sampled on the Isle of May 
during November 2016, with those of tracks 4 and 8 taken in November 2014. Samples were reduced with β-2-
mercaptoethanol where indicated. M, size reference proteins with their molecular masses given in kiloDaltons 
(kDa). Electronic images of the gels were made as described in Materials and Methods with no subsequent 
electronic manipulation except for cropping to improve clarity and conciseness of presentation, and the full-
sized, uncropped gel images are presented in the Supplementary.
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Several proteins of innate immunity were detected. Xanthine dehydrogenase/oxidase is found in most mam-
mal milks and is thought to be defensive, but it also has a role in lipid synthesis and secretion36,37. α-1-acid gly-
coprotein, ceruloplasmin and haptoglobin were also found and are among a set of proteins that rapidly appear 
in greatly enhanced amounts in blood at the onset of an acute phase (fever) reaction in mammals38,39,81. �ey are 
usually synthesised in the liver, but it is now known that some acute phase proteins can be synthesised in mam-
mary gland tissue in response to infections, and then appear in milk40,41,77. An in�ammatory response in mam-
mary gland tissue is observable during phases of the lactation cycle when the gland is undergoing reconstruction 
and may be in a vulnerable state42. �e presence of protective proteins in grey seal milk could therefore be due to 
microbes colonising an active mammary gland, or as a prophylactic against infection.

The other main proteins found are well-established as being specialised for milk-based nutrition, such 
as the caseins43–45. β-casein was present at lower levels in the earliest samples relative to day 7 (Figs 1, 2 and 
Supplementary Figure S4), and even missing in one (arrowed in Fig. 2; Fig. 1, band 7). A delayed post-parturient 
appearance of caseins has also been observed in the giant panda, in which secretion of both β- and κ-caseins 

Banda Proteinb
MASCOT 
scorec

Number of peptides (unique 
peptide matches)d Function, association, synonyms and commentse

1, 16
Immunoglobulin µ heavy 
chain

108 9 (2) IgM. Antibody. Pentameric. Abundant in serum and colostra, less so in secretions.

1, 8, 9, 12, 16 Immunoglobulin λ 116 11 (3) Light chain isoform associated with all immunoglobulin subclasses.

2
Immunoglobulin α heavy 
chain

61 11 (1) IgA. Antibody. Dimeric. Abundant in secretions and milks.

2, 16
Polymeric immunoglobulin 
receptor

457 34 (16)
Receptor for IgA and IgM mediating secretion, part of which (secretory 
component) remains bound to IgA to protect it against proteolytic cleavage in 
intestine.

3, 12, 15, 22 Immunoglobulin γ heavy chain 137 11 (4)
IgG. Antibody. Most abundant immunoglobulin class in plasma, much less so in 
secretions. Transferred across placenta or gut in some species by an IgG-speci�c 
receptor – situation not known in phocids.

2, 15, 21 �rombospondin 353 28 (14) Extracellular matrix protein. Binds heparin.

5 Granulins 174 13 (5)
Possible cytokine-like activity. �ey may play a role in in�ammation, wound 
repair, and tissue remodeling.

6, 20 Serum albumin 857 108 (39)
Most abundant protein in blood plasma. Carries fatty acids, hydrophobic steroid 
hormones, hemin, small positively-charged molecules and drugs.

7, 8, 23 β-casein 168 30 (6)
Phosphoprotein. Source of amino acids, delivers calcium, phosphate, lipids. 
Structural component and determines the surface properties of the casein 
micelles.

9, 17, 25 Apolipoprotein A 68 4 (2)
In plasma, transporter of cholesterol from tissues to the liver and cofactor for the 
lecithin cholesterol acyltransferase.

10 β-lactoglobulin−1 148 16 (5)
Binds and probably transports retinol (vitamin A), vitamin D, and fatty acids 
including polyunsaturated fatty acids.

11
Fatty acid-binding protein, 
heart isoform

113 12 (4)
�ought to play a role in the intracellular transport of long-chain fatty acids and 
their acyl-CoA esters. Syn. mammary-derived growth inhibitor.

12, 22, 24, 25 Lactadherin 580 42 (18) Maintains intestinal epithelial homeostasis and the promotion of mucosal healing.

12, 15 Ceruloplasmin 126 9 (4)
�e major copper-carrying protein in the blood, and plays a role in iron 
metabolism. Possibly involved in pulmonary antioxidant defence.

17 κ-casein Stabilizes milk micelle formation, prevents casein precipitation.

17
α-1-acid glycoprotein (syn. 
orosomucoid)

66 5 (2)
Acute phase protein in blood. Levels change in pregnancy and in acute phase 
(fever) response. Binds negatively-charged small molecules, steroids, proteinase 
inhibitors. Immune regulation.

18 α-lactalbumin 47 1 (1)
Regulatory subunit of lactose synthase. Changes the substrate speci�city of 
galactosyltransferase making glucose a good acceptor substrate for this enzyme 
enabling lactose synthase to synthesize lactose.

22 Xanthine dehydrogenase 496 49 (20)
Key enzyme in purine degradation. Contributes to the generation of reactive 
oxygen species. Involved in milk fat globule secretion and also innate immunity.

25 Haptoglobin 69 8 (2)
Indicator of infection or in�ammation. Acute phase protein. Captures free 
haemoglobin. Anti-microbial.

Table 1. Identi�cation of the proteins isolated from bands excised from the protein electrophoresis gel shown 
in Fig. 1. aGel band codes as indicated in Fig. 1. bProtein identi�cations. Peptides matching to keratin, were 
excluded. cMASCOT (MOWSE) search score where scores greater than 38 are taken to be signi�cant. �e 
MASCOT score given is the highest value obtained where the protein was identi�ed in more than one band, as 
were the peptide match values. dNumber of peptides found to match with the number of peptides unique to this 
identi�cation in parentheses. ePutative functions and comments are drawn from literature cited, or NCBI and 
UniProtKB/Swiss-Prot databases. At the time of writing there are limited genomic, mRNA and protein sequence 
data available for the grey seal and the protein identi�cations in this table derive mainly from searching within 
the Caniformia, the best �ts arising from these species - Leptonychotes weddelli (Weddell seal), Pusa hispida 
(ringed seal), Odobenus rosmarus divergens (walrus), Ailuropoda melanoleuca (giant panda), Mustela putorius 
furo (ferret/European polecat), Ursus maritimus (polar bear), Canis familiaris (domestic dog), Neovison vison 
(American mink), Arctocephalus tropicalis (subantarctic fur seal). �e database accession codes for the best �ts 
are given in the �gshare digital repository �les.
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may take 30–40 days to reach main phase levels5. β-casein is a highly phosphorylated protein that transports 
calcium ions and forms micelles that appear to be stabilised by κ-casein46. �e delayed appearance of caseins may 
explain how the soluble, fat-depleted layer of early grey seal milk samples is less turbid (milky) than later ones 
(Supplementary Figure S2), as is also the case in giant pandas5.
β-lactoglobulin was present at high relative levels in all samples, including those collected soon a�er birth 

(Figs 1 and 2; Table 1). It is present in all Carnivoran milks that have been examined, in which it may occur 
in one to three isoforms5,47. It is thought to be a carrier of long chain fatty acids and retinol (Vitamin A)47,48. 
Retinol is insoluble and highly sensitive to oxidation but can be protected within an apolar protein binding 
site47,49–51 (and M.W. Kennedy, unpublished). Retinoic acid derivatives of retinol are crucial to a wide range of 
cell di�erentiation and developmental processes in vertebrate52,53, so the safe delivery of its precursor to a rapidly 
growing neonatal seal may be particularly important. Curiously, humans (and camels, elephants) do not pro-
duce β-lactoglobulin5,54,92, though some primates do (macaques and baboons)47, so its true role in milk remains 
mysterious.

Proteinase inhibitors were also found. A speci�c colostrum trypsin inhibitor is present in many mammal 
milks, the concentration of which appears to correlate positively with that of IgG55. In bovine milk, for example, 
this inhibitor is found for only 2–48 hours postpartum, which �ts with the idea that it is there to reduce cleavage 
of immunoglobulins undergoing transfer to the neonate. �e encoding gene has been examined in otariids and 
odobenids in which it appears to be functional, but it is disrupted in one phocid (Weddell seal)55. If this is also 
true in the grey seal, then its absence in our survey is explicable, but this then begs the question of whether the 
other proteinase inhibitors we found act to compensate for protection of the unusually prolonged secretion of IgG 
into the milk of this species.

Two proteins that are more usually associated with blood plasma were present, albumin and apolipoprotein 
A, both of which are involved in lipid transport in blood, albumin carrying a range of small charged molecules 
in addition to fatty acids. Whether these two proteins are made in, or actively transported from blood by, the 
mammary gland, or leak passively into milk from blood plasma, remains to be established, though the high level 
of albumin present suggests an in�uence of some kind in milk. A general, non-speci�c leakage of blood plasma 
components into the milk is unlikely given that we did not �nd other major plasma proteins such as complement 
C3 or transferrin.
α-lactalbumin was found, which is interesting given its absence in otariid and odobenid milks and role in 

lactose production (see below).

Oligosaccharides. Complex sugars are abundant in the milk of many species, though not all, and are active 
as free or protein-linked oligosaccharides8,56–59. In humans, these complex sugars vary dramatically in quantity 
and types between mothers8,60. �ey are generally not digested to provide a neonate’s energy metabolism but 
are instead thought to control colonisation by pathogens through interfering with their sugar-based adhesion 
mechanisms required for binding to mucus layers or cell surfaces7,61. Milk oligosaccharides also play a crucial 
role in establishing an appropriate microbiome by, for instance, acting as a selective nutrient supply for species of 
Bi�dobacterium7,62,63.

We found that both fucosyllactose and sialyllactose were present soon a�er parturition in grey seal milk but 
were then rapidly lost with time a�er birth, until little or none of either was detectable towards the end of lactation 
(Fig. 3). Sialyllactose (N-acetylneuraminyllactose) occurs in 3′ and 6′ forms, the former being the most common 
in milks. Our MS analysis indicated that only one form was present in the seal milk, the 3′ form. �e amounts 
of these sugars varied considerably between mothers in the �rst week, which could indicate intrinsic di�erences 
between the mothers in how much they produce, or the rates at which secretion of these oligosaccharides change 
with time a�er birth. Levels of these two complex sugars decreased roughly simultaneously, which is the opposite 
to the trend found in the giant panda5. In that species, fucosyllactose rose with time, but the 3′ form of sialyllac-
tose fell. �e rate of change in the concentrations of these oligosaccharides in seal milk was very much greater in 
seals than in giant pandas, in which it takes 20 to 60 days at least for levels of these oligosaccharides to stabilise5.

Lactose is the principal energy component of the milk of many species of land mammal (e.g. cow, sheep, 
horse, dog, camel, human), but is either at very low levels or absent in marine mammals2,17. Lactose is found at 
very low levels in phocids, but is absent in the milks of otariids and odobenids2,17. �is loss is postulated to have 
evolved because lactose’s role in energy provision is supplanted by milk fats, and that one of lactose’s functions, the 
osmotic drawing in of water into milk64,65, is not advantageous in marine mammals66. Lactose is synthesised by 
lactose synthase, which is a two-component enzyme comprising β1,4-galactosyltransferase (which is produced in 
many tissues) and α-lactalbumin (which is speci�c to mammary glands). Otariids and odobenids have alterations 
to their α-lactalbumin–encoding gene that would disable the protein’s enhancement of lactose synthesis - which 
is not the case in phocids66. Despite �nding α-lactalbumin in grey seal milk (see Fig. 1 and Table 1), lactose was 
present in amounts that are very low relative to those in cow, goat and camels (data not shown), consistent with 
studies on other phocids64,66. In true seals, therefore, lactose may instead be there to provide a substrate for the 
synthesis of its fucosylated and sialated forms of lactose that are for management of the gut or mammary gland 
microbiome, or protection against microbial pathogens, rather than for energy supply67,12.

Taurine. Taurine has a multitude of biological functions, such as involvement in membrane stabilisation and 
modulation of calcium signalling, and it is essential for cardiovascular function, development and function of 
skeletal muscle, the retina, and the central nervous system68,69. In addition there is increasing evidence that tau-
rine is essential for supporting the immune system since it is found at very high levels in phagocytes83. Moreover, 
of potential pertinence to mammalian neonates in general, neonates may have a limited capacity to produce 
taurine84–87. One of the primary bile acids of mammals is taurine-conjugated, so a rich supply of it may be crucial 
for the processing of a fat-rich diet, which particularly applies to the neonates of marine mammals. In that regard, 
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bile salts also activate bile salt-activated lipase that is involved in digestion of lipids5,88,93, and is found in grey seal 
milk (Supplementary Table S2). Some species of hypercarnivore, such as cats and possibly also polar bears71–73, 
cannot synthesise taurine, and are thereby dependent on dietary sources. As we will report elsewhere, we �nd 
that taurine occurs at considerably higher concentrations in seal milk than in milks of many other species. Being 
piscivorous hypercarnivores that have ready access to plentiful sources of taurine in their diet, seals, like other 
hypercarnivores, may have foregone synthesising taurine, which would then be an essential requirement in their 
milks. Here, we found that the concentration of taurine is, like other small molecules, highly variable in milk 
samples from mother to mother, but is highest soon a�er birth and then falls as weaning approaches (Fig. 3). If 
grey seals cannot synthesise and replenish taurine, then that reduction could be due to depletion in the mother 
during her fast, which should not apply to those phocids in which the females periodically forage during lactation 
(Supplementary Figure S1 and ref.16).

Micronutrients or indicators of metabolic activity? We examined changes in metabolites that are 
involved directly in, or are indicative of, fat-fuelled energy metabolism, and have here selected nicotinamide, 
acetylcarnitine and N1-methyl-2-pyridone-5-carboxamide for note. As we will report elsewhere, we �nd that 
nicotinamide, its derivatives and precursors (such as anthranilic acid) are dramatically higher in concentration in 
seal milk than in a selection of land mammals (cow, goat, camel), that this also applies to N1-Methyl-2-pyridone-
5-carboxamide, and some carnitines.

Nicotinamide is required for the production of NAD+, which is a key co-factor in fatty acid β-oxidation. Since 
the energy metabolism of both seal mothers and pups is based on large scale oxidation of fats, then a high require-
ment for NAD+ would be expected, and we found that the concentration of nicotinamide increases with time of 
lactation (Fig. 3). As with taurine and oligosaccharides, there is substantial diversity in milk nicotinamide levels 
between mothers at all four sampling times, which could relate to their initial nutritional states, physiological condi-
tion, or demand for milk by their pups. As with other small molecule metabolites, the increasing concentrations of 
nicotinamide could be a re�ection of the need for the pups to be supplied. Or that a mother’s own fat metabolism is 
increasingly drawn upon as she continues her fast, and nicotinamide leaks into her milk from her blood circulation.

Nicotinamide can also be converted to N-methylnicotinamide, which has in the past been viewed as a 
non-biologically active waste product, but is increasingly attracting interest as a stimulator of peroxisome pro-
liferation74,94,90, which is pertinent to a fasting mother seal - the metabolism of long chain fatty acids takes place in 
peroxisomes before transfer to the mitochondria. N-methylnicotinamide is metabolised into N1-methyl-2-pyridone-
5-carboxamides via the action of aldehyde oxidase and also cytochrome P450 2E1 (CYP2E1), and it has been proposed 
that its levels give an indication of peroxisome proliferation74–76. N1-methyl-2-pyridone-5-carboxamide is only present 
at very low levels at the beginning of lactation and increases dramatically with time until the end of lactation (Fig. 3). 

Figure 3. Changes in grey seal milk metabolites and micronutrients with time a�er birth. Selection of 
compounds exhibiting changing concentrations as lactation progresses. Fucosyllactose and sialyllactose are 
oligosaccharides that control colonisation by microbes. Taurine is an essential dietary requirement in some 
species of hyperpredator. �e remaining metabolites are associated with fat metabolism, potentially pertinent 
to nursing seals in terms of mobilisation of their body reserves, and lipids required for rapid growth and 
maintenance of pups that need to accumulate large fat reserves for the forthcoming starvation period and for 
subsequent thermal insulation at sea. �e data indicated for 18 days a�er birth are a mixture from samples 
taken on days 17, 18 and 19. �e square symbol in a box is the mean; the band in the box is the median; the box 
extends to the standard error of the mean; the whiskers indicate the range.
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�is compound could therefore be an indicator of increasing fat metabolism in the mothers and possibly a potential 
marker of when a mother may soon depart that may be detectable in both blood and milk.

Carnitine is centrally involved in fatty acid metabolism and ful�ls three main functions - it transports fatty acids 
into mitochondria so that they can undergo β-oxidation to generate NADH; it removes fatty acids from the mito-
chondria in order to maintain the levels of free CoA within a certain range; and it removes waste fatty acids from 
the body as water soluble carnitine conjugates75,91,95. As we will report elsewhere, carnitines that are conjugated with 
long acyl chains (e.g., oleoyl, palmitoyl, and docosahexanoyl in particular) are substantially more abundant in seal 
milk than in cow, goat or camel milks, whereas those conjugated with short acyl chains (acetyl, propionyl, butyl) 
were of similar abundances or slightly lower. However, the post-parturition changes in seal milk were similar for all 
types, and Fig. 3 illustrates the trend for acetylcarnitine, which diminishes to low levels towards the end of lactation.

As for the other small molecules that we found in seal milk, we cannot be sure whether the carnitines are there 
to supplement a pup’s metabolic activity or whether they are re�ecting a mother’s physiology at the time of sam-
pling, or both. Dietary carnitine is an important contributor to the carnitine pool and short chain acyl forms may 
have improved bioavailability in comparison to free carnitine. Also, acylcarnitines are activated for metabolism by 
mitochondria since they can be converted directly to acyl CoA with the investment of a molecule of ATP, which 
is required for the conjugation of free acyl groups to CoA75,95. Long chain fatty acids such as docosahexenoic acid 
are metabolised in peroxisomes to shorter chain acids before entering the mitochondria for further metabolism. 
�ey are required for conversion to acyl CoAs before they can be oxidised in the peroxisomes and, again, it would 
be advantageous if they were available in their activated form e.g. docosahexanoyl carnitine. �us, aside from 
whether or not the acylcarnitines can be e�ciently absorbed by seal pups, for every molecule of acyl carnitine 
assimilated a molecule of ATP is conserved.

Amongst food sources derived from animals, carnitine is most abundant in red meats, followed by �sh and 
milk. Given the extremely high dependence of seal pups on fats, it is perhaps not surprising that they are pro-
vided with such high levels of acylcarnitines, and that maternal provision early in lactation would be valuable. It 
is interesting, though, that, whilst carnitine levels drop overall with time, other metabolites involved in fatty acid 
metabolism and long chain acyl carnitines increase (e.g. nicotinamide). �is perhaps re�ects the use of carnitine 
in the formation of the “ready to go” acyl carnitines and the requirement for nicotinamide for NAD+ formation 
to support β-oxidation a�er their conversion to acyl CoAs.

Conclusions
�ere is no widely accepted de�nition of what colostrum is. We previously de�ned the point at which colostrum 
ends and main phase lactation begins as being when the components of milk stabilise in relative concentrations5. 
We �nd that there is no such point in the brief lactation period of grey seals. We have therefore here taken the end 
of colostrum as being when the protein pro�les have stabilised.

�e transition from colostrum to main phase lactation in the Atlantic grey seal is the shortest yet recorded 
for any species of mammal. It is in stark contrast to the longest known for a eutherian, that which occurs in a 
fellow member of the Carnivora, a bear5. �is divergence is all the more impressive given that true seals, along 
with other pinnipeds, share membership of the Caniformia suborder within the Carnivora78,79. It is conceivable 
that the transition occurs even more quickly in species of seal in which the lactation period is even shorter, the 
hooded seal in particular.

Our focus has been on the components involved in immune defence and indicators of metabolic changes. �e 
rapid change in protein pro�le is particularly impressive, but so too is the persistence of IgG with time a�er birth. 
�is is unusual and could indicate a particular need to provision a rapidly growing o�spring with a su�cient sup-
ply of antibody to maintain its defence against pathogens in circulation in breeding colonies, phocine and other 
morbilliviruses being obvious examples80,82. A question, therefore, is whether this prolonged delivery of IgG is 
only for protection of the gut, or instead results in a systemically protective build-up of this antibody class in the 
blood of the pups before weaning. Of innate immune protection, the changes in oligosaccharides are also of note. 
�ose probably involved in antimicrobial activity were present only at the beginning of lactation in our seals, and 
many fewer types were found in comparison to bears5. �e di�erences between the composition and changes in 
milk oligosaccharides between two species within the Caniformia suggest stark di�erences in their adaptations 
to pathogen defence and the microbiomes they need to establish, despite their close phylogenetic relationship.

We observed changes in compounds central to fat metabolism that could either be re�ections of how the 
mother’s metabolism alters as she mobilises and transfers her own body resources to her pup without replen-
ishment, or donation of compounds to aid the pup’s own fat metabolism, or both. Either way, our �ndings merit 
optimism in �nding a metabolic signal of when a seal mother reaches the end of her resources and must leave.

Materials and Methods
Milk collection, storage and processing. �e seal milk samples were collected from the Isle of May, 
Scotland, colony of Atlantic grey seals during October and November 2013, and stored frozen until processed. 
A further collection was made in November 2016 in an attempt to obtain samples as close a�er birth as possible 
without risking adverse maternal behaviour or survival of pups; these collection times would have fallen between 
10 to 19 hours post parturition. Females were tranquilised with a mass-adjusted dose of ®Zoletil 100 (Virbac, 
Bury St Edmunds, Su�olk, UK), followed by intravenous oxytocin to stimulate milk let-down, and �nally an 
intramuscular prophylactic dose of tetracycline. Oxytocin was administered as a 1 ml intravenous injection (10 
iu ml−1 or 0.18 mg ml−1; Oxytocin-S, Intervet UK). Post-parturition female grey seals in this population weighed 
about 180 kg, so the dose of oxytocin would have approximated 1 µg kg−1. No deaths or premature desertions of 
pups following any samplings were observed. Milk samples were centrifuged at 3,000 rpm at 4 °C in a Heraeus 
1.0 R centrifuge with swing-out buckets for 15 minutes and the layer between the upper fat layer and the pellet was 
taken for analysis (see Supplementary Figures S2 and S3).
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Ethical approval. Collection of milk samples was approved by the ethical committee of Scottish Oceans 
Institute, University of St Andrews, and the College of Medical, Veterinary and Life Sciences Ethics Committee of 
the University of Glasgow. All sampling and animal handling were carried out in strict accordance with relevant 
guidelines and regulations, and as approved by the above authorities.

Protein electrophoresis. One-dimensional (1-D) vertical sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS-PAGE) was carried out using the Invitrogen (�ermo Scienti�c, Paisley, UK) NuPAGE sys-
tem with precast 4–12% gradient acrylamide gels, and β-mercaptoethanol (25 µl added to 1 ml sample bu�er) 
as reducing agent when required. Gels were stained for protein using colloidal Coomassie Blue (InstantBlue; 
Expedion, Harston, UK) and images of gels were recorded using a Kodak Image Station 440CF imager. Electronic 
images of stained gels were taken under ambient laboratory light and modi�ed only for slight adjustment of con-
trast and brightness so as to include all visible bands, and �nal images were taken using the near-default setting of 
camera aperture f2.8, and no subsequent electronic modi�cations were made. �e complete, uncropped images 
are presented in the Supplementary. Pre-stained molecular mass/relative mobility (Mr) standard proteins were 
obtained from New England Biolabs, Ipswich, MA, USA.

Proteomics. Stained protein bands or spots were excised from preparative 1-D or 2-D gels stained with 
Coomassie Blue and analysed by liquid chromatography-mass spectrometry (LC-MS). Gel pieces were washed 
with 100 mM NH4HCO3 for 30 minutes and then for a further hour with 100 mM NH4HCO3 in 50% (v/v) acetoni-
trile. A�er each wash, all solvent was discarded. Gel pieces were dehydrated with 100% acetonitrile for 10 minutes 
prior to solvent being removed and dried by vacuum centrifugation. Dry gel pieces were rehydrated with 10 µl 
trypsin at a concentration of 20 ng µl−1 in 25 mM NH4HCO3 (Promega, Madison, WI, USA) and proteins digested 
overnight at 37 °C. �is liquid was transferred to a fresh tube, and gel pieces washed for 10 min with 10 µl of 50% 
acetonitrile. �is wash was pooled with the �rst extract, and the tryptic peptides dried to completion. Tryptic 
peptides were solubilized in 0.5% (v/v) formic acid and fractionated on a nano�ow UHPLC system (RSLCnano 
system; �ermoFisher Scienti�c, Inchinnan, UK) before analysis by electrospray ionisation (ESI) mass spectrom-
etry on an Amazon ion trap MS/MS (Bruker, Coventry, UK). Peptide separation was performed on a PepMap C18 
reversed phase column (LC Packings/Dionex/�ermoFisher), using a 5–85% v/v acetonitrile gradient (in 0.5% 
v/v formic acid) run over 45 min at a �ow rate of 0.2 µl min−1. Mass spectrometric (MS) analysis was performed 
using a continuous duty cycle of survey MS scan followed by up to �ve MS/MS analyses of the most abundant 
peptides, choosing the most intense multiply-charged ions with dynamic exclusion for 120 s. MS data were pro-
cessed using Data Analysis so�ware (Bruker) and the automated Matrix Science Mascot Daemon server (v2.1.06). 
Protein identi�cations were assigned using the Mascot search engine to interrogate sequences in the NCBI data-
bases, restricting the search to Caniformiae and allowing a mass tolerance of 0.4 Da for both MS and MS/MS 
analyses. Cysteine carbamidomethylation and methionine oxidation were set as �xed and variable modi�cations, 
respectively. Mascot uses probability based scoring to match MS/MS fragment ion masses to genome and protein 
sequence datasets. �e total score re�ects the −10*LOG10(P) probability that the observed match is a random 
event and, for the searches reported here, a Mascot score >38 reports a P value < 0.05. A commonly accepted 
threshold is that an event is signi�cant if it would be expected to occur at random with a frequency of less than 
5%. �is is the default value that is reported on the results summary page. BLAST searches, or searches of genome 
databases within or beyond the Carnivora, were carried out to check the annotations.

Metabolomics. Ammonium carbonate, HPLC grade acetonitrile, and methanol were purchased from 
Sigma-Aldrich, UK. HPLC grade water was produced by a Direct-Q 3 Ultrapure Water System from Millipore, 
UK. �e mixtures of metabolite authentic standards were prepared from standards obtained from Sigma-Aldrich, 
UK. In order to analyse the more polar fraction of the milk samples (0.5 mL) were thawed at room tempera-
ture and then centrifuged or 10 minutes at 15,000 rpm at 4 °C (Eppendorf 5424 R, maximum RCF = 21.130 g). 
An aliquot of the supernatant (200 µl) was mixed with acetonitrile (800 µl). �e solution was mixed thoroughly, 
emulsion was centrifuged for 10 minutes at 15,000 rpm at 4 °C (Eppendorf 5424 R), and the supernatant was 
transferred to an HPLC vial for Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. �e lipids in the 
milk were analysed by mixing 200 µl of the whole milk with 800 µl of isopropanol. �e solution was mixed thor-
oughly and emulsion centrifuged for 10 minutes at 15,000 rpm at 4 °C (Eppendorf 5424 R). �e supernatant was 
transferred to an HPLC vial for Liquid Chromatography-Mass Spectrometry (LC-MS) analysis.

HILIC–HRMS and multiple tandem HRMS analysis and data processing was carried out on an Accela 600 
HPLC system combined with an Exactive (Orbitrap) mass spectrometer (�ermoFisher Scienti�c). An ali-
quot of each sample solution (10 µL) was injected onto a ZIC-pHILIC column (150 × 4.6 mm, 5 µm; HiChrom, 
Reading, UK) with mobile phase A: 20 mM ammonium carbonate in HPLC grade water (pH 9.2), and B: HPLC 
grade acetonitrile. �e gradient programme was as follows: 80% B (0 min) 20% B (30 min) 5% B (36 min) 80% 
B (37 min) 80% B (45 min). Peak extraction and alignment were calculated by integration of the area under the 
curve, using MZMine 2.14 so�ware (open source). Resulting data were searched against an in-house metabolite 
database. Similar procedures were used for the lipids analysis which was carried out on an ACE Silica gel column 
(150 × 3 mm, 3 µm particle size) with mobile phase A 20 mM ammonium formate in water isopropanol (80:20) 
and mobile phase B acetonitrile/isopropanol (20:80). �e �ow rate was 0.3 mL/min and gradient was as follows: 
0–1 min 8% B, 5 min 9% B, 10 min 20% B, 16 min 25% B, 23 min 35% B, 26–40 min 8% B.

Data availability. All the proteomics and metabolomics data are available in the �gshare data repository 
with doi: 10.6084/m9.�gshare.5570305 and at https://�gshare.com/s/3f3bfd7408c1733a2e2d.

https://figshare.com/s/3f3bfd7408c1733a2e2d
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