Copyright 1996 by the American Geophysical Union.
crease in the produclion rate by about 30% [Damon
 рәлләsqo әपL in the Earth's magnetic field can change the production

 sign a timescale to paleoclimatic records obtained from
the analysis of a multitude of sources, such as tree The activity of radiocarbon is a powerful means to as-
sign a timescale to paleoclimatic records obtained from Introduction

> cxchange rate and can increase coverage are taken into account.
 duration of the plateau depends strongly on the transient evolution of the gas significantly shorter than that found by analyzing tree rings during the termination
of Younger Dryas (longer than 400 years). A sensitivity study reveals that the with the major temperature increase and lasts for about 60 years. It is hence the time of the rapid reinitiation of deep ocean ventilation which begins coincident 1000 m depth. A plateau of the ${ }^{14} \mathrm{C}$ year/calendar year relation can be gencrated at reduction of ventilation in the North Atlantic is partly compensated by an increase
of the ${ }^{14} \mathrm{C}$ ratios of the biosphere, the Southern Ocean, and the upper ocean above is reduced, resulting in an increase of atmospheric $\Delta^{14} \mathrm{C}$ by about 35%. The of the conveyor belt circulation is interrupted, the oceanic uptake of radiocarbon investigate the evolution of the isotopic ratio of atmospheric radiocarbon, $\Delta^{11} \mathrm{C}$,
due to the rapid changes of deep ocean circulation. When the North Atlantic branch
 the North Atlantic is invoked to achicve a transient response to glacial meltwater A latitude-depth, coupled global ocean-ice-atmosphere model is extended to include Abstract.

Department of Fisheries and Oceans, Bedford Institute of Oceanography
Dartmouth, Nova Scotia, Canada

Daniel G. Wright

Climate and Environmental Physics, Physics Insitute, University of Bern, Bern, Switzerland Thomas F. Stocker radiocarbon

Rapid changes in ocean circulation and atmospheric
 vious modeling work supports this hypothesis [Maier-

 -!uliat pire 's.teak 00\&I jnoqe. InJ patsei 's.reak 00T of

 munication, 1996)).

 ogy through the long-term ${ }^{14} \mathrm{C}$ trend. Recent estimates year $\left(8,800{ }^{14} \mathrm{C}\right.$ years) is tied to the oak chronol
 ${ }^{14} \mathrm{C}$ years and the extended period of strongly reduced

 changes remains to be determined.

 even global extent [Chappellaz et al., 1993; Denton and lar abrupt climatic events (Heinrich events and Dans-
gaard/Ocschger oscillations) may be of hemispheric or
 1993; Sakai and Peltier, 1996]. However, it should et al., 1992; Wright and Stocker, 1993; Lehman et al., tivcly [Maicr-Reimer and Mikolajewicz, 1989; Stocker

 paleoarchives. This suggestion is supported by the
fact that abrupt climate changes appear most pro-

 models are a quantitative means to assess the transient
behavior of $\delta^{13} \mathrm{C}$ during rapid changes of the ocean ciret al., 1994]. Coupled ocean circulation-biogeochemical Bond et, al., 1993; Keiguin. and Lehman, 1994; Bard the surface and deep ocean [Broecker and Denton, 1989; temperatures derived from ice cores and conditions in
 waters.

 north of $40^{\circ} \mathrm{N}$. Sarnthein et al. [1994] interpret this closest to or within YD ($12,300-12,800 \mathrm{yr}$ B. . .) exhibits
values of $\delta^{13} \mathrm{C}>1.2^{\%} \%$ at depths down to about 2 km

 30 kyr . Generally, they confirm earlier findings that benthic foraminifera for different times during the last et al. [1994] produced latitude-depth maps of $\delta^{13} \mathrm{C}$ of Deep Water (NADW) were interrupted during the YD. pected if the supply of nutrient-depleted North Atlantic
Deep Water (NADW) were interrupted during the YD. North Atlantic and the Norwegian Sea, as would be ex[1990] and Veum et al. [1992] do not find reduced $\delta^{13} \mathrm{C}$
values of benthic foraminifera in two cores from the

 The paleoceanographic data, mainly based on iso-
tope concentrations $\left(\delta^{18} \mathrm{O}, \delta^{13} \mathrm{C}\right)$ as well as abundances STOCKER AND WRIGHT: OCEAN CIRCULATION AND RADIOCARBON

$\frac{\llcorner U}{(L) V_{I O}} \frac{(L) V_{I}}{\mathrm{~T}} \frac{Y}{\mathrm{I}}+\mathrm{I}=\frac{\llcorner Q}{v_{\perp \varrho}}$

:səәuелре чэоро иоqлеэотрех әчд Чэ!Чм

$$
\left(\frac{{ }_{0}^{V} I}{(\perp)^{V} I}\right) \text { uI } \frac{Y}{\mathrm{~L}}+\perp={ }^{n^{\prime}}
$$ years). Hence the time at which measurements are made, and λ^{-1} is

 would obtain in the absence of changes in reservoir in-
 (I) $\quad(\downarrow-7) Y-\partial \times(\iota)^{V} I=\left(v_{\perp}-\eta\right) Y-{ }^{\partial} \times{ }_{0}^{V} I$

 Before discussing model results, it is instructive to
illustrate the anticipated effects. Let τ represent the

 and ocean inventories also vary as a result of cxchanges determined btratosphere. In reality, the atmosphere, biosphere, ${ }^{14} C^{\text {atm }}$, corresponding to a known global inventory, I, tion of radiocarbon in the atmosphere is a known value, mined under the assumption that the initial concentra YつOID

Ocean Influence on the Radiocarbon this paper

 the plateau started near the end of YD and ended a few
 Temperature, salinity, stream function, and $\Delta^{14} \mathrm{C}$ are
broadly consistent with obscrvations (Figure 3). These ing to the standard ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio, i.e., al $\Delta^{14} \mathrm{C}=0^{0} / 00$.

 in the appendix

 consistent with observational estimates ing changes in the speed of the radiocarbon clock are culation are accompanied by rather modest changes in
total occan inventory, and the magnitude of the resulttions show that very substantial changes in ocean cir-

 into account, the change in ocean inventory required to of carbon). Even if the effect of the biosphere is taken
 mitted for ${ }^{14} \mathrm{C}$ because to first order in the fractionation
factors, the buffer factor of sea surface carbon chemistry
 over 500 years could change the speed of the radiocar-
bon clock by 100% ! (Note that this estimation is perof the atmosphere, a 0.1% change in ocean inventory since the ocean inventory is approximately 60 times that then the clock speed is increased (decreased). In fact, creased) by exchange with the ocean or the biosphcre, assumed to be ncgligible, but it is clear from cquation
(3) that if the atmospheric inventory is increased (deThe effect of time-dependent reservoir sizes is often tion of a plateau. period for which $Q_{S}>70 \%$ as a measure for the dura-
sphere components. To follow the subsequent evolution
of radiocarbon in the atmosphere, ${ }^{14} \mathrm{C}^{\text {atm }}$, we use the
 After steady state ocean conditions are established,

 and Atlantic basins are shown in Figure 3 (bottom).
The most notable differences from previous results ocsulting steady state distributions of $\Delta^{14} \mathrm{C}$ in the Pacific for the ocean differs from unity by order 10^{-5}. The re-

 is desirable to obtain a very steady oceanic ${ }^{14} \mathrm{C}$ field pared with the corresponding atmospheric inventory, it Because of the large oceanic inventory of ${ }^{14} \mathrm{C}$ comreturned very near to the initial state, with the only culation was slightly perturbed by this change but soon such that the global mean salinity was increased to 35.7,
roughly consistent with conditions prior to YD. The cirwas also increased by a constant multiplicative factor integration. At this time, the salinity at all locations surface forcing, the surface flux of freshwater was di-
agnosed and held constant during the remainder of the After 4000 years of integration under modern-day -(x!puәdde әч7 әәs) чеәəO
 this model using a simpler velocity parameterization,
constant vertical diffusivity, and no explicit representaand volume that is within 5% of the observed estimates.
The latitudinal resolution is shown to the left, and the
verlical resolution is given in Table A1.
 Figure 2. Geometry and resolution of the oceanic com-

DEPTH (m)

DEPTH (m)

 the model estimates of present-day conditions for the Pacificic (left column) and Atlantic (right

JEPTH (m)

DEPFH (m)

DEPTH (m)

DEP. H (m)

Table 1. Summary of Experiments
constant linear relationship (see the appendix). ification is both evident and credible.
 and only $\Delta^{14} \mathrm{C}$ changes are investigated. We therelore
keep the standard ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio, $R_{\text {std }}$ constant. In this
 since the present version does not include an organic constant, the global inventory of ${ }^{14} \mathrm{C}$ is conserved. It
should be noted that the model variable is ${ }^{14} C^{\text {aim }}$, but ice cover for some experiments. Since F^{cosm} is held
constant, the global inventory of ${ }^{14} \mathrm{C}$ is conserved. It ${ }^{14} \mathrm{C}$ concentrations as well as changes in $p \mathrm{CO}_{2}$ or sca
ice cover for some experiments. Since $F^{\text {cosm }}$ is held ${ }^{14} \mathrm{C}$ concentrations as well as changes in $p \mathrm{CO}_{2}$ or sca held consuanl. F and $F^{A B}$ are time dependent due cay in the ocean, biosphere, and atmosphere, and is
held constant. $F^{A O}$ and $F^{A B}$ are time dependent due
which accounts for our present-day estimates of the de-
according to the exchange fluxes from atmosphere to ocean and biopue. xny uoṭonpoid oṭusos ayt are gyt pue 'ovi

[^0] (c) uqe? $\overbrace{\mp I} Y-$
ification is both evident and credible. sonable, but the initial and final states see present day still modify the hydrological cycle, as we believe is rea

 record. While this gave a reasonable simulation of YD that is qualitatively consistent with the paleoclimatic cycle suffices to produce a response to meltwater input that a slight decrease in the strength of the hydrological $10^{6} \mathrm{~m}^{3} \mathrm{~s}$) and never recovers.
In a sensitivity study, Wright and Stocker [1993] show
 with present-day conditions, deep water formation stops
 global THC depends on the strength of the hydrological into account some discharge in the Southern Ocean (see
caption of Figure 4). The transient evolution of the

 1. The steady state is perturbed by freshwater input

Transient Changes of Ocean Circulation and Atmospheric Radiocarbon

 R in the Atlantic north of $40^{\circ} \mathrm{N}$ during this period by a

 associated with runoff. water fluxes seen by the ocean in this model are those
 Thus changes in H^{\prime} can affect the air-sea heat exchange given as the residual. The values of $P-E$ are fixed

 of present-day values as the heat flux is reduced to zero.
The meltwater discharges into the North Atlantic and

 certain details of the meltwater curve. For example, if
the meltwater input to the NA is reduced to zero at a realistic timescale for the YD event depends on unbe noted that the exact value of Γ required to obtain state after about 1500 years, in reasonable agreement
wilh the liming indicated by observalious. It slould then the overturning abruptly recovers to near its initial put is reduced by about $0.15 \mathrm{~Sv}(\Gamma=0.25$, t'igure 5 g$)$,

 the runoff is fixed at the present-day estimate, indepen-
dent of the heal llux. heat fux across $20^{\circ} \mathrm{N}$ is zero or negative, and for $\Gamma=1$,

 background water budget remains balanced so that the stability of the THC. It is included to insure that our

 where F^{NA} is the instantaneous meridional heat flux at

$\overbrace{\substack{3 \\ 3 z_{2} \\ 0,2 \\ 2}}^{\substack{2 \\ 2}}$

 North Atlantic across $20^{\circ} \mathrm{N}$. Temporal variations of theNot runoff into the $N \Lambda$ ffrom Baumgartner and Rcichcl,

$$
\begin{aligned}
& \text { runoff north of } 40^{\circ} \mathrm{N} \text { in the Atlantic ba } \\
& \text { ice thickncss in the northernmost }
\end{aligned}
$$

 shallow (solid line) and deep (dashed (e) surface air perature in the northernmost cell of the Atlantic; (d)
shallow (solid line) and deep (dashed line) salinity in

 and minimum (dashed line) of the Pacific stream func-
tion below 1000 mi (b) maximum (solid) and minimum
 Figure 5. Evolution of selected quantities for ex-

Heat loss to the atmosphere quickly reduces the temper-

 Surface air temperatures in the North Atlantic region葛 as a quantitative measure of the duration of YD in this ure 5 h); we will use the time when sea ice is present in is also a convenient indicator for the length of YD (Figexchange of ${ }^{14} \mathrm{C}$ and therefore the characteristics of the
radiocarbon clock during YD. The occurrence of sea ice cluded). However, sea ice strongly influences the air-sea
 little other than cause unrealistically low high-latitude
occan surface tempcraturcs (perhaps this lack of senmodel evolution, since removing sea ice altogether does
little other than cause unrealistically low high-latitude but this does not appear to play a crucial role in the waters results in the formation of sea ice (Figure 5h), strongly reduced (Figure 4b). Cooling of the surface ing circulation weakens and the meridional heat flux is

 tively isolated from the deep ocean. The density of point where surface cooling is not sufficient to cause

 The primary, dynamically important influcnce of melt et al. $[1993]$ indicate that such changes are well within
the uncertainty in the observational estimates. sults with $\Gamma=0.25$ shown here. The results of Edwards ing to $\Gamma=0.5$ (not shown) are very similar to the re-
sults with $\Gamma=0.25$ shown here. The results of Edwards

 the TIIC observed. our results. In nome of the cases was a stabilization of m and $h_{A}=416 \mathrm{~m}$ with no significant differences to here. We have rerun these experiments with $h_{A}=832$ of glacial freshwater flux perturbations as considered ever, this has not been tested using realistic amplitudes

 It has been argued that the atmospheric heat capacvective feedback that is responsible for the very rapid
termination of YD in our model. is reinitiated as a consequence. It is this local, concolumn, and the Atlantic branch of the conveyor belt ity. This positive feedback efficiently cools the water ature of the surface layer, which leaves an even more un-
stable situation because of the increased surface salin-

 (curve 1), biosphere (curve 2), and the upper 1000 m of
the ocean (curve 3), while it decreases in the deep ocean

lapses (at about model year 24,600). It is important when deep water formation in the North Atlantic colThe increase of $\Delta^{14} \mathrm{C}$ starts as soon as the Atlantic
overturning slows down, but the major changes occur Southern Ocean increases by about 40% in their model
during the cold event.

 sphere, and the upper ocean, as a result of the reduced increases by about 35% in the atmosphere, the bio-

 IOд 'лə.ठи
 the meltwater input exceeds about 0.2 Sv , the formavariations, but the basic picture is quite simple. When mittent convection causes some very abrupt short-lived ing to equation (4) for the base experiment, C2. Interpercentage slowdown of the radiocarbon clock accordChanging oceanic ${ }^{1} \mathrm{C}$ uptake influences the "accu-
racy" of the radiocarbon clock. Figure 8 shows Q_{S}, the cay of the reduced ${ }^{14} \mathrm{C}$ inventory in the deep ocean.
Changing oceanic ${ }^{14} \mathrm{C}$ uptake influences the "ac (AABW) and vertical diffusion balance the natural de-
 ure 7 b). This indicates that after roughly 1000 years,

 reservoir ages and the top-to-bottom age differences at biosphere, which will have implications for the surface crease is compensatcd for by the surface ocean and the note that a major part of the deep ocean $\Delta^{14} \mathrm{C}$ de-
of discharge into the North Atlantic is shown by the
ter
dashed line on a scale of 00.5 Sv .
 Figure 8. Evolution of the slowdown of the radiocar-
bon clock, Q_{S}, for experiment C2. The rise of ${ }^{14} C^{\text {atm }}$

${ }^{14} \mathrm{C}-\mathrm{AGE}[\mathrm{yr}]$
Figurc 9. (a) Detailed view of the age plateau (solid
line) and Q_{S} (dash-dotted line) at the termination of
YD of experiment C2. Using the $Q_{S}>70 \%$ crite-
rion, the plateau lasts for about 60 years (shaded area).
(b) The plateau occurs at the location of most rapid
change in surface air temperature. (c) The plateau oc-
curs about 150 years after the complete disappearence
of sea ice north of $65^{\circ} \mathrm{N}$ in the Atlantic. Note that
26,000 years have been subtracted from the timescale
and that the time axis is reversed in comparison to Fig-
ure 1 .
duration of the plateau
 to 280 ppm . The secular as well as the step increase con
tribute additionally to an enhanced uptake of ${ }^{14} \mathrm{C}$ into there is an ast step increase in $p \mathrm{CO}_{2}$ from 260 ppm of the CH_{4} increase which marks the YD termination,
there is an almost step increase in $p \mathrm{CO} .2$ from 260 ppm
 ppm to 280 ppm , and hence the gas exchange rate inboreal, there is a significant increase of $p \mathrm{CO}_{2}$ from 235 the warm Bølling/Allerød through YD to the warm Pre-

 riod from about $12,700 \mathrm{yr}$ B.P. to about $11,500 \mathrm{yr}$ B.P. tinctly reduced methane concentrations during the pecore via methane measurements on both cores. Dis-
 tica, on which CO_{2} is measured, is connected to the ice cores. 'The timescale of the Byrd core from Antarcfor the last 20,000 years as reconstructed from polar nent. Figure 10 shows the evolution of CH_{4} and CO_{2} due to the lack of a marine carbon cycle model compotory changes cannot be studied with the present model

 (A5)). Although we will change $p \mathrm{CO}_{2}$ in the model, the
${ }^{12} \mathrm{C}$ inventory will not be changed, as we are only inter(perhaps due to transient changes of $p \mathrm{CO}_{2}$; see equation a plateau is associated with varying gas exchange rates
(perhaps due to transient changes of $p \mathrm{CO}_{2}$; see equation
 the duration of the age plateau (Table 1)
 rate based on $p=195 \mathrm{ppm}$ throughout the experiment from C 2 only through the use of a reduced gas exchange

 preceding cold period. Even if YD lasts for over 5500
 Experiments show that the characteristics of the terwith the result, that Δ^{14} C does not exceed about 35%
(Table 1). of radiocarbon in the deep ocean exists in this model,
with the result, that, Δ^{14} C does not exceed abont 35% not modifed during YD, a natural limit of the depletion (Figure 6) and vertical diffusion. As long as sea ice is collapse of the THC in the North Atlantic, the deep
ocean is still weakly ventilated via the Southern Ocean during the climate transition. During the time of the
collapse of the THC in the North Atlantic, the deep lution of the gas exchange rate (including sea ice cover) -олә әчя (\&) pue 'uo!pewiof MUVN jo quәuчs!qełsəəл period of reduced circulation, (2) the efficiency of the pletion of the oceanic radiocarbon inventory during the The strength and duration of the age plateau due to
changes in ocean circulation depends on (1), the deDuration of the Age Plateau

E

Figure 10. Evolution of $p \mathrm{CO}_{2}$ and CH_{4} during the
last 20,000 years as reconstructed from measurements
of air enclosed in bubbles in the Byrd ice core (data
from Neftel et al. [1988] and Staffelbach et al. $[1991]$
with the new timescale by Hammer et al. [1994]) and in
the GRIP ice core (data from Chappcllaz et al. [1993]
and Blunier et al. [1995]). The YD event falls into
a time of increase of $p \mathrm{CO}_{2}$ from 235 ppin to 280 ppm
within about 2000 ycars. This implies an increase of the
gas exchange rate by about 20% according to equation

ered with sea ice during YD. The effect on maximum - поэ aq of paq!uəsaid sem \&L xoq LI quəu!̣adxa uI

 fined as the time when sea ice is present in box 14). The
 by modifying various model parameters, we choose exing YD. Rather than changing the transient behavior is likely that it underestimates the sea ice extent durto prevent unrealistically low surface temperatures, it north of $60^{\circ} \mathrm{N}$; see Figure 2). Thus, while our sea ice
model gives qualitatively reasonable results and serves permanent sea ice during YD is grid box 14 (Atlantic
north of $60^{\circ} \mathrm{N}$; see Figure 2). Thus, while our sea ice model contains a simple thermodynamic ice component.
For all experiments of Table 1 the only location with 58L
warming in the southern hemisphere late cooling mostly around the North Atlantic and even Atlantic region. Models, on the other hand, still simubeen a global event, probably enhanced in the North in the southern hemisphere tell us that YD might have YD. Long plateaus and indications of climate change Ocean, can have a profound impact on ${ }^{14} C^{a t m}$. There ice cover, especially in the large areas of the Southern
Ocean, can have a profound impact on ${ }^{14} \mathrm{C}^{\text {atm }}$. There It is clear from these experiments that changing sea duration
 not unlike Figure 1. The entire evolution may be interlow 70% for a few decades until increased convection in
the North Atlantic produces the second longer plateau

 the southern ice cover (south of $48^{\circ} \mathrm{S}$ at year 26,330) of the subsequent age plateaus. The sudden removal of ocean inventory also has a strong influencc on the length
 the Southern Ocean reduces the amount of ${ }^{14} \mathrm{C}$ that is
sequestered by the ocean and hence increases the max As shown in Table 1 (experiments $13-I 5$), closure of
the Southern Ocean reduces the amount of ${ }^{14} \mathrm{C}$ that is our model ent with the Southern Ocean warming simulated by

 vations apparently suggest otherwise. Here we estimate of sea ice cover in the southern hemisphere, the obser the latter study. While the models exclude any increase the present model, sea surface temperature (SST) at
$65^{\circ} \mathrm{S}$ warms by about $2^{\circ} \mathrm{C}$ during YD, consistent with ted manuscript, 1996) in the southern hemisphere. In Stouffer, 1995] or a warming (U. Mikolajewicz, submiteither no significant temperature changes [Manabe and type experiments have been performed up to now, show speculated about. All climate models, with which YDsignal independent of the Atlantic region can only be climate signal to the south or the generation of a global anisms responsible for a possible transmission of the been disputed [Mabin, 1996]. At present, the mechthe southern hemisphere might also have experienced a
cooling [Denton and Hendy, 1994], although this has the southern hemisphere might also have experienced a There is evidence that YD was a global event and that tributed to the switch-on of deep water formation.

 the plateau is increased only slightly, and a very short
 low). For experiment I2, sea ice is prescribed down to surface reservoir ages are significantly increased (see be atmospheric $\Delta^{14} C$ and platean length is negligible, but
 box 13 is reduced by 95% during YD. This increases the Local ice cover increases the surface reservir age
considerably: For experiments I 1 - 15 , gas exchange in
 the same region. It is almost unnoticed in the climatic
 at $t=30,800$ years is associated with increased conthat the increase of reservoir age by about 150 years for a few thousand ycars becorc full recstablishment of

 tically no are increase during YD relative to the time ular location (grid box 13), no ice is being formed in sphere to an age of about 500 years. At the partic-

 Bard et al. [1994] estimate that the surface reser-
voir age in the North Atlantic was about $200-300$ years

Surface Reservoir Ages and Top-to-Bottom

 $200-300$ years (experiments $I 1$ and $I 5$), in good agree-ment with observational estimates [Bard et al., 1994].
 Figure 13. Evolutio a constant gas cxchange ratc (ex

 (c) At shallow depth, therc is a decrcase of the age dif about 500 years primarily due to the increase of ${ }^{14} C^{\text {atm }}$
(c) At shallow depth, there is a decrease of the age dif

$t=28,500$ years.secondary importance except for the second increase at

 larger increase of 15 is caused by higher ${ }^{14} C^{\text {atm }}$ during
YD (see Table 1).
i.e., about 300 years before the end of the plateau found
and dated in the tree rings. This result is in agreement
with our model simulations.

 Johnsen et al., 1992, S. Johnsen, personal communicaShect Project Two) ice cores is dated at $11,500 \pm 70$ [Younger Dryas in the GRIP and GISPII (Greenland Ice
 poral relation with the radiocarbon chronology derived Recent datings of the YD termination and their temever, the end of YD is not very well defined in these end of cooler periods (Older and Younger Dryas). Howcorcs, it appears that platcaus occur toward or at the

 (cold-to-warm transition) and extends into Bøling for
a few centuries. The second, more pronounced plateau is located around the Older Dryas/Bølling boundary bon stratigraphy. A first, shorter and weaker plateau Rotsee and found two age plateaus in the radiocar ter [1991] analyzed a lake sediment core of the Swiss eval [Oeschger et al., 1980; Zbinden et al., 1989]. Lotlake sediments where different paleoclimate indicator
are determined at the same depth and hence are coрәллел pue soq qead e u! paэ! The correspondence between climate change and age Age Differences

Observational Evidence of ${ }^{\mathbf{1 4}} \mathbf{C}$ Plateaus and this is not the case cific region or that
signtly there. At least for our model simulations, that YD was also an important climatic event in the $\mathrm{Pa}-$
cific region or that the occan circulation had changed әноге зчبриу s!чұ шолу әрприоз оч ұәәноэш! әq р!пом
 hat age difference and leaves a pronounced signal column slightly and increases the convection depth at
that latitude. This vertical mixing reduces the sufaceless, the lower SST changes the stability of the water

 the data show exactly this effect. Kcnnet and Ingram

 tually a reduction of the age difference which can be re-
progress depends critically on the availability of excel-
lent timescales for these archives. matic indicators are available must continue. Further matic archives from which both radiocarbon and clianic origin. Clearly, the search for "faithful" paleoclilarge portion of the $10,000^{14} \mathrm{C}$ year plateau is of ocemay give further clues. Isotopic analysis of high-resolution cores from that area ice is also present in the Southern Ocean during YD a sufficient length is only obtained in the model if sea tends to increase the duration of the age plateani, and extent of sea ice during YD was more southward in the
Atlantic than simulated in the model. Ice cover also the obscrvation of Bard et al. [1994], requires that the
 have played an important role during YD. A substantial tation during YD. lhis is consistent with significantly reduced ocean ven
 present model simulations. Goslar et al. [1995] also find
that atmospheric $\Delta^{14} \mathrm{C}$ was about $40^{0} \%$ higher during yond the YD/Preboreal boundary, as suggested by the B.P. supporting the case of a plateau that extends bemination is varve-dated at $11,110 \pm 120$ calendar years yr identified using $\delta^{18} \mathrm{O}$ [Goslar et al., 1995]. The YD terof about 250 years (based on their spline analysis). The
plateau ends $100-200$ years after the termination of YD of about 250 years (based on their spline analysis). The Detailed isotopic and pollen analyses of Polish lake
Gościąż show a $10,000^{11} \mathrm{C}$ year plateau with a duration it were of entirely nonoceanic origin.

 Holocene. More likely mechanisms involve production
[Becr et al., 1988]. Nevertheless, the longest events of YD amplitude are evidently absent in the of the ocean ventilation rate, since abrupt climatic a sequence of plateaus in the early Holocene. It seems
unlikely that all of these plateaus are due to changes tion, the chronology [Kromer and Becker, 1993] shows
a sequence of plateaus in the early Holocene. It seems hundred years before the end of the plateau (see Fig-
ure 1), in agreement with our model results. In addioccurs 11,480 calendar years yr B.P., which is a few
hundred years before the end of the plateau (see Figpersonal communication, 1996). The termination then
occurs 11,480 calendar years yr B.P., which is a few better indicators of the warming at the end of YD (S.
Björck et al., submitted manuscript, 1996; B. Kromer, changes, and it appears that the tree ring widths are
better indicators of the warming at the end of YD (S. $\delta^{13} \mathrm{C}$ and $\delta^{2} \mathrm{H}$ are more influenced by local humidity tree ring cellulose ($\delta^{13} \mathrm{C}$ and $\delta^{2} \mathrm{H}$) are taken as indi-
cators of warming at the termination of YD. However, lirely within YD if the isolopic concentrations in the Becker et al. [1991] found that the plateau lies en-

 ure 15 a and Figure 15 b is encouraging since it shows dating of the same coral colonics. Comparison of Figthe results of Fairbanks [1989] based un radiocarbon n Figure 15 b , we make a direct comparison between
results of Fairbanks [1989] based on radiocarbon the events associated with the meltwater peaks

 -de әqei qndu! ләұемұtau әчf 'кпұuәnbesuoo pue 'paads

 panded time axis, the meltwater input rate appears to

 model results to estimate what the actual meltwater
 ter estimates based on ${ }^{14} \mathrm{C}$ dating simply cause tim atmosphere.

> Indications from the Mellwater Curve

 input of freshwater at high latitudes during YD. We find

 dәәр әч7 јо suṭłes pue su!̣urem [enpesis әч7 pue VN
 present-day overturning is very rapidly reestablished. After about 1500 years of collapsed Atlantic overturn-
ing, convection is reinitiated at high latitudes and the

 sequently, near-surface ocean values also increased due and reduce in strength. As the production of deep wa-
ler in the NA decreased, ${ }^{14} C^{\text {atm }}$ increased, and conthe Atlantic overturning circulation began to shallow high-latitude NA, deep convection was shut off, and ter pulse caused a cap of freshwater to form over the ing both periods of meltwater input. The first meltwaThe model experiments suggest that the uptake of
radiocarbon by the occan was significantly slowed durrapidity of the resumption of deep convection and the
associaled overturning circulation.

Discussion and Conclusions meltwater input are not significantly changed by using
the improved estimates.

 age of deep water in the Southern Ocean would be in bon in the Southern Ocean reduced by 50% so that the few experiments with the air－sea exchange of radiocar of the response was not changed．Finally，we reran a tive influence on our results，but the qualitative nature mixed－layer model might have a significant quantita sult suggests that the inclusion of a more sophisticated
 creased from 32.6 to 32.8 ，and the duration of the YD
 stirring by wind stress．The minimum surface salinity some feeling for the pussible importance of mechanical
 not permitted to fall below 300 m in either the NA or nature．We also performed a couple of experiments in nature．We also performed a couple of experiments in higher initial values of salinity used in the experiments
reported here．Again，the cffects were of a sccondary
 Runs were also repeated with initial conditions consis－ ties．Again，none of our major results were affected． up in order to produce reasonable deep water proper－ Ocean surface salinity increased during the initial spin－ plumes in the Southern Ocean but with the Southern formulation．We repcated several of our runs without clusions would be changed if we had used the latter rather than qualitative，so that none of our major con－ Stocker［1992］；differences were generally quantitative
 discussed above．First，several experiments were re－
 the next couple of thousand years． of radiocarbon gradually returns to initial levels over clock is slowed by a few percent as the ocean inventory

 layer．
 fast，with deep water formation accelerated by convec－ salinities to increase significantly，then resumption is

 runoff is required to obtain a similar model simulation． certain），then only a 50% decrease in the background Eduards et al．［1993］show the estimates to be very un－

 diocarbon clock during periods of reduced oceanic up

 that location．

 become part of the new convecting surface layer，is re vecting surface layer and the underlying waters，which creases by about $1.5^{\circ} \mathrm{C}$ ，the convection depth increases age differences．Because surface air temperature de considers surface－to－bottom by analyzing planktonic and benthic forams at the same
core．The YD event is also clearly identified in the Pa－ to find this fingerprint in high－resolution sea sediments pected in the Λ tlantic．If correct，it should be possible for an oceanic origin of the YD event．An increase of

 were
 The model does not exhibit an increase of the surface the other hand，using the most recent date estimates of
the termination，the age plateau is placed after YD．

 วัO и夫ә
 than 100 years．If transient changes of the gas exchange Ssol doj sqsisiad pue uotquunoł MGVN jo oseoлэи！әчł major conclusions were not affected． in the experiments without this change，but again，our廿еч7 Iンs．土ए \％\％ 07
inviscid interior region

ρ_{A}	surface air density	$1.225 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-3}$
h_{A}	atmosphere scale height	8320 m
H	ocean depth	4000 m
Δz	bottom depths of model cells	$50,100,150,250,500,750,1000,1250$,
	ridge height in Southern Ocean	$1500,2000,2500,3000,3500$, and 4000 m
K_{v}	surface to bottom range of vertical diffusivity (see	2000 m
	equation (A1))	$1.27, \ldots, 0.31 \times 10^{-4} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
K_{h}	horizontal diffusivity	$500 \mathrm{~m}^{2} \mathrm{~s}^{-1}$
$D_{O A}$	sensible heat exchange coefficient	$10 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$
τ_{T}, τ_{S}	relaxation time for T and S	50 days
γ_{1}	ocean velocity closure parameter	1.1
$\gamma_{2}{ }^{\text {a }}$	ocean velocity closure parameter	-0.6

Table A1. Ocean and Atmosphere Parameters water column, and we treat it as such in implementing
the new closure scheme. a barrier to geostrophic flow in the upper part of the boundary within the Southern Ocean is thus effectively

 mented as discussed by Wright et al. [1995]. Above the
barriers, there can be no zonally averaged geostrophimented as discussed by Wright et al. [1995]. Above the

 reated. Here we divide the Southern Ocean into three quires a modification in the way the Southern Ocean is
 κq рәdоןəләр кұ!ю
 The ocean component is a three-basin zonally av-
eraged ocean circulation model [Wright and Stocker,

Ocean

 Atmosphere

Components

Appendix: Description of Model

 generally support the assertion that changes in ocean
circulation were sufficient to cause substantial changes
cedure is obviously not entirely satisfactory for several tudes so that water of the appropriate temperature and
salinity is available to supply the deep ocean. This pro-
 this fact is compensated for by artificially increasing
 Arctic Ocean. However, in runs which do not include a
seasonal cycle (as we consider here), this process is not
 plays an important role in the process of deep water brine rejection due to seasonally varying sea ice cover sea ice formation has also been modificd. In reality, cept that the method of handling brine rejection during from that discussed by Wright and Stocker [1993], ex-
 of Semtner [1976]; parameter va;lues are given in Table Sea Ice
bon in the ocean, especially in the Pacific. Parameter
are given in Table A1.

 areas where convection does not dominate the vertical preses the absorption of radiocarbon into the ocean in The most important effece study is that the lower near-surface diffusivity The most important effect of this modification for the
(IV) $\cdot\left[\left(\mathrm{g} \cdot \cdot \mathrm{LI}+\frac{\mathrm{w} Z \cdot Z Z Z}{z}\right)\right.$ บeqe $\left.\frac{y}{g Z^{\prime} \mathrm{I}}-\mathrm{I}\right]{ }_{0}^{a} Y={ }^{n} Y$ and Sarachik, 1991]:

	Parameter	Value
λ	${ }^{14} \mathrm{C}$ decay constant	$3.833 \times 10^{-12} \mathrm{~s}^{-1}$
$R_{\text {std }}$	standard ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ ratio	1.176×10^{-12}
Γ_{0}^{M}	ocean reference concentration of total carbon	$2250 \mu \mathrm{~mol} / \mathrm{kg}$
p_{0}	preindustrial $p \mathrm{CO}_{2}$	280 ррін
g_{0}	reference gas exchange rate	$7.131 \mathrm{~m} / \mathrm{yr}$
${ }^{14} C_{0}^{\text {atm }}$	${ }^{14} \mathrm{C}$ restoring surface value	$\begin{aligned} & 13.92 \times 10^{-15} \mathrm{~mol} / \mathrm{m}^{3}(\text { at } 280 \mathrm{ppm}) \\ & 9.70 \times 10^{-15} \mathrm{~mol} / \mathrm{m}^{3}(\text { at } 195 \mathrm{ppm}) \end{aligned}$
$F^{\text {cosm }}$	cosmic flux of ${ }^{14} \mathrm{C}$	$1.583 \mathrm{atoms} /\left(\mathrm{cm}^{2} \mathrm{~s}\right)$ (at 280 ppm$)$

Table A3. Radiocarbon and Biospherc Parameters
convection scheme [e.g., Wright and Stocker, 1992] is and $\delta^{13} \mathrm{C}$ in the model and then calculating $\Delta^{14} \mathrm{C}$)
 day ocean, but it does not model it in a dynamically
consistent manner. To do the latter, seasonal cycles tions). We emphasize that this approach can reasonably
account for the effect of brine rejection in the present tions). We emphasize that this approach can reasonably

 water to go into plumes (a conservalive estimate), and fert, 1990; Budd, 1991], we take the salt from 0.5 Sv of annual mean sea ice formation rate of order 1 Sv [Hofusual convection scheme. On the basis of an estimated specified volume of surface water, and we slot this new
water in at its neutral stability level before calling the specified volume of surface water, and we slot this new around Antarctica. We assume that a fraction of the
salt cjected during sea ice formation is mixed with a in order to account for the effect of brine rejection A simple representation of plumes has been included with radiocarbon concentrations that are significantly ally vigorous, which leads to heavily ventilated AABW

 pheric model. Perhaps more important for the present
study, if the surface salinity of the souchernmosi model and this may cause problems on coupling to an atmos der to maintain the surface salinity at the required level, reasons. For example, $E-P$ must be increased in or
ice-air sensible heat exchange coefficient

ρ_{i}	ice density $\left(0.9 \times \rho_{*}\right)$
q_{i}	latent heat of fusion
K_{i}	ice conductivity
T_{f}	frcezing point of scawatcr
T_{m}^{\prime}	melting point
e_{i}	ice surface longwave emissivity
$D_{i a}$	ice-air sensible heat exchange coefficient

 minor differences for cases in which the atmospheric
partial pressure of CO_{2} is held constant. However, our

 CO_{2}, respectively.
 where $g_{0}=7.313 \mathrm{~m} / \mathrm{yr}$ is the gas exchange rate at the
preindustrial $p \mathrm{CO}_{2}$ concentration, and p and p_{0} are ac-

$$
\frac{0 d}{d} 06=6
$$ We employ ment due to the secular rise of $p \mathrm{CO}_{2}$ in the atmosphere which is allowed to vary during a deglaciation experi

 denotes the reference concentration of total carbon in
the mixed layer (in moles/cubic meter) [Broesker et, al. p denotes the partial pressure of CO_{2} (in ppm) and Σ_{0}
denotes the reference concentration of total carbon in s denotes the solubility (in moles $/($ cubic meter ppm)),
p denotes the partial pressure of CO_{2} (in ppm) and Σ_{0}^{M}

$$
g=k \times s \times \frac{p}{\Sigma_{0}^{M}}
$$

Here g is a gas exchange rate given by tration is only weakly influenced by carbon chemistry) bon for which ξ is of order 9 to 14 , the isotopic concen the buffer factor for radiocarbon (we use $\xi-1$, which is layer isotope concentrations in moles/kilogram, and ξ is where $\alpha_{A O}$ and $\alpha_{O A}$ are fractionation factors, ${ }^{14} C^{\text {atm }}$
and ${ }^{14} C^{\text {mix }}$ are the model variables of air and mixed-

mulation [Siegenthaler, 1983]: The second method is based on the gas exchange for

 where H_{M} is the mixed-layer depth, τ is a specified
restoring time, and $\Delta^{14} C^{\text {atm }}$ and $\Delta^{14} C^{\text {mix }}$ are model

[^1]
\qquad Fairbanks, R.. G., A 17,000 year glacio-eustatic sea-level
record: Influence of glacial melting rates on the Younger reduced melting in the Younger Dryas, documented with
${ }^{230} \mathrm{Th}$ ages of corals, Science, 260, $962-968,1993$. J. M. A. Chappell, A. L. Bloom, E. R. M. Druffel, and
F. W. Taylor, Λ largc drop in atmosphcric ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ and
reduced melting in the Younger Dryas, documented with Edwards, R. L., W. J. Beck, G. S. Burr, D. J. Donahue, variations during the last climate cycle and their impact
on the global deepwater circulation, Paleoceanography, 3,
$343-360,1988$. L. Labeyrie, D. Oppo, and N. Kallel, Deepwater source
variations during the last climate cycle and their inpact vance of Franz Josef glacier in the southern alps of New
Zealand, Science, 264, $1434-1437,1994$.
Duplessy, J.-C., N. J. Shackleton, R. G. Fairbanks, Denton, G. H., and C. H. Hendy, Younger Dryas age ad-
vance of Franz Josef glacier in the southern alps of New abrupt termination of the Younger Dryas climate event,
Nature, 339, 532-534, 1989 . tions of atmospheric ${ }^{14}$ C: Causal factors and implications,
Annu. Rev. Earth Flanet. Sci., 6, 457-494, 1978 .
Dansgaard, W., J. W. C. White, and S. J. Johnsen, The Damon, P. E., J. C. Lerman, and A. Long, Temporal fluctuaS. J. Johnsen, and H. Wang, Origin of the first global
meltwater pulse, Paleoceanography, 11, $563-577,1996$. Clark, P. U., R. B. Alley, L. D. Keigwin, J. M. Licciardi,
 Chappellaz, J., T. Blunier, D. Raynaud, J. M. Barnola,
J. Schwander, and B. Stauffer, Synchronous changes in Budd, W. F., Antarctica and global change, Clim.
Change, 18, 271-299, 1991. span, F., High-latitude salinity effects and interhemi-
spheric thermohaline circulations, Nature, 323, 301-304,
1986 . last deglaciation: Implications to the cause of the Younger
Dryas event, Paleoceanography, 3, 1-19, 1988 .
Bryan, F., High-latitude salinity effects and interheminani, J. Kennett, and D. Peteet, 'The chronology of the
last deglaciation: Implications to the cause of the Younger Broecker, W. S., M. Andree, W. Wölfli, H. Oeschger, G. BoTroecker, W. S., T.-H. Peng, G. Ostlund, and M. Stuiver,
The distribution of bomb radiocarbon in the ocean, J.
Geophys. Res., $90,6953-6970,1985 \mathrm{~b}$. atmospherc system have more than one stable mode of
operation?, Nature, 315, 21-25, 1985a. Broecker, W. S., D. Peteet, and D. Rind, Does the oceanBroecker, W. S., and T.-H. Peng, Gas exchange rates beBroecker, W. S., and G. H. Denton, The role of ocean-
almosphere reorganizations in glacial cycles, Geochim. Broecker, W. S., Massive iceberg discharges as triggers for
global climatc changc, Naturc, $379,421424,1094$.
Broecker, W. S., and G. H. Denton, The role of oceanGreenland ice, Nature, 365, 143-147, 1993 .
Broecker, W. S., Massive iceberg discharges as triggers for L. Labeyrie, J. Jouzel, and G. Bonani, Correlations be-
tween climate records from North Atlantic sediments and centration during the Holocene, Nature, 374, 46-49, 1995.
Bond, G., W. S. Broecker, S. J. Johnsen, J. McManus, Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and
D. Raynaud, Variations in the atmospheric methane conpast solar activity and geomagnetism from ${ }^{10} \mathrm{Be}$ in the
Camp Century icc core, Nature, 331, $675-679,1988$. eer, J., U. Siegenthaler, G. Bonani, R. C. Finkel,
H. Oeschger, M. Suter, and W. Wölfl, Information on
past solar activity and geomagnetism from ${ }^{10} \mathrm{Be}$ in the ary, Nature, $353,647-649,1991$.
 Koç, N., E. Jansen, and H. Haflidason, Paleoceanographic
reconstructions of surface ocean conditions in the Green-
 linked to Heinrich event 1 and Younger Dryas in a mid-
depth North Atlantic core, Paleoceanography, $9,185-194$,
1994 .
Kennet, J. P., and L. B. Ingram, A 20,000 -year record of
 Jouzel, J., et al., The iwo-step shape and liming of the lasl
deglaciation in Antarctica, Clim. Dyn., 11, 151-161, 1995 . B. Sials recorded in a new Greenland ice core, Nature, 359,
di.1-313, 1992 . Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer,
N. Gundestrup, C. U. Hammer, P. Iversen, J. Jouzel, and its impact on North Atlantic deep-water circulation,
Nature, 343, 612-616, 1990 . Interaction, edited by M. E. Schlesinger, pp. 295-317,
Kluwer Academic, Norwell, Mass., 1990 .
Jansen, E., and T. Veum, Evidence for two-step deglaciation mation: Are we missing something?, in Climate-Ocean
Interaction, edited by M. E. Schlesinger, pp. 295-317, 1554-1566, 1983.
Hoffert, M. I., Clim Han, Y. J., and S. W. Lee, An analysis of monthly mean
windstress over the global ocean, Mon. Weather Rev., 111 , the Byrd Station ice core, Antarctica, Ann. Glaciol., 20 ,
115120,1994 .
Han, Y. J., and S. W. Lee, An analysis of monthly mean Hammer, C. U., H. B. Clausen, and C. C. Langway, Elec Lotter, M. Sturm, and M. Suter, AMS radiocarbon dating
and varve chronology of Lake Soppensee: 6000 to 12,000
${ }^{14} \mathrm{C}$ years BP, Clim. Dyn., $9,107-116,1993$. Hajdas, I., S. D. Ivy, J. Beer, G. Bonani, D. Imboden, A. F.
Lotter, M. Sturm, and M. Suter, AMS radiocarbon dating during the Younger Dryas cold episode, Nature, 377,111
$417,1995$. Ser., vol. 30, 662 pp., Academic, San Diego, Calif., 1982
Goslar, T., et al., High concentration of atmospheric ${ }^{14} \mathrm{C}$ Gill, A. E., Atmosphere-Ocean Dynamics, Int. Geophys,

Stocker, T. F., D. G. Wright, and L. A. Mysak, A zonally av-
eraged, coupled ocean-atmonphere. Model for paleoclimate
studies, J. Climu., $5,773-797$, 1992. ferent sites, Tellus, Ser. B, 43, 91-96, 1991.
Stocker, T. F., D. G. Wright, and L. A. Mysak, A zonally avStaffelbach, T., B. Stauffer, A. Sigg, and H. Oeschger, CO_{2}
measurements from polar icc cores: More data from difations caused by changes in the global carbon cycle, $R a$
diocarbon, 22, 177-191, 1980 .
 Siegenthaler, U., and H. Oeschger, Biospheric CO_{2} emis-
sions during the past 200 years reconstructed by convolu-
tion of ice core data, Tellus, Ser. B, $39,140-154,1987$. Siegenthaler, U., Uptake of excess CO_{2} by an outcrop-
diffusion model of the ocean, J. Geophys. Res., $88,3599-$ Semtner, A. J., A model for the thermodynamic growth of
sea ice in numerical investigations of climate, J. Phys. in east Atlantic deepwater circulation over the last 30,000
years: Eight time slice reconstructions, PaleoceanograL. Labeyrie, H. Erlenkeuser, and G. Ganssen, Changes
in east Atlantic deepwater circulation over the last 30,000 analyses of the origins of icc-age climatc variability, J
Geophys. Res., in press, 1996 .
Sarnthein, M., K. Winn, S. J. A. Jung, J.-C. Duplessy,
 atmosphere model, Nature, $372,82-85,1994$.
Sakai, K., and W. R. Peltier, A multibasin reduced model and oceans, Radiocurbort, 31, 481-492, 1989.
Rahmstorf, S., Rapid climate transitions in a coupled oceanPeng, T.-H., Changes in ocean ventilation rates over the
last 7000 years based on ${ }^{14} \mathrm{C}$ variations in the atmosphere
and oceans, Radiocurbot, $31,481-492,1989$. Peng, T.-H., Changes in ocean ventilation rates over the Pelticr, W. R., Icc agc palcotopography, Science, 265, 195rameters during the Younger Dryas cold phase, Radio-
carbon, 22, $299-310,1980$. Oeschger, H., M. Welten, U. Eicher, M. Möll, T. Riesen,
U. Siegenthaler, and S. Wegmüller, ${ }^{14} \mathrm{C}$ and other paHansen and T. T
ton, D. C., 1984 .
Oeschger, H., M. tivity, Gcophys. Monogr. Ser., vol. 29, cditcd by J. E.
Hansen and T. Takahashi, pp. 299-306, AGU, Washinggaard, and C. C. Langway, Late glacial Climate history
from ice cores, in Climate Processes and Climate SensiOeschger, H., J. Beer, U. Siegenthaler, B. Stauffer, W. Dans-
gaard, and C. C. Langway, Late glacial climate history CO_{2} record in the Byrd ice core $50,000-5,000$ years BP,
Nature, $331,609-611,1988$.
 conditions in ocean general circulation models and their
influence on the stability of the model's conveyor belt, J. Mikolajewicz, U., and E. Maier-Reimer, Mixed boundary
 increased atmospheric CO_{2} on the ocean-atmosphere sys-
tem, Nature, $364,215-218,1993$.
Manabe, S., and R. J. Stouffer, Simulation of abrupt climate Manabe, S., and R. J. Stouffer, Century-scale effects of Manabe, S., and R. J. Stouffer, Two stable equilibria of a STOCKER AND WRIGHT: OCEAN CIRCULATION AND RADIOCARBON 79.5
 ford Institute of Oceanography, Dartmouth, Nova Scotia
B2Y 1A2, Canada. (email: dwright@emerald.bio.dfo.ca)
 T. F. Stocker, Climate and Environmental Physics,
Physirs Institute, University of Bern, Sidlerstr. 5, 3012 Bern,
Switzerland. (email: stocker@climate.unibe.ch)

287-299, 1993.

 Zhang, S., R. Greatbatch, and C. A. Lin, A reexamination ofthe polar halocline catastrophe and implications for couAMS radiocarbon dates on terrestrial macrofossils from
lake sediments, Radiocarbon, 31, 795-804, 1989 . bon at the end of the last glacial: An estimate based on
AMS radiocarbon dates on terrestrial macrofossils from Zbinden, H., M. Andree, H. Oeschger, B. Ammann, A. Lot-
ter, G. Bonani, and W. Wölfli, Atmospheric radiocarticity dynamics and zonally averaged ocean circulation
models, J. Phys. Oceanogr., 25, 2141-2154, 1995. Wright, D. G., C. B. Vreugdenhil, and 'T. M. Hughes, Voriments, in Ice in the Climate System, edited by W. R ally averaged global ocean circulation model, J. Geophys
Res., 97, 12,707-12,730, 1992.
Wright, D. G., and T. F. Stocker, Younger Dryas exper Wright, D. G., and T. F. Stocker, Sensitivities of a zon-
ally averaged global ocean circulation model, J. Geophys velopment and flow dynamics, J. Phys. Oceanogr., 21
$1713-1724,1991$. Wright, D. G., and T. F. Stocker, A zonally averaged ocean
model for the thermohaline circulation. Part I: Model de ary conditions in numcrical models of the ocean's climate
J. Phys. Oceanogr., 21, 1470-1493, 1991 . Weaver, A. J., and E. S. Sarachik, The role of mixed boundWanninkhof, R., Relationship between wind speed and gas
exchange over the ocean, J. Geophys. Res., 97, 7373-7382, and the Norwegian Sea during the past 28,000 years, $N a$
ture, 356, 783-785, 1992 .
Wanninkhof, R., Relationship between wind speed and gas Veum, T., E. Jansen, M. Arnold, I. Beyer, and J.-C. Dup-
lessy, Water mass cxchangc betwcen the North Atlantic
 Toggweiler, J. R., K. Dixon, and K. Bryan, Simulation of
radiocarbon in a coarse-resolution world ocean model, 2 , surfacc, in The Clobal Carbon Cycle, cditcd by
M. Heimann, NATO ASI Ser., Ser. I, $15,333-366,1993$. Toggweiler, J., and B. Samuels, New radiocarbon con-
straints on the upwelling of abyssal water to the ocean's L. K. Barlow, The 'flickering switch' of late Pleistocene
climate change, Nature, $361,432-436,1993$.
Tosweiler, J., and B. Samuels, New radiocarbon con'Iaylor, K. C., G. W. Lamorey, G. A. Doyle, R. B. Alley,
P. M. Grootes, P. A. Mayewski, J. W. C. White, and
 Stuiver, M., and T. F. Braziunas, Modeling atmospheric
${ }^{14} \mathrm{C}$ influences and ${ }^{14} \mathrm{C}$ ages of marine samples to 10,000 Stocker, T. F., W. S. Broecker, and D. G. Wright, Carbun
uptake experiments with a zonally-averaged global ocean
circulation model, Tellus, Ser. B, 46, 103-122, 1994.

[^0]: $\left(I-\mathrm{OV}^{t}-\boldsymbol{w}\right) \frac{V Y \forall d}{I}+$

[^1]: calculates fluxes according to We have considered two different formulations for the

