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Rapid detection of identity-by-descent tracts
for mega-scale datasets
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The ability to identify segments of genomes identical-by-descent (IBD) is a part of standard

workflows in both statistical and population genetics. However, traditional methods for

finding local IBD across all pairs of individuals scale poorly leading to a lack of adoption in

very large-scale datasets. Here, we present iLASH, an algorithm based on similarity detection

techniques that shows equal or improved accuracy in simulations compared to current

leading methods and speeds up analysis by several orders of magnitude on genomic datasets,

making IBD estimation tractable for millions of individuals. We apply iLASH to the PAGE

dataset of ~52,000 multi-ethnic participants, including several founder populations with

elevated IBD sharing, identifying IBD segments in ~3 minutes per chromosome compared to

over 6 days for a state-of-the-art algorithm. iLASH enables efficient analysis of very large-

scale datasets, as we demonstrate by computing IBD across the UK Biobank (~500,000

individuals), detecting 12.9 billion pairwise connections.
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I
nferring segments of the genome inherited Identical-By-
Descent (IBD) is a standard method in modern genomics
pipelines to understand population structure and infer relat-

edness across datasets1–6. Furthermore, it can be leveraged for
alternative mapping strategies such as population-based linkage7,
capturing rare variation from array datasets8, and improving
long-range phasing9. However, the ability to scale this process to
mega-scale datasets while comparing individuals along the gen-
ome has been limited. While approximate methods have been
developed to improve phasing9–11, the identification of accurate
segments inherited IBD has been limited, making its integration
with variant-based testing challenging in the modern genomic
context.

Here we extend ideas originally applied to large-scale similarity
detection12 to develop iLASH, IBD by LocAlity-Sensitive Hash-
ing, a novel algorithm that provides ultra-rapid and sensitive
computation of identity-by-descent. In contrast to previous
methods, which are based on conventional hashing techniques
(e.g., GERMLINE13), iLASH uses a locality sensitive hashing
(LSH) technique on slices of genotype array data. A slice is a
genomic segment with the same boundaries across all the indi-
viduals. The length of the slices is generally set to be close to the
minimum length of the IBD tracts being searched for (e.g., 3 cM).
iLASH identifies with high probability whether the DNA of two
individuals in a slice is IBD, while at the same time removing the
vast majority of non-matching pairs from consideration, which
accounts for its efficiency. iLASH, then, combines matching slices
and extends their boundaries to determine the full extent of an
IBD tract between each pair of individuals.

Results
The iLASH algorithm is a modification of the LSH algorithm
designed expressly for identity-by-descent detection on genomic
data. LSH algorithms are a category of hashing functions that
preserve distances while maintaining computational efficiency in
high dimensional applications14. LSH algorithms have been
shown to be efficient in machine learning15, entity linkage16,
search engines17,18, and other disciplines15,19. While common
hash functions map the vectors in domain space to random
vectors in target space, LSH algorithms map nearby vectors in the
domain space to nearby, or identical, vectors in target space17.
This tolerance for small errors makes LSH algorithms more sui-
table for dimensionality reduction of genetic data without sacri-
ficing accuracy compared to common hash functions. Moreover,
since iLASH identifies the similarity of relatively large regions
(slices) at a time, it provides significant speed-ups compared to
simpler hashing methods. Specifically, GERMLINE uses one level
of hashing with short seeds to find possible candidate matching
pairs, which are later extended to larger segments. Since the seeds
are relatively short to ensure sensitivity, there is significant
probability that the match will not extend to the desired mini-
mum length (e.g., 3 cM, which could be hundreds of SNPs in
dense regions). Those candidate matches would increase runtime
without yielding any true matches. In contrast, iLASH uses LSH
that can identify, with high probability, whether two individuals
match over the whole segment of interest (i.e., the whole slice size,
which is usually set to values close to the desired IBD length, e.g.,
3 cM). Therefore, iLASH generates significantly fewer possible
candidates, each of which has a high probability of being a match,
and wastes relatively little time on analyzing ultimately unsuc-
cessful match candidates. We provide further speedups via a
careful implementation that leverages multiple processing cores,
now commonly available in modern CPUs, and through paral-
lelizing computation in multiple stages of the algorithm. This
parallelization also takes advantage of idle cycles during file

reading and writing using multithreading programming libraries.
Overall, a combination of algorithmic design and low-level
optimizations allows for increased efficiency in large-scale geno-
mic investigations.

The framework of the iLASH algorithm is described next and is
shown in Fig. 1 with additional details available in the Methods
section. The algorithm relies on phased haplotypes from a typical
GWAS array with hundreds of thousands to millions of variants
(SNPs) represented as binary strings (with 0 as the major allele,
and 1 as the minor allele). We are only interested in the similarity
of segments longer than a given threshold, as the probability of a
shared haplotype being IBD increases as segments grow
longer13,20. Therefore, the first step of iLASH is to break the
genetic data of the population into slices of a prespecified genetic
length around the threshold of interest, say 3 cM (Fig. 1A). Each
slice can be processed in parallel until the last step of the algo-
rithm. To maximize efficiency, iLASH uses idle input time while
reading the genotype data. Second, iLASH breaks each slice into
segments of k bits (aka k-mers, or shingles, with k typically 10 to
30 bits), either in a contiguous or overlapping fashion. The
genetic data for all the individuals in a slice is then transformed
into sets whose elements are the distinct k-mers. iLASH uses the
Jaccard similarity21 between these k-mer sets as a means to detect
IBD. The Jaccard similarity between two sets is simply the size of
their intersection divided by the size of their union. Formally,
given two sets S1 and S2, Jaccard S1; S2ð Þ ¼ jS1\S2j

jS1∪ S2j
. A large pro-

portion of k-mers being shared between (the k-mer sets in a slice
for) two individuals can be interpreted as a higher chance for
them to share an IBD segment on the slice.

In the third step, iLASH computes the minhash signature16 of
these k-mer sets as illustrated in Fig. 1B.22 The minhash approach
provides a very efficient way of approximating the Jaccard simi-
larity between all pairs of sets using a sublinear number of
comparisons, efficiently scaling in large datasets. To create the
minhash signature matrix, iLASH generates random permuta-
tions of the k-mers in a slice, and for each permutation it records
the first index at which an individual’s shingle set at that slice
contains a value, called the minhash value of the individual for
that permutation at that slice. For example, in Fig. 1B for indi-
vidual I3 and permutation P2 (H3, H5, H4, H1, H2), the first
element in the k-mer set I3 following the order of permutation P2
that has a non-empty value is H4, which is the 3rd element of the
permutation, thus the minhash(I3,P2)=3. The probability of two
individuals having the same minhash values (for each permuta-
tion) is equal to the Jaccard similarity of their k-mer sets. Hence,
the Jaccard similarity can be estimated by generating minhash
values using different permutations and comparing them; with
the estimation error decreasing as the number of permutations
increases. For example, even with the low number of 3 permu-
tations in Fig. 1B, the intersection of minhash signatures and the
Jaccard similarity of I1 and I2, and I2 and I3 coincide (though it is
an overestimate for I1 and I3). iLASH efficiently computes the
permutations using hashing functions, which enable computing
the minhash signatures in parallel using multiple threads. How-
ever, it would be computationally inefficient to compare all pairs
of minhash signatures. Thus, in its fourth step, iLASH uses the
LSH banding technique to generate LSH signatures (Fig. 1C). It
then uses a synchronized hash table to find LSH signatures
common between two individuals efficiently. iLASH allows for
significant speedup by only selecting candidates for comparison
that have an increased probability of having a high Jaccard
similarity and, as a consequence, avoiding most of the possible
comparisons. Specifically, iLASH groups the minhash signatures
into b bands, comprised of r minhash values, and hashes each
band. Assuming that the Jaccard similarity of I1 and I2 is s, it can
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be shown22 that the probability that two individuals agree in at
least one LSH hash value is 1 - (1 - sr)b. This is a logistic function
with a step transition controlled by parameters r and b, which can
be tuned to trade-off accuracy of approximation versus efficiency.
Finally, iLASH uses these similar LSH hashes to find candidate
IBD matches and then examines the neighboring slices of a match
candidate pair to extend the matched region to the full IBD
segment (Fig. 1D, rightmost pane). To further increase efficiency,
iLASH uses idle output time for calculating the extended IBD
tracts, their length and exact similarity.

iLASH takes phased genotype files in plink23 format as input
and its source code is publicly available24. For efficiency purposes,
iLASH is implemented in C++. To foster usability, iLASH is
designed to run on a single machine with one command with
defaults optimized over multiple simulation scenarios. However,
it is highly configurable to allow users to tune its behavior for

each dataset (e.g., arrays of different densities). Configuration
details appear in the Methods section and in the iLASH code
repository.

We present a thorough evaluation of iLASH performance for
both simulated data and real data from the PAGE consortium
and the UK BioBank. We compare iLASH with GERMLINE13

and Refined IBD25 for both performance and accuracy. GERM-
LINE is similar to iLASH in that it uses hashing methods for IBD
inference, although iLASH LSH hashing is more complex.
Refined IBD combines GERMLINE hashing approach and Beagle
Hidden Markov Models (HMM) algorithms. While HMMs can
help with the task of estimating IBD, the size of our test datasets is
intractable for some of the tools utilizing it, such as PLINK, so we
do not compare with them at scale. We also separately compare
iLASH against RaPID26, a recently developed scalable IBD algo-
rithm, for both performance and accuracy.

Fig. 1 iLASH pipeline. Schematic of the iLASH algorithm pipeline. Starting from the top left with the Slicing step (A) where haplotypes are broken into slices

(segments of uniform or variable length). TheMinhashing step (B) creates minhash signatures by generating a table of random permutations. The LSH step

(C) bands together minhash values to create an integrated LSH hash table where candidate matches are grouped together. Finally, in the Pairwise Extension

step (D), these candidates are further analyzed to be extended in the (likely) case that an IBD tract spans multiple windows.
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Performance on simulated data. To investigate iLASH perfor-
mance, we simulated IBD haplotypes for three separate popula-
tions with different average IBD and for sizes ranging from 1000
to 80,000 individuals. To create these data, we first used
HAPGEN227 to simulate 80,000 individuals on chromosome 1
(with 116,415 SNPs) with an elevated error rate in the copying
model (with the error rate for a given SNP, Θ= 130) to decrease
background IBD. Then, we scanned three populations in the
PAGE dataset with different cryptic relatedness characteristics:
African American (low IBD on average), Puerto-Rican (a founder
population with elevated IBD sharing), and all the individuals in
PAGE. We extracted the detailed IBD distributions in these
populations in order to generate “ground truth” populations, that
is, simulated populations with the same number of segments and
lengths observed in the reference populations among any ran-
domly selected group of 1000 samples. We repeated this process
to create a ground truth IBD map for 80,000 samples. The Puerto
Rican population IBD simulation, for example, has more than 10
million shared segments with a total length of 62 million cM.

Accuracy. Using our simulated data as ground truth, we com-
pared the accuracy of iLASH, GERMLINE, and Refined IBD.
Here, we define the accuracy for a ground truth segment as the
portion of the segment that an IBD algorithm recovers. For
example, if for a ground truth segment of 5 cM, iLASH identifies
4 cM, then we say that the accuracy of iLASH is 80% for that

segment. We report the cumulative accuracy across all IBD seg-
ments tested (i.e., the total length of all segments identified by
each algorithm divided by the total length of ground truth IBD
segments), and the accuracy for segments at different lengths (3
cM, 5 cM, 10 cM, and 20 cM). Overall, iLASH accurately recovers
at least 96% of the total length of all simulated IBD haplotypes
across the simulated dataset of the three populations tested,
compared to lower overall accuracies of 94% for Refined IBD and
85% for GERMLINE. These results were consistent for dataset
sizes ranging from 1000 to 30,000 individuals for all three algo-
rithms (cf. Supplementary Fig. 1). However, among individual
segments, the accuracy varies significantly with the tract length, as
shown in Fig. 2, with iLASH performing similar to or better than
Refined IBD, except for the highest level of accuracy (99%) on
tracts shorter than 10 cM. Both iLASH and Refined IBD out-
perform GERMLINE both on shorter tracts and on longer tracts
when high accuracy is required. For example, for tracts of 3 cM,
iLASH identifies ~80% of tracts with at least 90% accuracy (i.e.,
90% of the ground truth segment recovered), while Refined IBD
and GERMLINE identify 57% and 35% of those tracts respec-
tively. iLASH identifies close to 100% of the of 5, 10, or 20 cM
long tracts with at least 95% accuracy.

Overall, all three tools recover the majority of ground-truth
IBD existing in each individual (cf. Supplementary Fig. 11).
Stratifying by bins of tract length and IBD accuracy demonstrates
more nuanced features of performance. While iLASH and
Refined IBD show similar accuracy for segments >= 5cM,

Fig. 2 Accuracy of IBD estimation tools in simulated data. Accuracy of iLASH, GERMLINE, and Refined IBD on simulated data (30000 samples derived

from the Puerto Rican population in the PAGE study sharing 3,660,900 IBD segments) at tract lengths of 3, 5, 10, and 20 cM and accuracies from 50 to

99%. The displayed percentages are based on the total number of IBD tracts with the specified length. Source data are provided as a Source Data file.
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iLASH shows higher accuracy for detecting smaller segments (3
cM). Refined IBD performs more accurately when finding the
exact borders of segments, when an accuracy of higher than 99%
is required. However, Refined IBD has a lower recall, missing
portions of IBD ground truth segments when these are short. For
example, for 3 cM segments at 90% accuracy, iLASH identifies
80% of the ground truth segments, while Refined IBD only
identifies 57% of these segments. Compared with the other two
methods, GERMLINE underestimates the IBD at higher accuracy
and shorter tracts.

False positive rate. To investigate the rate of false positives of
iLASH, Refined IBD, and GERMLINE, we took a composite-
individuals approach28. We used chromosome 2 data (115 K
SNPs) from 2000 sampled individuals from the African American
population of the PAGE study. In order to minimize the possi-
bility of false positive IBD inference, we divided the genotype data
into slices of 0.2 cM length, and we shuffled these slices among
the 2,000 individuals. Before this process, iLASH was able to find
10,459 IBD tracts in the dataset. After shuffling, iLASH finds only
1 tract (of 3.9 cM), while Refined IBD finds 98 (false positive)
tracts, and GERMLINE finds 27,838 (false positive) tracts, with
99.9% of them around a low complexity region starting from base
pair 2766642 and ending at base pair 3042093, which contains
only 60 SNPs on the PAGE array data (cf. Supplementary Fig. 2).
We repeated this experiment 5 times. The average number of
false-positives segments for iLASH, Refined IBD, and GERM-
LINE was 2.2 (standard deviation= 2.23), 93.4 (standard devia-
tion= 7.2), and 25,779.4 (standard deviation= 641.2),
respectively. Thus, the false-positive rate of iLASH in this
experiment is ~2% and 0.008% of those of Refined IBD and
GERMLINE on average. The average length of the 11 false-
positive segments found by iLASH across all 5 experiments was
3.51 cM (standard deviation= 0.259); while the average length of
false-positive tracts found by Refined IBD and GERMLINE were
3.7 cM (standard deviation= 0.44) and 3.96 cM (standard
deviation= 0.037) respectively. All of the false-positive segments
found by iLASH, Refined IBD and GERMLINE were on the same
region of low complexity (cf. Supplementary Fig. 2).

To evaluate the effect of SNP array density, we dropped one
out of every 3 SNPs in the same dataset as above. In the less dense
array, the number of tracts found by iLASH decreased to zero.

Refined IBD and GERMLINE results also decreased to 85 and
1097 segments, respectively, all of which were still in the same
low-complexity region as before. When we increased the size of
reshuffled slices to 0.5 cM, iLASH identified 3 tracts for the
normal data, and 13 tracts for the data with lower SNP density.
Refined IBD found 960 and 880 tracts, and GERMLINE identified
22,688 and 26,724 tracts for the dense and trimmed haploid files,
respectively. More than 99% of the false positive tracts found by
GERMLINE and Refined IBD were located in the same low
complexity region described above. In contrast, iLASH showed
near perfect performance across different regions and array
densities.

To evaluate the performance in regions of high complexity, we
tested the tools on chromosome 6, using the same data generation
method and on the same dataset. None of them found any false
positives over ten repeated experiments. Since all three tools use
phased haplotype data instead of genotype data, their precision is
dependent on the accuracy of the phasing stage, however
standard phasing algorithms embrace approximate IBD inference
to improve long-range phasing. Such methods are expected to
improve phasing accuracy in large studies, particularly in the
haplotypes spanning IBD segments. We used a threshold of 3 cM
to conduct these experiments (on chromosomes 2 and 6). This
threshold was selected based on the density of the array which
limits the amount of information available at lower lengths.

Runtime and memory. To compare the time efficiency of iLASH
against Refined IBD and GERMLINE, we used the same simu-
lated datasets as the previous section. We ran the tools on the
same machine, a workstation running CentOS Linux release
7.4.1708 with 128 GB of memory and Intel® Xeon® Processors
E5-2695 v2 with 12 cores and 24 threads on it using 30 MB
of shared cache. Both iLASH and GERMLINE are implemented
in C++, but in order to use a specific version of the Boost library,
GERMLINE required an earlier version of the C++ compiler.
Refined IBD is implemented in Java.

Figure 3A shows the computation time in seconds for iLASH,
Refined IBD, and GERMLINE as the population size grows. The
largest dataset on which we were able to run GERMLINE
tractably on one machine contained 30,000 individuals. It took
GERMLINE over 5 h to analyze this dataset. For the same data,
iLASH took 3 min and 15 s. Refined IBD scaled up to

Fig. 3 Comparison of runtimes among algorithms. IBD computation runtime in seconds for iLASH, Refined IBD, and GERMLINE on synthesized haplotypic

data simulating all of PAGE and Puerto Rican (PR) populations IBD patterns: (A) as the number of individuals grows, (B) as the total output (total length of

tracts found) grows. Source data are provided as a Source Data file.
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50,000 samples for which it took 4 h and 54 min. iLASH took 7
min for the same dataset. Our maximum-sized simulation of
80,000 individuals could be scanned and analyzed by iLASH in
less than 16min. Figure 3B shows the computation time in
seconds for iLASH, Refined IBD, and GERMLINE as the total size
of found IBD grows. iLASH exhibits quasi-linear runtime growth
with the number of individuals, as well as with the total amount
of IBD found. However, GERMLINE and Refined IBD runtimes
deviate from linearity in populations with higher levels of IBD
such as the PAGE Puerto Rican population.

iLASH has a smaller memory footprint than both Refined IBD
and GERMLINE as the sample size grows (cf. Supplementary
Fig. 3). Experimentally, the memory usage for iLASH and
GERMLINE increases in a quasi-linear fashion with the number
of individuals, However, iLASH memory usage grows at a
significantly lower pace. Specifically, from 1000 to 20,000
individuals GERMLINE memory footprint grows from 880MB
to 29.8 GB, while iLASH grows from 235 MB to 5.8 GB. The
memory usage of Refined IBD does not follow an obvious pattern
for the analyzed range. While it starts higher than the other two
systems at 4.5 GB for 1000 individuals, its memory usage ends up
at 15.92 GB for 50,000 individuals, very similar to the 15.86 GB
memory usage of iLASH.

Array density and the desired minimum IBD length also affect
runtime and memory usage of iLASH. Based on our experiments,
an increase in the density of SNPs contributes to a quasi-linear
increase in memory usage and runtime (cf. Supplementary Fig. 4).
Specifically, on 5000 samples of the simulated data derived from
Puerto Rican population of the PAGE study, from a 50%
downsampled array to the full array for Chromosome 1 (116,415
SNPs) the runtime ranges from 12.7 to 14.6 s, and the memory
usage ranges from 1.7 GB to 2.38 GB (average over 10
experiments).

We also found larger thresholds for minimum size of IBD
segments to result in lower runtime and memory usage (cf.
Supplementary Fig. 5). Specifically, for 40,000 individuals from
the PAGE simulated data (Chromosome 1, 116,415 SNPs), from a
3 to a 20 cM minimum IBD thresholds, the runtime ranges from
223 seconds to 34 s, and the memory from 22.5 GB to 2.8 GB
(average over 10 experiments).

Comparison with RaPID. Recently, Naseri et al.26 developed an
IBD detection method that relies on the Positional Burrows-
Wheeler Transfom29 to efficiently scale haplotype matching. We
evaluated RaPID on the same simulated data used in our com-
parisons with GERMLINE and iLASH. While RaPID is sub-
stantially faster than GERMLINE and Refined IBD, it remains
slower than iLASH on all tested datasets, and the difference is
particularly noticeable as the sample size increases (cf. Supple-
mentary Fig. 6), possibly because RaPID is limited to single-
thread analyses. For 1000 samples, iLASH takes 4 s, while RaPID
takes 27 s. For 80,000 samples iLASH takes 15 min, while RaPID
takes 98 min. More importantly, iLASH remains more accurate in
our simulations: iLASH recovered over 95% of the total length of
ground truth IBD across all simulations, where RaPID only
recovered 72%. Short IBD segments (5–3 cM) were particularly
challenging for RaPID, which generated a larger number of false
positives: 22–25% of the results across runs contained discordant
genotypes between identified pairs; an issue that never occurs
with GERMLINE and iLASH. In spite of RaPID being a haploid
method, the program does not report haplotype phase informa-
tion in its output, which can constrain the options possible in
downstream analysis after IBD estimation. Given these limita-
tions and our focus on haploid-oriented metrics, our primary
comparisons remain with other IBD estimation methods.

Performance on real data from the PAGE Study. We investi-
gated iLASH and GERMLINE IBD inference over two existing
datasets: a multi-ethnic population of N= 51,520 individuals
from the Population Architecture using Genomics and Epide-
miology (PAGE) consortium, and the N ~ 500,000 individuals in
the UK Biobank dataset. In PAGE, iLASH uncovered a total
202,424,985 segments, while GERMLINE identified a total of
195,577,460 tracts. The overall concordance between iLASH and
GERMLINE was 95%. iLASH total runtime was 58min on a
single workstation (same as above) requiring between 3 GB (for
chromosome 22) and 17 GB of memory (for chromosome 2).
GERMLINE could not be run on the same workstation, because it
required more than 128 GB of memory for every chromosome.
GERMLINE was run on a High-Performance Computing Cluster
at the Icahn School of Medicine at Mount Sinai, which has several
high-memory nodes. For the largest chromosome (12) that could
be analyzed by GERMLINE without splitting the population,
GERMLINE took 6 days of computation. For the same chro-
mosome in the single machine described above, iLASH took 3
min and 12 s, an improvement of four orders of magnitude.

To explore the utility of IBD haplotypes inferred by iLASH in a
large genomic dataset we constructed an IBD-based network of
distant relatedness among the PAGE dataset30. In this network,
individuals are represented by nodes (N= 38,919 across 3 PAGE
Studies: WHI, MEC, and HCHS/SOL) that are connected by
edges (E= 55,069,482) if they share any haplotypes IBD. We used
this graph to explore fine-scale population substructure by
applying the community detection algorithm InfoMap31 to the
IBD network in order to uncover communities of individuals who
were enriched for recent, shared ancestry in the form of elevated
IBD sharing32. We observed that 92.3% of selected PAGE
participants fell into one of 12 inferred IBD communities, each
containing N > 100 individuals, with the remaining 7.7% of
participants being assigned to communities ranging from N= 1
to N= 91 participants in size (cf. Fig. 4A). We observed that IBD
community membership correlated strongly with available
demographic information in the form of both self-reported
ethnicity as well as sub-continental and country level region of
origin (cf. Supplementary Table 1). For example, membership of
one InfoMap community was highly correlated with being born
in Puerto Rico (PPV 0.96), while another was correlated with
being born in the Dominican Republic (PPV 0.98). We also
observed significant differences in the distribution of total
pairwise IBD sharing between communities (Fig. 4B). Examina-
tion of the population level fraction of IBD sharing within- and
between- communities revealed a high degree of network
modularity, or elevated sharing within communities relative to
between (Fig. 4C). Three distinct communities emerged that
correlated with being born in Mexico (PPVs 0.96, 0.43, and 0.99,
respectively), the latter of which exhibited elevated IBD sharing
relative to the former two and may represent a founder
population of (indigenous American) Mexican origin. This
analysis demonstrates the utility of IBD inference for exploring
fine-scale population substructure within large datasets. Further,
this elevated IBD signature empowers techniques in founder
populations such as IBD mapping and detection of highly drifted
alleles.

Detecting identity-by-descent in the UK Biobank. To explore
fine-scale population substructure in the UK Biobank we lever-
aged the phased genotype data at 655,532 SNPs for N= 487,330
participants. We used iLASH to infer pairwise IBD segments
(>= 2.9 cM) between all individuals. We observed 10.84% of all
possible pairs of individuals shared at least one haplotype of their
genome IBD, representing 12,867,760,228 pairwise connections in
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total (Fig. 5A). To understand how well the IBD sharing estimates
correlated with genetic relatedness, we calculated the correlation
between the kinship coefficient and the sum of IBD haplotype
sharing among 3rd degree and above relationships in the UK
Biobank. We observed a high degree of correlation between the
two estimates (R2= 0.95; Fig. 5B). Beyond this close relatedness,
we observed 778,822 pairs of individuals exhibiting relatively high
levels of relatedness (>100 cM), and additionally 43,205,248 pairs

of individuals with sharing above 20 cM. In most instances these
individuals were just below the level of detection as provided by
the standard genetic relationship matrix released alongside the
UK Biobank genotype data. However, we also identified 4,808
highly-related pairs of individuals (>= 500 cM) that were not
reported to be 3rd degree relatives or above in the default UK
Biobank release. To investigate this further, we replicated the
KING relatedness estimation for this subset of participants, and

Fig. 4 Network of IBD sharing in the PAGE dataset. A A network of IBD sharing within PAGE plotted via the Fruchterman Reingold algorithm. Each node

represents an individual (edges not shown). Individuals are colored based on community membership as inferred by the InfoMap algorithm. B Distribution

of the sum of IBD sharing within the top 16 largest InfoMap communities demonstrates variance in levels of IBD sharing between different communities.

Boxplots inlayed within violins depict the median and interquartile range of the within-community sum of pairwise IBD sharing (cM), while the minimal and

maximal values per distribution are represented by the extreme tails of the violin plot. InfoMap communities are labeled according to the demographic label

that most strongly correlated with community membership (as measured by positive predictive value). Elevated pairwise IBD sharing can be observed in

several InfoMap communities, which may represent founder effects. C Heatmap of the population level fraction of IBD sharing within and between the top

16 largest InfoMap communities demonstrates elevated sharing within, relative to between communities.

Fig. 5 Identity-by-descent sharing in the UK biobank. A Distribution of the sum of pairwise IBD sharing (cM) in the UK Biobank across all N= 487,330

participants. B Correlation between the sum of IBD sharing and kinship as measured by the KING software in all pairs of individuals reported in the UK

Biobank output to be >= 3rd degree relatives.
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noted that the majority of these pairs did exhibit elevated relat-
edness (mean kinship= 0.037, Interquartile Range=
0.031–0.043), but that their KING estimates fell slightly below the
cut-off for 3rd degree relatives (>0.0442). However, some dis-
cordance between the two metrics persisted. Specifically, we
identified a subset of pairs (N= 203 pairs, comprised of N= 378
unique individuals) with high IBD (>500 cM), but low or negative
kinship (<0.02). We noted that levels of autozygosity within the
individuals comprising these pairs was significantly elevated
relative to the population average in the UK Biobank, with the
mean sum of runs of homozygosity (ROH) within discordant
pairs being 116.5 cM (95% C.I= 98.2–135.0 cM), compared to
1.84 cM (95% C.I= 1.79–1.89 cM, Wilcoxon p < 6.3e–204) in the
UK Biobank overall. We speculate that this elevation of auto-
zygosity may have contributed to the deflation of the KING
kinship estimates and resultant discordance with iLASH.

Overall, we highlight in the UK Biobank that detectable
relatedness exists across far more pairs of individuals than is
present in the kinship matrix currently provided with the
standard data release. The sensitivity of methods like iLASH to
detect true levels of cryptic relatedness is critical in mixed effects
models such as SAIGE33 and BOLT-LMM34 for efficient,
appropriately-calibrated association testing.

Discussion
Here we present iLASH, an accurate and computationally effi-
cient method for detecting identity-by-descent segments. iLASH
scales to large, biobank-level datasets, empowering downstream
analysis that uses IBD for population genetic inference and dis-
ease mapping. In addition, we demonstrate that, consistent with
population genetic theory35, IBD is a ubiquitous component of
large-scale population datasets and can provide estimates of
relatedness useful in both medical and population genetic con-
texts. We have run iLASH on large datasets such as the PAGE
Study (N= 51,520) and the UK Biobank (N= 487,330), provid-
ing additional context to the understanding of population struc-
ture using typical measures of global ancestry relying on unlinked
genotypes. As IBD breaks down via recombination across a
relatively small number of generations, the observed patterns
from iLASH provide a snapshot of relatedness and population
structure driven by more recent patterns, rather than the more
ancient patterns determined by genetic drift.

In contrast to previous methods, we gain significant perfor-
mance improvements by basing iLASH on locality-sensitive
hashing (LSH), an algorithm that leverages the speed of hash-
based methods while allowing for some incomplete matches,
whether due to genotyping or phase-switch inconsistencies. Cri-
tically, iLASH applies LSH to relatively large slices of DNA
identifying with high probability whether two individuals in that
slice are in IBD, and more importantly whether those individuals
are unlikely to be IBD at the desired minimum threshold. This
results in a small set of candidate pairs to be checked for exten-
sion and is largely responsible for the significant speed-ups of
iLASH. By contrast, GERMLINE, the previous industry standard
for large-scale inference, identifies IBD candidates using small
hash seeds, followed by SNP-wise extension. However, many of
the short hash matches may not yield a match at the desired
minimum IBD length. Thus, GERMLINE incurs a greater run-
time penalty, since the pairwise comparisons grow quadratically.
Keeping most of our algorithm within the standard LSH frame-
work allows our runtime to grow much more slowly in the
number of individuals. In addition, we used a minimum length
threshold of 3 cM for IBD estimation across our analyses in this
manuscript because using hash-based algorithms such as iLASH,
GERMLINE, and RaPID, to estimate short IBD segments (<1 cM)

can result in an excess of false-positive edges with short segments,
e.g.,36. However, Saada et al. have recently proposed FastSMC37,
an IBD detection algorithm that uses coalescent based likelihood
estimates to assess the validity of shorter segments. Development
of a scalable pipeline where candidate matches found by iLASH’s
LSH algorithm are evaluated and scored via the FastSMC method
would yield a fast and more accurate approach for short seg-
ments. As demonstrated by Saada et al. using their own hash-
based algorithm, GERMLINE2, these IBD tracts can then be used
for downstream analyses, such as inference of fine-grained
population structure, evolutionary processes, and rare variant
association tests.

While this windowed hash-based method could mean that our
method is less precise at identifying IBD endpoints along the
chromosome, in practice, our simulations show otherwise. We
validated this method via simulations, ensuring that we could
both recover short segments (3–5 cM) as well as the full length of
longer segments, allowing for downstream utility of the IBD tract
length distribution. Our method is far more sensitive than
GERMLINE at identifying short segments, an observation found
by others38. Identifying large segments is critical for inferring an
unbiased tract length distribution, an observation required for
IBD-based genetic relatedness matrices39, as well as population
genetic inference3. While maintaining high sensitivity in short
segments, we ensure that our method is not susceptible to false
positives via genome shuffling28 to create a putatively IBD-free
dataset. Consistent with our method being haplotypic, false
positives should not be an issue, and we observe our method
being almost entirely without false positives, up to the detection
limit of haplotypic complexity in our test data. We note that these
false positive tests can be highly dependent on the diversity
present in the population used for simulation, therefore we chose
a population with limited endogamy, derived from PAGE Study
African Americans, to test iLASH.

In addition to identifying cryptic relatedness in a dataset, we
anticipate our scalable IBD tool to provide additional insights into
large-scale datasets such as PAGE, UK Biobank, and larger
datasets such as the Million Veteran Program and the All of Us
Research Program. iLASH works within standard pipelines as it
uses a standard input file format, and output from these estimates
can easily be integrated into medical and population genetic
workflows. As an example, we demonstrate the utility in esti-
mating IBD segment patterns across real-world datasets, allowing
for downstream population clustering using graphical methods
able to tease apart fine-scale population structure at a level
beyond standard SNP-based methods such as PCA. This, then,
can have large implications for medical genetics, particularly at
the rare end of the frequency spectrum, where variants are far
more likely to be private to one or a small number of populations.
For example, we have shown previously that IBD tracts allow us
to identify a population-specific variant underlying a recessive
musculoskeletal disease in Puerto Ricans, that could not be
detected using standard SNP-based genome-wide association
approaches8.

While our method is computationally efficient, mega-scale
datasets in the hundreds of thousands to millions still benefit
from data subsetting in the current version of iLASH, as we did
when running iLASH over the UK Biobank. This can be ame-
liorated with runs on high-memory nodes. However, to fit the
entirety of a dataset on a single machine will require additional
data compression, likely through methods such as the Positional
Burrows-Wheeler Transformation (PBWT), employed by the
Sanger Imputation Service. These approaches can be integrated
efficiently in the future, along with other methods, such as
incremental computation of IBD as new subjects are added to
large datasets, such as the evolution of the UK Biobank 150,000
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participants release to the current >500,000 individuals, or the
client growth in direct-to-consumer companies. A distributed
implementation of iLASH, designed natively to be run over nodes
in a cluster, fits well with the underlying algorithm and would
allow for an even more scalable solution.

We have currently focused our methods on common variants
as are typically found in genotype arrays. We plan in the future to
update iLASH to account for recent, rare mutations as are present
in sequence data. As our algorithm is based on locality-sensitive
hashing we can easily and efficiently handle mismatches due to
genotype error or recent mutation on an IBD background. This
simply will require modification of haplotype similarity thresh-
olds and SNP density. With large, diverse sequencing datasets
soon available, we anticipate this as a future improvement to a
new version of iLASH.

Numerous methods have been created to model population
structure for large, diverse populations. However, as datasets
grow, the effects of population structure become inevitable, and
the relevance of demographic history influencing patterns of
cryptic relatedness become unavoidable. This has particular
implications for how we think of genotypic similarity. Where
phasing and imputation are standard workflows, we provide a
method to integrate IBD analysis into existing pipelines, allowing
for novel population identification and inference of demographic
history. From these we can both provide a method forward for
population-based linkage as a complement to standard GWAS
approaches, as well as an efficient way of identifying sub-
populations within a larger dataset. Methods such as iLASH then,
while having their roots firmly in early medical genetic studies,
can then provide insight for the future of large-scale and multi-
ethnic cohorts available in biobanks and national initiatives.

Methods
In this section, we describe in detail the algorithm and implementation techniques
used in iLASH, including parameter configurations and their effect on the per-
formance of iLASH.

Background and rationale. iLASH was inspired by a minhash-based realization of
the LSH algorithm16,17,22. Locality Sensitive Hashing (LSH) refers to a category of
hashing methods that preserve a specific distance function. A hash function is
called “locality-sensitive” if it maps close vectors in the source domain to close or
identical vectors in the target domain. A good example of such hash functions is
mapping the points on the surface of a half-sphere to a 2D circle on a plane
beneath them. This function reduces dimensionality from 3 to 2. However, the
output of such mapping still has enough information to infer the distance among
different points on the 3D curve.

LSH was developed and is often used for duplicate string detection in large text
corpora40–42. In general, it is not feasible to compare every pair of strings, since the
computational cost grows quadratically with the number of strings. Moreover, it is
desirable to also identify segments that are similar, but not identical, since we need
to account for text modifications such as typos, local rephrasing, insertions of
advertisements, personalized greetings, or other dynamically generated text in a
web page. Jaccard similarity, or the intersection of two sets divided by their union,
is a measure fit for such tasks.

The LSH implementation used in finding text duplicates thus tries to preserve
the Jaccard similarity between different pairs of strings.22 The first step is to
convert each string into a set of shingles (aka n-grams, substrings of n characters; or
k-mers in the genetic context) and conceptually create a matrix with the strings
(sets) as rows and all the distinct shingles (elements) as columns. Then, LSH
estimates the Jaccard similarity between the sets (strings) by doing two levels of
hashing. The first hashing step of LSH is called minhashing. To create the minhash
matrix, the algorithm generates n random permutations of shingles. For each
permutation P, it records for each set S, the index of the first shingle included in S
(cf. Fig. 1). The probability of two sets having the same minhash value for each of
the permutations is equal to their Jaccard similarity score. The second level of
hashing is called the LSH and operates on the minhash vectors. To calculate LSH
signatures, consecutive minhash values are grouped together and hashed for a
second time. Suppose there are n minhash values for each string, grouped in b
bands. Each band is comprised of r ¼ n=b minhash values. Suppose S1 and S2 have
a Jaccard score of s between them. Then the probability of all minhash values in a
band being equal between the two sets is sr. The probability that at least one of the
minhash values in a band being different is 1-sr. If one or more than one of the
values in a band differs between S1 and S2, then the LSH signature of that band is

going to be different for the two sets. Thus, the probability of all LSH signatures

being distinct for each set is ð1� srÞb . Using this equation, we can calculate the
probability of two sets sharing at least one LSH signature, leading to them being

declared a hit as 1� 1� srð Þb . This probability distribution is a sigmoid function a
step transition that can be controlled by changing values of r and b to trade off the
number of comparisons and the false positive and false negative rates.

Parallels between finding similar strings and similar haplotypes make adopting
LSH in the genomic domain attractive. However, applying LSH over entire
chromosomes is not useful for IBD, since the goal of IBD estimation is to find exact
loci shared between pairs of individuals and not an average estimation of overall
similarity of pairs of chromosomes. Dividing the genotype data in segments (slices)
of a size close to the desired minimum IBD takes full advantage of the strengths of
the LSH. The similarity score of individuals sharing an IBD tract in or around those
slices would dramatically differ from that of a non-sharing pair. For example, in the
problem of IBD estimation for tracts of at least 3 cM in a dataset, if all the
haplotypes are divided similarly into slices shorter than or equal to 3 cM each, three
scenarios could happen to IBD segments of 3 cM in a database.

1. The IBD segment is located exactly within one slice’s boundaries with
minimal overflow/underflow. Then, the LSH algorithm would signal almost
an 100% similarity in that slice.

2. The IBD segment is spread more on one slice and less on the neighboring
slice. One of the slices will have more than 50% similarity in between the two
individuals and the other slice will have less than 50% shared.

3. The IBD segment is located almost half and half between two neighboring
slices. Since the segment is larger than 3 cM (the length of each slice), each
slice would have around 50% similarity or more.

In each of these scenarios, there will be at least one slice that has a Jaccard
similarity score equal to or greater than 50% between the two individual haplotypes
sharing IBD. iLASH estimates such similarities in order to find IBD tracts.
Segments longer than 3 cM yield a greater overlap within at least one slice and thus
have a higher minimum score between two haplotypes. By inspecting neighboring
slices to a slice with a high degree of estimated similarity, iLASH finds the true
extent of an IBD segment. In the following section, we discuss how using dynamic
and overlapping slicing ensures that the full IBD segment is identified with high
probability.

GERMLINE and RaPID also use hashing techniques to identify IBD.
GERMLINE uses relatively short hashes to find candidate IBD matches. However,
this results in too many candidate pairs, many of which will fail to extend to the
desired minimum IBD. Since candidate pairs scale quadratically, this prevents
GERMLINE from scaling up to large datasets. RaPID uses the Burrows-Wheeler
transform, which effectively operates on sub-sampled genetic data. Although
scalable, this method results in lower accuracy compared to iLASH or GERMLINE
(cf. Supplementary Fig. 11). In contrast, iLASH conducts its (LSH) hashing on
segments of a length similar to the desired minimum IBD, which has the double
benefit of proposing candidate pairs that have a high probability of being in IBD
(for a slice), and more importantly eliminating most pairs from consideration
(which would have an extremely low probability of being on IBD). Our
experiments on accuracy and false positive rate support the use of LSH in iLASH as
a good tradeoff between accuracy and scalability.

iLASH algorithm and settings. As discussed earlier, the iLASH algorithm has four
main steps (cf. Fig. 1). In the first step, iLASH divides the haplotype data into
segments with the same fixed boundaries (slices) across all the individuals, in order
to apply LSH to each slice. One could consider static slices, say 2000 SNPs.
However, genotype arrays are not usually sampled uniformly throughout the
human genome. Thus, there can be slices of 2000 SNPs that cover a 5 cM long
haplotype and there can be others covering 2 cM in the same experiment.
Therefore, we use dynamic slicing where each slice corresponds to a fixed genetic
distance of k cM, close to the desired minimum IBD length (usually 3 cM). Each
slice, then, comprises a variable number of SNPs. For added precision in iLASH, we
can generate slices that overlap, so that for IBD segments close the desired mini-
mum length, there is always one slice that will show high similarity with the true
IBD segment. For example, since in our experiments the desired minimum IBD
was of 3 cM, we defined a slice overlap of 1.4 cM. Overlapping slices significantly
increase accuracy, at a moderate computational cost. Another challenge is areas of
low complexity (and thus of low array density), where a small number of SNPs
could represent a long haplotype. These regions often generate an increased rate of
false positives. To address this, we defined a threshold in iLASH to prevent the
analysis of slices with lower than a given SNP count. For example, in our
experiments we ignored slices with fewer than 50 SNPs. While we have found these
parameters to yield good results on our datasets, they may or may not be suitable
for other datasets. Our implementation of iLASH allows the user to configure all
these parameters.

In the second step, iLASH tokenizes the SNP data in each slice into shingles
(k-mers). The main effect of shingling is to turn the genetic segments into sets of
hashes. In our experiments, each shingle encompasses 20 SNPs. Smaller shingle
length does not necessarily mean higher precision as it may cause the number of
possible values for each shingle to decrease which results in lower precision. The
shingles are then mapped to a 32-bit integer space using FNV hashing (https://
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tools.ietf.org/html/draft-eastlake-fnv-03) to allow for uniformly representing
shingles of different lengths (cf. Other Technical Notes below). No stored hash
structure is used so as to maximize the speed gains by eliminating the need for a
synchronized memory access procedure. By default, iLASH uses non-overlapping
shingles. Our experiments used this default setting. However, the tool has the
option to generate overlapping shingles which can help with noisy data and in
sparse regions by increasing the similarity at the cost of a modest increase in
run time.

In the third step, iLASH calculates minhash signatures for each slice. The
probability of overlap between the minhash signatures of two slices matches the
Jaccard similarity of the set representation of the slices. The Jaccard similarity of
two slices (sets) S1 and S2 is the number of shingles they have in common divided
by union of the shingles present in the slices. The minhash signatures can be seen
as a compressed representation of the slices, reduced from the number of distinct
shingles (hundreds to thousands) to just a few minhashes (20 in our experiments).

Finally, in the fourth step, following the LSH algorithm iLASH applies the
banding technique to the minhash signatures, that is, it groups the n minhash
values into b bands of r values each (n= b*r). Now, iLASH applies another level of
(simple) hashing to these groups to find similar slices and propose candidate pairs.
In our experiments on simulated PAGE data, we used 20 minhash permutations
(values) per slice (perm_count= 20). We grouped these minhash values into 5
bands to generate LSH signatures (bucket_count= 5).

The choice of the number of bands (aka buckets) and permutations depend on
the problem. Here we provide some guidance on how to set these values and
experiments on their effect in our evaluation datasets. As we show in
Supplementary Figs. 7 and 8, there are tradeoffs between accuracy (percentage of
true IBD recovered), false positives, running time, and memory consumption
depending of the configuration of bands and permutations per band. In our
experiment with 10,000 individuals (derived from the Puerto Rican population in
PAGE), having too few bands (e.g., two) and permutations per band (e.g., two)
results in a relatively higher IBD recovery (94%), but it significantly increases the
number of false positives (2259), the runtime (87 s) and memory consumption (6.5
GB). Since the smaller number of hashes is less discriminative, there are many
more matches to consider, which consequently increases runtime and memory. A
greater number of bands (e.g., 5) and permutations per band (e.g., 4) produces a
better tradeoff of 92% accuracy with a minimal number of false positives (14.4),
shorter runtime (31.5 s) and smaller memory footprint (5.03 GB) (cf.
supplementary Figs. 7 and 8). Having too many minhash values per band results in
a slightly lower accuracy, as it makes it harder for segments that are not exact
matches to show up among LSH signature hits. A greater number of hashes
moderately increases the memory consumption (e.g., 5.5 GB for 6 bands of 6
permutations, cf. Supplementary Fig. 8B), though it does not impact runtime
significantly. An increase in the number of bands increases memory consumption
and slightly increases runtime, because LSH hashes are stored in a shared hash
structure that is created on a single thread and not in a parallelized manner.

Getting a hit among LSH hashes (band hash values) for two slices, does not
necessarily mean the two are a match or even similar enough to be considered.
iLASH estimates a minimum similarity score based on the number LSH hits
between two slices using two thresholds. The Match Threshold parameter (MT)
controls iLASH decision whether to declare the two slices a match. Slices with
estimated similarity scores above the match threshold are queued for extension. If
an estimated score is lower than MT, it will be compared to the Interest Threshold
(IT). Scores that are not declared a match but are higher than interest threshold
will be examined on a shingle level in order to find matching sub-slices. iLASH
combines neighboring matched slices together to form a longer segment and
examines the boundaries of the segment at a shingle level to extend it, if possible.
This helps recover as much of the actual IBD segment as possible. For our
experiments, we used a match threshold of 99% and interest threshold of 70%.

The iLASH algorithm uses FNV hashing to a 32-bit integer space for both the
minhashing and LSH steps. In the LSH step, however, an in-memory hash table
was maintained since synchronization is inherently critical for finding hits.

Pseudocode and complexity. We present the pseudocode of the iLASH algorithm
in Box 1 and provide an analysis of its time complexity. ComputeIBD encompasses
most of the functionality of the iLASH algorithm. Similar to the description in the
methods section, this simplified version of iLASH algorithm first divides the
genotype data of the samples (Haplotypes) into a set of slices (S) with fixed
boundaries on all the samples. Then, for each slice, it tokenizes the genotype data of
all the samples, generating the TokenSet. This set is used to make the binary matrix
D with samples as rows and tokens as columns. An element Di,j for sample i and a
k-mer value j will be assigned a value of one if sample i contains the respective k-
mer value j. Otherwise, it will have a value of zero. Next, we conceptually compute
a set of permutations of the columns of the binary matrix D. Each permutation πk
randomly changes the order of the columns of D, creating a new matrix πk(D). The
matrix H is created with rows for samples and columns for permutations. Each
element (Hi,k) in this matrix corresponds to a sample i and permutation k pair, and
stores the smallest column number on πk(D) at which the sample i has a value of
one instead of zero. Next, by banding together the columns of H in b bands for
each row and hashing each band to a single value, b new hash tables are generated
for every slice. Then, for every sample couple ID1, ID2 that share more than IT

(Interest Threshold) hash values, iLASH creates an entry in the MatchSet that
contains the sample IDs, slice coordinate and the number of hash values shared.
The function ExtendSegment then goes through the entries in the MatchSet. For
every entry, it first compares the number of shared hash values to MT (Match
Threshold) and considers entries with equal or higher numbers of shared hash
values to be exact matches. Entries that do not pass the threshold will be compared
k-mer by k-mer in order for iLASH to find the true boundaries of the matching
segment, if any exists. The function will next extend the boundaries of the matches
by aggregating neighboring matched slices and k-mer by k-mer comparison of
non-matched neighboring slices. The resulting segments are then written to the
output file.

We analyze iLASH time and memory complexity in two stages. The first stage
comprises reading the genotype data, tokenization, minhashing and generating
LSH signatures. The second stage comprises building an integrated hash structure
and extraction of matches. Consider a population with N haplotypes, each with a
length of M SNPs. Tokenization, minhashing and LSH signature generation each
decrease the dimensionality of samples. However, they are applied over the
complete dataset. Thus, the time and memory complexity for the first step is
OðMNÞ. In the second step, inserting LSH signature values into the hash structure
requires O NVð Þ, assuming V is the dimensionality of each LSH signature. The
number of matched signatures is the crucial factor in the complexity of this stage.
The upper bound for number of matches is 0exn2ð Þ. However, each population,
depending on its structure has a different expected number of matches that can be

observed as 0exn2ð Þf ðpiÞ for population pi and 0 ≤ f p
� �

≤ 1. Time complexity of

iLASH, hence is bounded by OðN2f ðpÞ þMNÞ. The same bound also holds true for

space complexity, with a different f 0 p
� �

which addresses the memory growth of the

hash table implementation used to store LSH signatures.
Experimentally, we show iLASH’s growth in runtime and memory consumption

on the simulated dataset derived from Puerto Rican population in the PAGE study for
chromosome 1 in Supplementary Fig. 9. From 1,000 to 80,000 haplotypes, iLASH
runtime ranges from 3 to 695 s, and from 437 MB to 49.8 GB. In this range, runtime
growth shows a (slightly) quadratic trend, while memory growth is quasi-linear. The
quadratic runtime growth is consistent with the growth total length of IBD found by
iLASH, which also grows quadratically (cf. Supplementary Fig. 10).

Other technical notes. To maximize deployment and adoption, iLASH is designed
to run on a standard single machine, without requiring parallel technologies like
Hadoop or CUDA. However, iLASH takes advantage of the multiple cores available
in modern machines and efficiently interleaves computation with reading and
writing to disk (I/O operations). To read from and write to files, programs are
required to wait in I/O queues. Furthermore, the speed of storage devices is far
lower than that of main memory. Therefore, I/O operations can hinder the
experiments. iLASH uses parallelization to process the genotypes that are already
loaded in memory while it waits for the next batch of data to be loaded. Also, while
waiting to write IBD segments to the output file, it computes the next set of IBD
segments.

Instead of using the shingles directly, iLASH hashes the shingles using FNV
hashing, which has several advantages. First, FNV hashing allows iLASH to deal
with different shingle sizes uniformly. It especially helps to compress the shingle
space when the shingle length parameter is set to more than 30 bits. Second, FNV
hashing enables iLASH to analyze both normalized genotype files (encoded as bit
strings of minor/major alleles) and unnormalized files (with for example letter
encoding for the bases) in the same fashion. Third, it allows for parallelization, as
opposed to using standard C++ hash tables that would create a synchronization
bottleneck among the multiple threads. Finally, iLASH also uses FNV to create the
permutations to compute minhash signatures. When computing minhash
signatures, using FNV to map shingles to a 32-bit space and then using that
representation space to create random permutations using a formula instead of
actually permuting the matrix, helps maximize the effect of parallelization by
eliminating the need to maintain an integrated hash table among all threads. Using
x, the hash value of a shingle, as the index number of that shingle, we can generate
a new index number for x in a random permutation P(a,b) using the Lehmer
random number generator formula43; where a and b are randomly selected integers
specific to the permutation, and 4294967311 is the largest prime number
representable in 32 bits:

New Indexx ¼ a � x þ bmod 4294967311 ð1Þ

The FNV hash function is also used for generating the LSH signature. However,
unlike other steps that involved hashing, analyzing LSH signatures requires
maintaining a hash table in order to find hits. Removing in-memory hash
structures in shingling and minhashing steps helped us to effectively parallelize our
algorithm and gain a substantial speedup against our original implementation.

Test data generation. We used HAPGEN2 to simulate our large genotype dataset
(with the following command-line arguments: -Ne 80000 -theta 130). We chose a
high mutation rate in order to minimize background IBD.

To simulate genotype data of individuals for the false-positive rate experiments,
we took a composite individual approach23. Genotype data of African American
individuals in the PAGE Study was broken down in short windows and randomly
rearranged to eliminate IBD while preserving LD structure. We then randomly
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copied haplotypes between different individuals to simulate IBD for power tests.
The number and the length of these haplotypes was sampled from the PAGE study
IBD estimation results.

Application to population architecture using genomics and epidemiology

(page) study data. A total of 51,520 subjects were genotyped on the MEGA array
as part of the Population Architecture using Genomics and Epidemiology (PAGE)
study30. Genotypes that passed quality control (N= 1,402,653) underwent phasing
using SHAPEIT2. At this stage an additional N= 1 individual was removed for
having a chromosome specific missingess rate of >10%. Phased haplotypes for the
autosomes were subsequently filtered to a minor allele frequency of 5% and indels
were removed (resulting in the retention of 593,326 autosomal SNPs genome-
wide). SHAPEIT2 output was then converted to plink format using the fcgene
software and these files were used as the input for both GERMLINE and iLASH
(along with genetics maps interpolated using data from b37 genetic maps).
GERMLINE is known to have a high rate of false-positive for short segments
(<4 cM) when used without the “-haploid” flag [cite https://pubmed.ncbi.nlm.nih.

gov/28176766/]. In the experiments for this paper, we use phased haplotype data
exclusively. Thus, we always passed the “-haploid” flag, which prevents the false-
positives issues on GERMLINE.

To compute IBD we used comparable parameters for GERMLINE and iLASH.
The flags used for GERMLINE were “-min_m 3 -err_hom 0 -err_het 2 -bits 25
–haploid.” For iLASH the parameters were: “auto_slice 1, shingle_size 20,
shingle_overlap 0, bucket_count 5, perm_count 20, max_thread 20, match_threshold
0.99, interest_threshold 0.70, max_error 0, min_length 3, cm_overlap 1.4.”

The code with detailed descriptions iLASH’s input parameters, along with a
discussion of best practices and other recommendations, is available in the online
user manual at https://github.com/roohy/iLASH.

The scripts used for simulations are also available at https://github.com/roohy/
ilash_analyzer.

Quality control for downstream analysis in PAGE. IBD haplotypes inferred for
N= 38,919 PAGE individuals from the WHI, MEC, and HCHS/SOL studies were
filtered for regions that overlapped with known genomic regions of low complexity.

Box 1 | iLASH pseudocode

ComputeIBD:

INPUT Haplotypes, Band Count (B), Permutations Per Band (R)

MatchThreshold (MT), InterestThreshold (IT)

DEFINE TYPE MatchSet as a tuple with five members (ID1, ID2, STARTBP, ENDBP, SIM)

sampleCount = Number of samples in Haplotypes

MatchSet Matches

Split Haplotypes into a set of contiguous or overlapping slices S

FOR every slice s in S DO # Beginning of the first stage

Tokenize all the haplotypes in s into k-mers

TokenSet = {Set of all the k-mer values that occur in s}

Binary Matrix D (sampleCount × |TokenSet|)

Di,j = 1 if and only if haplotype i has at least one k-mer with

value equal to TokenSet[j]; O otherwise

P = B*R (total number of permutations)

PermSet = {π | P random permutations of members of TokenSet

with π(j) returning TokenSet[j]’s place in the permutation π}

Matrix H(sampleCount × |PermSet|)

Hi,k = min(πk(j)| Di,j = 1, j in {1..|TokenSet|})

HashTable T[B] # Beginning of the second stage

Divide the columns of H into B bands, each encompassing R values.

FOR EACH row in H DO

FOR EACH group b in B DO

T[b] = Hash the R columns assigned to b to get a

single value.

FOR EACH pair of haplotypes ID1, ID2 with at least a common hash

in T DO

sim = Compute similarity between ID1, ID2

IF sim > IT THEN Matches.add(ID1, ID2, s.startbp, s.endbp, sim)

FOR EACH ms in Matches DO

ms = ExtendSegment(ms, Haplotypes, MT)

OUTPUT(ms)

ExtendSegment:

INPUT match, Haplotypes, MT

ID1 = match.ID1
ID2 = match.ID2

IF match.sim < MT DO

Scan from match.startbp to match.endbp to find the correct start/end of the match by comparing tokens, and

update startbp and/or endbp.

head = match.startbp − 1

WHILE Haplotypes[ID1,head] = Haplotypes[ID2,head] DO

head = head − 1

match.startbp = head

tail = match.endbp + 1

WHILE Haplotypes[ID1,tail] = Haplotypes[ID2,tail] DO

tail = tail + 1

match.endbp = tail

RETURN match
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In addition, IBD haplotypes that fell within genomic regions of excess IBD sharing
(empirically defined as regions where we observed that the mean number of
inferred IBD haplotypes exceeded 3 standard deviations of the genome-wide mean)
were also excluded from downstream analysis.

Identity-by-descent network construction and community detection. The
length of IBD haplotypes (cM) shared between each pairs of PAGE individuals
were summed to obtain the total length of IBD shared genome-wide between pairs.
This was used as the input for the construction of an undirected network using the
iGraph software in R (version 3.2.0) where each individual was represented as a
node, weighted edges were used to represent the sum of IBD sharing between any
given pair. Community detection was then performed using the infomap.com-
munity() function from the iGraph package.

Application to UK Biobank data. IBD calling on the UK Biobank was performed
on phased haplotype data44. Phased haplotype data for N= 487,330 UK Biobank
participants in BGEN v1.2 format were converted to vcf format using bgenix
(v1.0.1) and subsequently converted to PLINK format using an in-house python
script. After the removal of indels, a total of 655,532 SNPs were retained across the
autosomes. These sites were used as the input for iLASH, which was run using the
following parameters:

“perm_count 12, shingle_size 20, shingle_overlap 0, bucket count 4,
max_thread 20, match_threshold 0.99, intersect_threshold 0.70, max_error
0, min_length 2.9, auto_slice 1, cm_overlap 1.4”

Data availability
The Population Architecture using Genomics and Epidemiology (PAGE) data is available

through dbgap at accession phs000356. [https://www.ncbi.nlm.nih.gov/projects/gap/

cgibin/study.cgi?study_id=phs000356.v2.p1].

The UK Biobank data is available through its website [https://www.ukbiobank.ac.uk/

enable-your-research/about-our-data] via application.

Source data are provided with this paper. We plan to contribute the IBD segments for

UK Biobank to the UK Biobank Portal. Furthermore, we have provided the required

parameters to generate IBD segments in the PAGE study dataset using iLASH in the

Methods section.

Code availability
The iLASH code, manual, description of best practices, and additional scripts are

available at https://github.com/roohy/iLASH (https://doi.org/10.5281/zenodo.4433075).

The scripts used for the simulations are also available at https://github.com/roohy/

ilash_analyzer (https://doi.org/10.5281/zenodo.4433081).

iLASH is available under the USC Software License, which allows free use for academic

and non-commercial purposes.
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