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Abstract

Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular
tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully
characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR
for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792
strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences.
Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and
alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

Background
Resistance has been reported to all drugs used to treat

tuberculosis (TB) [1]. Increased resistance is associated

with decreased patient survival and is a substantial threat

to disease control. The World Health Organization

(WHO) classifies tuberculosis resistant to isoniazid and ri-

fampicin as multi drug-resistant (MDR-TB), when a

switch to second line treatment is advised. Resistance to

additional drugs further compromises treatment success

[2]. MDR-TB strains that have developed resistance to the

fluoroquinolones and aminoglycosides are classed as ex-

tensively drug resistant (XDR-TB). The term totally drug

resistant (TDR-TB) has been used to describe strains

found resistant to all available drugs, but there is not yet

an agreed definition of TDR-TB [1]. Treatment of drug re-

sistant disease is prolonged and expensive, and outcomes

are poor [2,3]. Treatment involves drugs of heightened

toxicity and adverse reactions are common and may be se-

vere and irreversible [4,5]. Poor tolerance leads to reduced

compliance, which in turn reduces cure rates and can re-

sult in amplification of resistance [6].

Early detection is crucial for access to effective treat-

ment and prevention of onward transmission. Know-

ledge of the full drug susceptibility profile would enable

tailored treatment to improve efficacy and reduce expos-

ure to ineffective toxic drugs. Current testing for resist-

ance to most anti-TB drugs involves isolation and

culture of the bacteria followed by exposure to the drug,

a process that takes weeks or months and requires high

levels of microbiological safety. The primary cause of re-

sistance in M. tuberculosis is the accumulation of point

mutations and insertions and deletions (indels) in genes

coding for drug-targets or -converting enzymes [7].

Rapid molecular assays that test directly from sputum

are available for some key drugs. In 2013 the Xpert

MTB/RIF (Cepheid, Inc., Sunnyvale, CA, USA), was

granted US FDA approval for detecting resistance to ri-

fampicin, conditional on confirmatory testing [8]. This

easy to use semi-automated PCR-based test has also

been endorsed by WHO, as have Line Probe Assays

(LPA) for resistance to rifampicin and isoniazid, where,

following amplification of bacterial DNA, samples are

interrogated with a panel of oligonucleotide probes [9].

LPA to detect resistance to other drugs, including fluor-

oquinolones and aminoglycosides, have also been devel-

oped [10], but have yet to be endorsed by WHO.

Though undoubtedly useful, both technologies are lim-

ited in the number of loci they examine and they lack
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capacity to differentiate silent mutations from those that

effect drug efficacy, leading to false positive results

[11-13]. Whole genome sequencing has the potential to

overcome such problems and extend rapid testing to the

full range of anti-TB drugs and has been applied in a

clinical setting. Bench top analysers have been developed

capable of sequencing a bacterial genome in a few hours

and costs have been greatly reduced with the introduc-

tion of high throughput technology. Sequencing already

assists patient management for a number of conditions

such as HIV for which Sanger sequencing is performed

to determine viral tropism and drug susceptibility [14].

Recent reports of sequencing M. tuberculosis from spu-

tum from suspected XDR-TB patients suggests it has a

role in the management of TB [15-17]. However, data

analysis remains a bottleneck, requiring specialist expert-

ise not readily available in clinical laboratories. To ad-

dress this issue and progress sequencing towards real

time management of patients we have compiled an ex-

haustive library of 1,325 drug resistance markers and de-

veloped an online tool that rapidly analyses raw

sequence data and predicts resistance. We present ac-

curacy data comparing in silico whole genome analysis

for resistance to 11 anti-TB drugs, to conventional drug

susceptibility testing (DST). To further assess potential

benefits of the whole genome approach we compared

our curated mutation database to two others

(TBDreaMDB and MUBII-TB-DB), as well as those used

in three commercial molecular tests, the Xpert MTB/RIF

(Cepheid, Inc., Sunnyvale, CA, USA), and the MTBDRplus

and MTBDRsl (Hain Life Science, Germany). In particular,

in silico versions of the three commercial molecular tests

were implemented.

Methods
Mutation library

Following review of available data, a library of mutations

predictive of drug resistance was compiled. First, muta-

tions from two publically available web-based tools

TBDreaMDB [18] and MUBII-TB-DB [19] were ex-

tracted. Second, phylogenetic SNPs at drug resistance

loci were removed (see Additional file 1: Table S2 for the

full list), as they have been historically misclassified as

drug resistance markers [20,21]. And third, recent literature

was consulted to include mutations and loci not described

in TBDreaMDB and MUBII-TB-DB. (See Additional file 1:

Table S1 for a list of source materials). Drugs included

were amikacin (AMK), capreomycin (CAP), ethambutol

(EMB), ethionamide (ETH), isoniazid (INH), kanamycin

(KAN), moxifloxacin (MOX), ofloxacin (OFX), pyrazi-

namide (PZA), rifampicin (RMP), streptomycin (STR),

para-aminosalicylic acid (PAS), linezolid (LZD), clofazi-

mine (CFZ) and bedaquiline (BDQ). As presented in

Table 1, the library comprised 1,325 polymorphisms

(SNPs and indels) at 992 nucleotide positions from 31

loci, six promoters and 25 coding regions (see [22] for

full list). In addition to examining individual drugs we

considered the cumulative loci for MDR- and XDR-TB.

Table 1 Summary of mutations included in the curated

whole genome drug resistance library

Drug Loci No. variable sites SNPs Indels

INH katG 241 286 25

katG promoter 3 3 0

inhA 12 15 0

inhA promoter 9 11 0

ahpC 8 8 0

ahpC promoter 13 14 0

kasA 8 11 0

RMP rpoB 89 135 19

rpoC 8 8 0

EMB embB 123 153 1

embA 5 5 0

embA promoter 3 3 0

embC 25 26 0

embR 22 24 0

STR rrs 21 25 0

rpsL 14 19 0

PZA pncA 215 269 64

pncA promoter 4 6 0

rpsA 3 4 0

panD 9 11 1

ETH ethA 33 29 5

ethR 3 4 0

inhA promoter 3 3 0

inhA 3 3 0

FLQs gyrA 15 22 0

gyrB 22 29 0

AMK rrs 8 9 0

CAP rrs 3 4 0

tlyA 26 18 10

KAN rrs 3 4 0

eis promoter 9 10 0

PAS thyA 23 17 5

folC 16 19 0

ribB 1 1 0

LZD rrl 2 2 0

rplC 1 1 0

BDQ CFZ Rv0678 7 5 2

AMK, amikacin; BDQ, bedaquiline; CAP, capreomycin; CFZ, clofazimine; EMB,

ethabutol; ETH, ethionamide; FLQs, fluoroquinolones; INH, isoniazid; KAN,

kanamycin; LZD, linezolid; PAS, para-aminosalycylic acid; PZ, pyrazinamide;

RMP, rifampicin; STR, streptomycin.
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Circos software [23] was used to construct circular gen-

omic region variation maps. Polymorphisms associated

with MDR- and XDR-TB are shown in Figure 1 (See

Additional file 1: Figure S1 for full details).

Sequence data and drug susceptibility testing

The precision of the curated library for predicting resist-

ance was assessed through analysis of new and published

sequence data. In silico inferred resistance phenotypes

were compared to phenotypes derived from conven-

tional culture-based methods with the exception of PAS,

LZD, CFZ and BDQ, for which insufficient phenotypic

DST were available for comparison. Six geographically

distinct datasets were used: China (n = 161) [24],

Karachi, Pakistan (n = 42) [25], Karonga District, Malawi

(n = 337) [26], Lisbon and Porto, Portugal (n = 208)

[27], Samara, Russia [28] (n = 21) and Vancouver,

Canada (n = 19) [29] (See Additional file 1: Table S3).

Strains used in the study are a convenience sample and

do not necessarily reflect the population at the site of

collection. All collections had Illumina raw sequencing

data (minimum read length 50 bp) and drug susceptibil-

ity data from recognised testing protocols [30]. Where

conventional susceptibility data was not available, sam-

ples were excluded from analysis for that drug. Sensitiv-

ity, specificity and diagnostic accuracy (area under the

receiver operating characteristic curve) were estimated

using the phenotypic drug susceptibility test result as

the reference standard [31]. P values and confidence in-

tervals were determined using binomial distribution

approximations.

Rapid mutation detection and the TB Profiler Online tool

To rapidly characterise mutations from whole genome

sequence files (fastq format), we map raw sequences to a

modified version of the H37Rv reference genome (Gen-

bank accession number: NC_000962.3) using the Snap

algorithm [32], and call SNPs and indels using samtool/

vcf tools of high quality (Q30, 1 error per 1,000 bp) as

previously described [21,33]. The modified reference

genome consists of the genes and flanking regional se-

quences containing the 1,325 drug resistance mutations

in the curated list (Table 1) and selected lineage specific

mutations [21]. All high quality SNPs and indels identi-

fied from the alignments are compared to the curated

list to determine known and novel polymorphism. Algo-

rithmic results obtained were compared to standard

SNP calling procedures using the full reference genome

[21]. The online TB Profiler tool [34] was developed in

Perl/PHP. It inputs raw sequence data (fastq format),

identifies drug resistance and lineage specific mutations,

and displays related outputs (see screenshots in

Figure 1 Polymorphism in the curated library used for predicting multi-drug resistant TB (MDR-TB) and extensive-drug resistant TB (XDR-TB). (A)
Polymorphisms associated with MDR-TB. (B) Polymorphisms associated with XDR-TB. Colour-coded bars in the Circos plot represent genes described
to be involved in drug resistance (from Table 1). On top of each of these bars a grey histogram shows the mutation density (calculated as the number
of polymorphic sites within windows of 20 bp) derived from the curated list of DR-associated mutations. These grey areas highlight the presence of
DR-associated regions in candidate genes, which in some cases span the whole gene (for example, katG) or are confined to a certain region of the
gene (for example, rpoB). Vertical black lines indicate the frequency of mutations (that is, the number of times the mutation has been observed) in
phenotypically resistance isolates. Internal black lines show co-occurring mutations both within and between genes. The thickness of these lines is
proportional to the frequency of the mutations appearing together.
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Additional file 1: Figure S2). A Perl script was used to

implement the Snap software and samtool/vcf based bio-

informatic pipeline. The script is available from the cor-

responding author.

Comparison with existing tools

To examine the potential analytical advantage of whole

genome sequencing comparison was made with three

commercial tests: (1) the Xpert MTB/RIF (Cepheid Inc.,

USA) which targets the rpoB gene for RMP resistance;

(2) the LPA MTBDRplus for MDR-TB (Hain Lifescience,

Germany) which targets rpoB, katG and inhA for resist-

ance to RMP and INH; and (3) the LPA MTBDRsl

(Hain Lifescience, Germany) which targets gyrA, rrs

and embB for resistance to the fluoroquinolones (FLQ),

aminoglycosides and ethambutol, respectively. In silico

versions were developed based on the polymorphisms

used by these assays and their performance compared

to the whole genome mutation library. In particular, in

silico analysis of the six datasets was performed and

analytical sensitivities and specificities of the inferred

resistance relative to the reported phenotype were com-

pared (Figure 2, Additional file 1: Figures S3 and S4).

KvarQ [35], a new tool that directly scans fastq files of

bacterial genome sequences for known genetic poly-

morphisms, was run across all 792 samples using the

MTBC test suite and default parameters. Sensitivity

and specificity achieved by this method using pheno-

typic DST results as the reference standard were

calculated.

Figure 2 Inferred analytical accuracies of the whole genome mutation library and three commercial molecular tests for resistance. In silico

analysis of published sequence data using mutation libraries derived from XpertMTB/RIF (Cepheid Inc., USA) (purple), MTBDRsl (red) and
MTBDRplus (orange) (Hain Life Sciences, Germany), and the curated whole genome library (blue). For each library in silico inferred resistance
phenotypes were compared to reported phenotypes obtained from conventional drug susceptibility testing. Errors bars correspond to 95%
confidence intervals. Abbreviations: AMK, amikacin; CAP, capreomycin; EMB, ethambutol; ETH, ethionamide; INH, Isoniazid; KAN, kanamycin; MDR,
multi-drug resistance; MOX, moxifloxacin; OFX, ofloxacin; PZA, pyrazinamide; RMP, rifampicin; STR, streptomycin; XDR, extensive drug resistance.
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Results
A mutation library

Following review of available data (See Additional file 1:

Table S1 for a list of source materials), a library compris-

ing 1,325 polymorphisms (single nucleotide polymor-

phisms (SNPs) and indels) at 992 nucleotide positions

from 31 loci, six promoters and 25 coding regions was

established. This library covered the anti-TB drugs:

EMB, ETH, INH, PZA, RMP, STR and the second line

drugs used to treat MDR-TB AMK, CAP, KAN, MOX

and OFX. Mutations associated with resistance to PAS,

LZD, CFZ and BDQ were also compiled but were not

included in the analysis given lack of available pheno-

typic DST results. In addition to examining individual

drugs we considered the cumulative loci for MDR- and

XDR-TB. Polymorphisms associated with MDR- and

XDR-TB are shown in Figure 1 (see Additional file 1:

Figure S1 for full details).

Validation of the mutation library

The mutation library was validated using new and publi-

cally available sequence and phenotypic data from 792

isolates, from six countries (Canada, China, Malawi,

Pakistan, Portugal and Russia; see Additional file 1: Table

S3). Of the 792 isolates, 365 (46%) were phenotypically

resistant to at least one drug, 262 (33%) were MDR-TB,

54 (6.8%) XDR-TB and 426 (54%) were susceptible to all

drugs tested. In silico genotyping [36] revealed the major

modern M. tuberculosis lineages were represented, in-

cluding Lineage 1 (East African Indian spoligotype fam-

ily: 68, 8.6%), Lineage 2 (Beijing spoligotype: 182, 23%),

Lineage 3 (Central Asian: 86, 10.9%) and Lineage 4 (456

isolates, 57.5% including 298 LAM, 35 X, 97 T, 4S, 18 H

and 4 other spoligotypes). In silico inferred resistance

from whole genome sequence data was compared to

the reported resistance phenotype from conventional

culture-based susceptibility testing. Results are sum-

marised in Table 2. Sensitivity and specificity varied by

drug, and with the geographic origin (Additional file 1:

Figure S4). For the drugs that contribute to MDR-TB

correlation of mutation analysis with the reported

phenotype was high. Mutations predictive of resistance

were found in 96.0% and 92.8% of samples resistant to

RMP and INH, respectively. Of 22 phenotypically INH

resistant samples not detected by mutation analysis, 14

were from China. Further analysis revealed seven had

mutations in known candidate loci (katG and ahpC

promoter) not previously reported (Additional file 1:

Table S4). No additional cases of INH resistance were

suggested by the genome analysis. However, 10 isolates

reported as susceptible to RMP by conventional testing

had mutations predictive of resistance, six of which

were from Malawi. Correlation was slightly poorer for

other first line drugs. For PZA 32 of 110 samples with a

resistant phenotype were not recognised by genome

analysis, including 18 of 37 samples from Karachi.

However, specificity for this drug was high (93%; 95%

CI: 90.6 to 97.2). Correlation was also reduced for EMB

where 61 of 334 susceptible stains were found to

harbour mutations included in the library of resistance

polymorphisms (81.7% specificity). For the aminoglyco-

sides used to treat MDR-TB correlation was higher for

AMK and KAN than for CAP, where 35 of 89 resistant

samples were not detected by the in silico genome ana-

lysis. Testing for fluoroquinolone resistance was less

commonly reported and data for OFX was restricted to

313 samples from two studies (China and Portugal).

Mutations were not identified in 17 resistant samples

(85.5% sensitivity) and 10 drug susceptible samples

were found to harbour mutations associated with resist-

ance (94.9% specificity). Of 42 samples tested for sus-

ceptibility to MOX, 10 were reported as phenotypically

resistant, of which six were recognised by the in silico

mutation analysis.

Comparison with commercial tests and other drug

resistance databases

Having assessed the diagnostic potential of the mutation

library, comparison was made with the polymorphisms

used in commercially available molecular tests for drug

resistance. Results are summarised in Figure 2. There

was no significant difference between the mutation li-

brary and polymorphisms employed by the Xpert MTB/

RIF and the LPA MTBDRplus for detecting resistance to

RMP. However, 31 samples had mutations predictive of

resistance to INH not covered by the MTBDRplus. The

alleles concerned were mainly in the gene encoding

catalase-peroxidase enzyme (katG) (S315N (n = 9),

S315G (n = 1), D419H (n = 1), L378P (n = 1), V1A (n = 1),

Y155C (n = 3), W191R (n = 5 and always with C-15T inhA

promoter), N138D (n = 1, with T-8A inhA promoter) and

T380I (n = 1; with C-15T inhA promoter). There were also

six samples with ahpC promoter mutations and two sam-

ples with inhA mutations (S94A and I194T). No resistance

mutations were observed in INH susceptible strains sug-

gesting 100% specificity. Overall, when screening for

MDR-TB the mutation library offered enhanced accuracy

over the line probe mutations (95.8 vs. 93.1%; P <0.0004)

(Table 2).

Fewer susceptibility data were available for the second

line drugs. For each of the fluoroquinolones and amino-

glycosides the sensitivity of the mutation library was

equal to, or greater than for the mutations employed in

the LPA MTBDRsl (Figure 2), although a slight reduc-

tion in specificity was observed: MOX (71.9 vs. 68.8%,

P <0.32), OFX (95.9 vs. 94.9%, P <0.083), CAP (91.1 vs.

90.7%, P <0.32), KAN (99.0 vs. 93.4%, P <0.001) and

EMB (86.6 vs. 81.7%, P <0.001). Overall when detecting
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Table 2 Accuracy of whole genome drug resistance analysis compared to reported resistance phenotype when applied to in silico determination of resistance

from raw sequence data

Drug Sample size Resistant (%) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) China
Sen/Spec

Pakistan
Sen/Spec

Malawi
Sen/Spec

Portugal
Sen/Spec

Russia
Sen/Spec

Canada
Sen/Spec

INH 693 305 (44) 92.8 (89.9-95.7) 100 (100–100) 96.8 (95.5-98.1) 88.0/100 100/100 92.6/100 94.6/100 100/100 -/100

RMP 694 264 (38) 96.2 (93.9-98.5) 98.1 (96.8-99.4) 97.4 (96.2-98.5) 95.7/97.7 97.3/100 100/98.2 96.9/100 90.9/90.0 -/100

EMB 484 150 (31) 88.7 (83.6-93.8) 81.7 (77.6-85.8) 83.9 (80.6-87.2) 83.6/71.3 100/42.7 100/80 85.7/68.1 100/80.0 -/100

STR 487 225 (46.2) 87.1 (82.7-91.5) 89.7 (86.0-93.4) 88.5 (85.7-91.3) 86.8/91.0 95.8/44.4 61.5/95.6 86.8/81.5 100/100 -/100

PZA 307 110 (35.8) 70.9 (62.4-79.4) 93.9 (90.6-97.2) 85.7 (81.7-89.6) NT 51.3/- 66.7/94.8 80.6/100 100/60.0 -/100

ETH 334 155 (46.4) 73.6 (66.7-80.5) 93.3 (89.6-97.0) 84.1 (80.2-88.1) 38.9/97.3 66.7/90.3 NT 84.9/84.6 NT NT

MOX 42 10 (23.8) 60.0 (29.6-90.4) 68.7 (52.6-84.8) 66.7 (52.4-80.9) NT NT NT 83.3/56.2 25.0/100 NT

OFX 313 117 (37.4) 85.5 (79.1-91.9) 94.9 (91.8 · 98.0) 91.4 (88.3-94.5) 77.8/95.1 -/100 NT 92.1/93.2 NT NT

AMK 193 76 (39.4) 82.9 (74.4-91.4) 98.3 (96.0-100) 92.2 (88.4-96.0) NT 86.5/100 NT 79.5/98.2 NT NT

CAP 358 89 (24.9) 60.7 (50.6-70.8) 90.7 (87.2-94.2) 83.2 (79.4-87.1) 50.0/97.0 85.7/21.7 NT 57.7/98.0 100/91.7 NT

KAN 118 118 (37.3) 87.3 (81.3-93.3) 93.4 (89.9-96.9) 91.1 (88.0-94.3) 71.4/97.0 83.8/- NT 98.0/88.7 80.0/33.3 NT

MDR 693 262 (37.8) 91.2 (87.8-94.6) 98.4 (97.2-99.6) 95.8 (94.3-97.3) 86.3/100 97.3/100 100/98.2 95.8/100 90.9/90.0 -/100

XDR 601 54 (9) 75.9 (64.5-87.3) 98.4 (97.3-99.5) 96.3 (94.8-97.8) 60.9/99.1 -/100 -/100 96.3/88.9 25.0/100 -/100

AMK, amikacin; CAP, capreomycin; CI, confidence interval; EMB, ethambutol; ETH, ethionamide; INH, isoniazid; KAN, kanamycin; MDR, multi-drug resistance; MOX, moxifloxacin; OFX, ofloxacin; NT, not tested;

PZA, pyrazinamide; RMP, rifampicin; Sen, sensitivity; Spec, specificity; STR, streptomycin; XDR, extensive drug resistance.
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XDR-TB the whole genome analysis offered enhanced ac-

curacy over the line probe assay (96.3 vs. 93.7%; P <0.0047)

(Table 2).

The mutation library was also found to be more accur-

ate than previously reported databases TBDreaMDB and

MUBII-TB-DB (Additional file 1: Figure S3), because of

false positive resistance arising in those databases due to

the inclusion of some phylogenetic (but not drug resist-

ance) informative SNPs. An improvement in sensitivity

was also achieved for INH, EMB, ETH, PZA and KAN

by considering recently discovered drug resistance loci

and polymorphisms (Additional file 1: Figure S3).

When compared to KvarQ [35] the mutation library

achieved higher sensitivity for resistance to isoniazid, pyra-

zinamide, ofloxacin and amikacin with increases of 5.9%,

8.2%, 3.5% and 7.9%, respectively, without compromising

specificity (Additional file 1: Table S5). Higher sensitivity

was also achieved for ethambutol (28%), streptomycin

(7.1%) and kanamycin (33.1%) but with reductions in spe-

cificity (-7.5%, -9.1% and -5.1%, respectively). Sensitivity

and specificity values remained the same or very similar

for rifampicin and moxifloxacin. KvarQ did not predict re-

sistance status for ethionamide and capreomycin.

Online tool for predicting drug resistance and lineage

information from sequenced isolates

Having established a curated list of 1,325 mutations predict-

ive of resistance, we sought to develop a web-based tool to

rapidly identify a DST and strain-type profile. Our approach

called ‘TB Profiler’ ([34], Additional file 1: Figure S2) aligns

raw sequencing data to an abridged reference genome cov-

ering genomic regions of interest. The alignment is robust

to indels and genomic frameshifts, and can be completed in

minutes. Detection of M. tuberculosis lineage specific

markers was also incorporated [21]. In addition to identify-

ing known drug resistance associated mutations, the tool

also identifies other mutations in the candidate regions. TB

profiler processed fastq files at a linear rate of 80,000 se-

quence reads per second. Application to the 792 samples

led to the identification of 38 novel mutations (24 non-

synonymous SNPs, 9 indels and 5 intergenic SNPs) present

in phenotypically resistant strains but absent in susceptible

ones (Additional file 1: Table S4). All mutations were con-

firmed by the alignment of the short reads to the whole

H37Rv genome reference sequence using established gen-

ome analysis pipelines [21]. The median run-time for the

TB Profiler was 5 min (range, 2 to 10 min) across samples

with depth of coverage ranging from 20- to 1,000-fold. TB

Profiler can also be downloaded and run locally in a Unix

environment [37].

Discussion
The emergence and amplification of resistance to anti-

tuberculosis drugs has created a need for improved

detection tools to guide treatment options for patients

with MDR-TB, XDR-TB and post XDR (TDR-TB) dis-

ease. Molecular-based drug-susceptibility tests are more

rapid and microbiologically safe compared to phenotypic

assays. Nonetheless, rapid molecular assays are currently

limited. GeneXpert (Cepheid) tests only for rifampicin

resistance, the sensitivity of GenoType MTBDRplus

(Hain Life-Science) for the detection of isoniazid resist-

ance is reported to be approximately 80% to 90% [38,39]

and the GenoType MTBDRsl assay performs inad-

equately for fluoroquinolones, aminoglycosides and eth-

ambutol (reported sensitivities of 87% to 89%, 21% to

100% and 39% to 57%, respectively) [40,41]. Whole-

genome sequencing has the potential to determine the

full antibiogram if the genetic determinants of antibiotic

resistance are known [15-17,42]. However, M. tubercu-

losis sequencing has mainly been performed from cul-

tures and sequencing directly from clinical specimens

such as sputum still needs to be optimised. Compared to

Sanger sequencing that requires multiple sequencing

reactions to cover the various drug resistance loci,

whole-genome sequencing has the ability to characterise

all nucleotide positions in a single experiment. The

depth of next generation sequencing, where each loci is

examined numerous times (typically 100-fold coverage)

provides capacity to detect genetically mixed bacterial

populations (hetero-resistance) [43].

We have compiled and released a mutation library for

M. tuberculosis drug resistance [22]. By comparing in

silico drug resistance predictions to conventional pheno-

typic results, we have demonstrated that our library is

more accurate than current commercial molecular tests

and alternative mutation databases. Combining the muta-

tion library with a rapid detection tool for whole sequencing

data [34], we have demonstrated the potential for using next

generation sequencing for detecting drug resistance.

In silico validation of the mutation library demon-

strated high sensitivity for detecting resistance to RMP,

with the majority of resistance mutations found in a sin-

gle region of the rpoB gene [44]. Unsurprisingly, the mu-

tation analysis was less reliable for drugs with more

complex modes of action and where knowledge of the

genetic basis of resistance is less complete (for example,

PZA, ETH and EMB). Still, our curated library was more

accurate during in silico analysis for MDR and XDR-TB

than the commercial line probe assays, in addition to

assessing a greater number of drugs. Improved sensitiv-

ity was reported for INH, AMK, EMB, PZA and KAN

(Figure 2 and Additional file 1: Figure S3). The inferred

diagnostic performance from whole genome sequences

for the commercial tests may be overestimated, as in a

real scenario these tests have low detection limits and

are unable to differentiate synonymous from non-

synonymous amino acid changes [11].
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A limiting factor for this study is the reliability of

culture-based susceptibility testing methods, particularly

those for EMB and PZA, and the lack of a consensus

reference standard with which to compare new tests. Fu-

ture studies should be encouraged to adopt standardised

quantitative phenotypic assays [45]. DST is particularly

problematic for PZA [46] and false resistance results are

not uncommon [46]. The pncA gene (involved in resist-

ance to PZA) is one of the most polymorphic genes in

the M. tuberculosis genome and attempts to increase

sensitivity by including additional SNPs resulted in a re-

duction in specificity. Further work is needed to deter-

mine additional resistance polymorphisms, including

validation of putative markers with high quality pheno-

typic and clinical data. It should be noted that high posi-

tive predictive values are crucial for drug resistance tests

where the consequence of a false positive may be un-

necessary treatment with drugs of high toxicity and pro-

longed isolation in dedicated containment facilities.

Although an important increase in sensitivity was

achieved for EMB (88.7%), the specificity of 81.7% is

poor. These results concur with suggestions that degrees

of resistance to EMB may be acquired through muta-

tions in multiple loci, some of which are currently un-

known [47]. Although current knowledge does not allow

EMB resistance to be predicted with high precision,

known mutations may be used to identify strains predis-

posed to developing high-level resistance. Our results

demonstrate the considerable cross-resistance between

the fluoroquinolones. Minimal inhibitory concentrations

(MIC) can vary for these drugs and information on spe-

cific polymorphisms may influence dosing levels [48].

The poor specificity obtained for CAP and EMB may

be explained in terms of the high MIC used to classify

strains as clinically resistant or susceptible. Strains hav-

ing MIC values slightly below this cutoff have genetically

detectable resistance mechanisms but will falsely be

identified as susceptible [45,49]. Low specificity was also

obtained for MOX (68.7%) as opposed to that of OFX

(94.9%) using the same fluoroquinolones resistance

markers (that is, gyrA and gyrB mutations). Mutations in

gyrA and gyrB confer resistance to fluoroquinolones, al-

beit not at the same level, with MOX normally present-

ing the lowest MIC values in the group followed by

levofloxacin, in contract with the higher levels of resist-

ance observed for OFX and ciprofloxacin [50]. Strains

having the same fluoroquinolones resistance-conferring

mutations are therefore more likely to be regarded as

sensitive phenotypically (false positives) for MOX lead-

ing to lower specificity values. However, caution should

be exercised when considering the MOX data as few

phenotypic results were available and the uncertainty of

analysis is reflected in the wide confidence intervals

reported.

The accuracy of the mutation analysis was observed to

vary by geographic region (Additional file 1: Figure S4).

Geographic disparities in the frequency of drug resistant

SNPs may reflect local treatment strategies and the

clonal nature of tuberculosis transmission and therefore

be the result of local microevolution. It has previously

been suggested that emergence of resistance in M. tuber-

culosis is associated with bacterial lineage. However,

such conclusions cannot be drawn from the present

study, as sampling strategies were not appropriate to

such analysis.

Not all drugs used in the treatment of tuberculosis

were included in this study. Drugs were omitted either

because insufficient susceptibility data were available

(that is, PAS, LZD, CFZ and BDQ) or because the mech-

anism of action remains obscure and SNPs to predict re-

sistance have yet to be systematically identified (for

example, cycloserine). A major advantage of the whole

genome approach is that all data are captured and add-

itional loci can easily be incorporated in the mutation li-

brary. Future work should assess the diagnostic accuracy

of drug resistance mutations identified for PAS, LZD,

CFZ and BDQ in clinical specimens.

Previous studies on discrepancies between mutation

and culture-derived resistant phenotypes suggest that

molecular assessment may eventually become the refer-

ence standard for some drugs [51,52]. We have demon-

strated rapid analysis of whole genome sequence data to

provide the genotype and predict resistance to 11 anti-

TB drugs. In the absence of whole genome sequencing

technology, which is still prohibitive in low-resource set-

tings, drug resistance markers can be detected using al-

ternative genotyping platforms, such as multiplex

ligation-dependent probe amplification (MLPA) assays

[53] or multiplexed oligonucleotides ligation PCR [54].

The presented curated database will facilitate the devel-

opment of more accurate molecular drug-susceptibility

tests.

Rapid determination of strain-specific and drug resist-

ance mutations will be beneficial for therapeutic selection,

clinical management of patients and implementation of

infection control measures. The free-to-use TB Profiler

prototype is available for a research setting, and further

studies are needed to assess its performance for clinical

use.

Conclusion
We have constructed an on-line software tool and meth-

odology that provides rapid analysis of genome sequence

data to describe the lineage of the M. tuberculosis strain

under test and predict resistance to 11 anti-TB drugs.

The tool refers to a library comprising 1,325 mutations

that is the most comprehensive and accurate such data

source yet reported. In addition to providing information
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about a greater number of drugs, a whole genome ap-

proach has the potential to improve detection sensitivity

for drugs such as isoniazid over the currently available

molecular tests. The ability to analyse raw sequence data

and extract information of clinical relevance in a few mi-

nutes would render whole genome analysis faster than

current phenotypic testing methods. Accelerated access

to tailored treatment could improve cure rates and re-

duce exposure to ineffective toxic drugs, improving the

patient experience and facilitating compliance. The ana-

lytical methodology described is flexible to allow moder-

ation of the library to encompass novel mutations and

incorporate new drugs should the need arise.
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