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ABSTRACT

This paper presents a simple theoretical argument to isolate the conditions under which a tropical cyclone

can rapidly develop a warm-core thermal structure and subsequently approach a steady state. The theoretical

argument is based on the balanced vortex model and, in particular, on the associated transverse circulation

equation and the geopotential tendency equation. These second-order partial differential equations contain

the diabatic forcing and three spatially varying coefficients: the static stability A, the baroclinity B, and the

inertial stabilityC. Thus, the transverse circulation and the temperature tendency in a tropical vortex depend

not only on the diabatic forcing but also on the spatial distributions ofA,B, andC. Experience shows that the

large radial variations of C are typically the most important effect. Under certain simplifying assumptions as

to the vertical structure of the diabatic forcing and the spatial variability of A, B, and C, the transverse

circulation equation and the geopotential tendency equation can be solved via separation of variables. The

resulting radial structure equations retain the dynamically important radial variation ofC and can be solved in

terms of Green’s functions. These analytical solutions show that the vortex response to a delta function in the

diabatic heating depends critically on whether the heating occurs in the low-inertial-stability region outside

the radius of maximum wind or in the high-inertial-stability region inside the radius of maximum wind. This

result suggests that rapid intensification is favored for storms that have at least some of the eyewall convection

inside the radius of maximum wind. The development of an eye partially removes diabatic heating from the

high-inertial-stability region of the storm center; however, rapid intensification may continue if the eyewall

heating continues to become more efficient. As the warm core matures and static stability increases over the

inner core, conditions there become less favorable for deep upright convection and the storm tends to ap-

proach a steady state.

1. Introduction

One of the goals of the National Aeronautics and

Space Administration’s (NASA’s) Tropical Cloud Sys-

tems and Processes (TCSP) research program is to un-

derstand the conditions under which a tropical cyclone

can rapidly intensify (i.e., rapidly decrease its central

surface pressure and rapidly increase its azimuthal wind

and inner-core temperature). Understanding changes in

the wind and thermal structure of a tropical cyclone is

not a straightforward matter. As can be seen from (2.2)

and (2.5) below, for an inviscid axisymmetric vortex the

azimuthal wind tendency depends on the radial and

vertical advection of angular momentum, whereas the

temperature tendency depends on the diabatic heating,

in addition to the radial and vertical advection terms. If

the vortex is balanced (in the sense that it is continuously

evolving from one gradient-balanced state to another),

then the transverse circulation is determined by the so-

lution of a second-order partial differential equation in

the (r, z) plane. According to this ‘‘transverse circulation

equation,’’ first derived by Eliassen (1951) and given

below in (2.11), the streamfunction for the radial and

vertical motion is determined by the radial derivative of

the diabatic heating and the three variable coefficients

A, B, and C, which are the static stability (2.8), the

baroclinity (2.9), and the inertial stability (2.10). Al-

though solutions of (2.11) generally yield radial and ver-

tical velocities that are much weaker than the azimuthal

velocity, the radial and vertical directions are the di-

rections of large gradients, so the relatively weak trans-

verse circulation is crucial for vortex evolution (Ooyama

1969; Willoughby 1979). If vortex evolution is the main

focus of understanding, it may be preferable to consider

solutions of the geopotential tendency equation, which
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can be derived by similar means and is given below in

(2.21). Note that the geopotential tendency equation is

also a second-order partial differential equation with the

same three variable coefficients A, B, and C.

In his classic 1951 paper, Eliassen presented the prin-

cipal part of theGreen’s function solutions of the constant

coefficient version of the transverse circulation equation

for the case in which ›Q/›r is localized and for the case

in which Q itself is localized in the (r, z) plane. These

Green’s function solutions clearly illustrate how the

strength and shape of the transverse circulation depend

on the coefficients A, B, and C. However, for applica-

tions to tropical cyclones, there are several disadvan-

tages to Eliassen’s approach: (i) the effects of top and

bottom boundary conditions and the circular geometry

are not included, (ii) the important spatial variability of

the inertial stability coefficientC is not included, and (iii)

the diabatic heating is localized in z, whereas in tropical

cyclones it is rather smoothly distributed over the whole

troposphere [for examples of satellite-observed vertical

profiles of diabatic heating, see Fig. 6 of Rodgers et al.

(1998) and Fig. 9 of Rodgers et al. (2000)]. In the present

paper, we remove these limitations through a somewhat

different analysis of the balanced vortex model.

We consider an idealized vortex structure and an

idealized vertical structure of Q that allows the trans-

verse circulation equation and the geopotential ten-

dency equation to be solved by separation of variables.

This leads to the radial structure Eqs. (2.24) and (2.25).

Then, considering the diabatic heating as localized in r, we

find the Green’s functions for these ordinary differential

equations, taking into account the circular geometry and

the far-field boundary conditions. This simple theoretical

argument isolates the conditions under which a warm-

core thermal structure can rapidly develop in a tropical

cyclone and thereby elaborates on the vortex heating

efficiency ideas discussed in Shapiro and Willoughby

(1982), Schubert and Hack (1982), Hack and Schubert

(1986), and Nolan et al. (2007). The unique aspect of the

present approach is its emphasis on the geopotential

tendency equation as the most direct route toward un-

derstanding the rapid development of the warm core.

The paper is organized in the following way. In section

2 the balanced vortex model and the associated trans-

verse circulation equation and geopotential tendency

equation are presented, followed by a discussion of how

the right-hand side of the geopotential tendency equa-

tion can be written in a compact and physically in-

terpretable form via introduction of potential vorticity

concepts, as well as a discussion of the separation of

variables to reduce the partial differential equations into

ordinary differential equations for the radial structure.

Section 3 discusses the general solution of the radial

structure problem in terms of Green’s functions. The

actual Green’s functions are derived for a resting at-

mosphere in section 4 and for a Rankine-like vortex in

section 5. The results of calculations from these solu-

tions are shown in section 6 to illustrate how the tem-

perature tendency depends on the eyewall geometry and

the radial distribution of inertial stability. In section 7 we

discuss observations of the radial distribution of heating

and inertial stability in real storms; the implications

of the impact of subsequent structure change on in-

tensification rate are also considered. Some concluding

remarks are presented in section 8.

2. Tropical cyclone theory

a. Balanced vortex model

We consider inviscid, axisymmetric, quasi-static,

gradient-balanced motions of a stratified, compressible

atmosphere on an f plane. As the vertical coordinate we

use z 5 H ln(p0 /p), where H 5 RT0 /g is the constant

scale height and where p0 and T0 are constant reference

values of pressure and temperature. We choose p0 5

100 kPa and T0 5 300 K, the latter of which yields H ’

8.79 km. The governing equations for the balanced

vortex model are
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where u and y are the radial and azimuthal components

of velocity, w is the ‘‘log-pressure vertical velocity’’, f is

the geopotential, f is the constant Coriolis parameter, cp
is the specific heat at constant pressure, r(z)5 r0e

2z/H is

the pseudodensity, r0 5 p0 /(RT0) ’ 1.16 kg m23 is the

constant reference density, andQ is the diabatic heating.

b. Transverse circulation equation

Multiplying the thermodynamic equation by g/T0 and

the tangential wind equation by f 1 (2y/r), and then

making use of the gradient and hydrostatic relations, we

obtain
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where ft5 ›f/›t denotes the geopotential tendency and

where the static stability A, the baroclinity B, and the

inertial stability C are defined by
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One way of proceeding from (2.6) and (2.7) is to

eliminate ft to obtain an equation for the transverse

circulation. This equation takes the form
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where we have used the mass conservation principle

(2.4) to express the transverse circulation in terms of c

via the relations

rru52
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and rrw5
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. (2.12)

Here we consider only vortices with AC 2 B2
. 0 every-

where, which ensures that (2.11) is an elliptic equation. For

boundary conditions on (2.11), we require that c 5 0 at

z5 0, at z5 zT, and at r5 0, and that rc/ 0 as r/ ‘.

c. Geopotential tendency equation

Another way of proceeding from (2.6) and (2.7) is to

eliminate u and w to obtain an equation for ft. Thus,

eliminating w between (2.6) and (2.7), we obtain
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Similarly, eliminating u between (2.6) and (2.7), we

obtain
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Through the use of the mass continuity Eq. (2.4) we can

now eliminate u andw between (2.13) and (2.14) to obtain
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where D 5 AC 2 B2. Equation (2.15) is a second-order

partial differential equation for ft, and the boundary

conditions imposed on it should be consistent, via (2.6)

and (2.7), with the boundary conditions for (2.11). Here

we simply require that ›ft/›r vanish at r5 0; that ›ft/›z

vanish at the bottom and top isobaric surfaces z5 0, z5

zT; and that rft/ 0 as r/ ‘.

We shall refer to the right-hand side of (2.15) as the

‘‘tropical cyclogenesis function’’ because it gives the

interior forcing function associated with nonzero ft.

Because of the rather complicated mathematical form

given in the right-hand side of (2.15), physical inter-

pretation is difficult. However, using potential vorticity

concepts, the tropical cyclogenesis function can be trans-

formed into a simpler form that allows straightforward

physical interpretation. To accomplish this transforma-

tion, we first note that the potential vorticity equation,

derived from (2.1)–(2.5), is
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is the potential vorticity, m 5 ry1½ fr2 is the absolute

angular momentum per unit mass, u 5 T(p0 /p)
k is the

potential temperature,D/Dt5 (›/›t)1 u(›/›r)1w(›/›z)

is the material derivative, (›/›u)m is the partial derivative

with respect to u along the absolute angular momentum

surface, and _u 5 Q/P, with P 5 cp(p/p0)
k denoting the

Exner function. Using (2.17) and (2.8)–(2.10), we can

easily show that
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so that (2.11) and (2.15) are elliptic if [ f 1 (2y/r)]P . 0.

Using (2.18) we can also easily show that
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These last two relations allow us to write
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where z is the projection of the vorticity vector onto the

(r, z) plane. This allows (2.15) to be rewritten as

›

r›r
r
A

D

›f
t

›r
1 r

B

D

›f
t

›z

� �

1
›

›z

B

D

›f
t

›r
1

C

D

›f
t

›z

� �

5 rP
›( _u/P)

›u

� �

m

. (2.21)

The right-hand side of (2.21) is the compact form of the

cyclogenesis function, which can now be interpreted as

being proportional to the product of potential vorticity

with the u derivative of _u/P along an absolute angular

momentum surface. If the cyclogenesis function van-

ishes everywhere, we conclude from (2.21), with the aid of

the boundary conditions discussed above, that ft 5 0 ev-

erywhere and the storm is in a steady state. Hausman

et al. (2006) have used an axisymmetric, nonhydrostatic,

full-physics model to demonstrate how a tropical cyclone

approaches a steady state in which the P and _u fields

become locked together in a thin leaning tower on the

inner edge of the eyewall cloud.

It should be noted that for the balanced vortex model,

only one second-order elliptic partial differential equa-

tion needs to be solved [see Haynes and Shepherd

(1989) andWirth and Dunkerton (2006) for illustrations

of this point]. Depending on the particular formulation,

that elliptic equation could be the transverse circulation

Eq. (2.11) or the geopotential tendency Eq. (2.21). Be-

cause our particular interest here is in the rapid de-

velopment of a warm core, we find it convenient to focus

much of our attention on the geopotential tendency

equation.

d. Idealized vortex and the separation of variables

For real hurricanes the coefficients A, B, and C can

have complicated spatial distributions [e.g., Fig. 6 of

Holland and Merrill (1984) illustrates the radial and

vertical variations of inertial stability and static stability

computed from their composite tropical cyclone], which

would preclude analytical solution of (2.11) and (2.21).

To obtain analytical solutions we shall consider an ide-

alized vortex that leads to a drastic simplification of the

coefficients A and B but retains the crucial radial de-

pendence of the inertial stability C. Thus, we consider

a barotropic vortex (B 5 0) with a static stability given

by rA 5 N2, where the square of the Brunt–Väisälä

frequency, N2, is a constant. The inertial stability (2.10)

can then be written in the form rC 5 f̂
2
, where f̂ (r) 5

f[ f 1 (2y/r)][f 1 ›(ry)/r›r]g1/2 is the ‘‘effective Coriolis

parameter.’’ Under the above assumptions, (2.11) re-

duces to
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and (2.21) reduces to
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We now assume that the diabatic heating and the

streamfunction have the separable forms e�z/HQ(r, z) 5

Q̂(r)Z(z) and c(r, z) 5 ĉ(r)Z(z), where Z(z) 5 e2z/2H

sin(pz/zT). Because e
2z/H(ez/HZ9)9 5 2[(p/zT)

2
1 (2H)22]Z,

where the prime denotes a derivative with respect to z,

the partial differential Eq. (2.22) reduces to the ordinary

differential equation
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with m2(r) 5 [ f̂
2
(r)/N2][(p/z

T
)2 1 (2H)�2] denoting the

inverse Rossby length squared. The corresponding se-

parable forms for the temperature and geopotential

tendencies are T
t
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t
(r)ez/HZ(z) and f
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t
(r). Us-

ing these results, it immediately follows that the partial

differential Eq. (2.23) reduces to the ordinary differential

equation
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c
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Note that although it has a certain resemblance to the

thermodynamic equation, (2.25) follows directly from

(2.21), which has been obtained through a combination

of all the original Eqs. (2.1)–(2.5). The remainder of this

paper deals with the physical insights revealed by ana-

lytical solutions of (2.24) and (2.25). As is easily shown
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by integration of (2.25) and use of the boundary condi-

tions, these solutions have the integral property

ð

‘

0

T̂
t
r dr5

ð

‘

0

Q̂

c
p

r dr, (2.26)

so the integrated local temperature change is equal to

the integrated diabatic heating. However, the crucial

question for hurricane intensification is whether the lo-

cal temperature change occurs primarily in the region of

diabatic heating or is spread over a much larger region.

This question can be answered by examining the solu-

tions of (2.25), which show the following general prop-

erties. If the diabatic heating Q̂/c
p
is localized to a region

of large Rossby length (i.e., a region where m22 is large),

then d2T̂
t
/dr2 tends to be small, so that T̂

t
tends to be

spread over a large area but with values much smaller

than the peak value of Q̂/c
p
. In contrast, if the diabatic

heating occurs in a region of small Rossby length (i.e.,

a region where m22 is small), then d2T̂
t
/dr2 tends to be

larger, so that T̂
t
tends to be confined to a smaller

area, with values more comparable to the peak value of

Q̂/c
p
. The former case tends to occur when a vortex is

weak—that is, when the effective Coriolis parameter

f̂ (r) is small and the Rossby length m21(r) is large.

However, as the vortex becomes stronger, f̂ (r) becomes

larger and m21(r) becomes smaller, so that the diabatic

heating results in a tendency T̂
t
(r) that is more localized

to the region where Q̂(r) is confined. This process can

result in the rapid development of a tropical cyclone

warm core. In the following sections we attempt to pro-

vide a more quantitative understanding of these simple

qualitative arguments.

3. General solution in terms of the Green’s function

The solution of (2.25) can be written in the form

T̂
t
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c
p
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5
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with d(r2 r9) denoting theDirac delta function localized

at radius r9. The validity of (3.1) and (3.2) can easily be

confirmed by substituting (3.1) into (2.25) and noting

that
Ð

‘

0 Q̂(r9) d(r � r9) dr9 5 Q̂(r). The Green’s function

G(r, r9) gives the radial distribution of the temperature

tendency when the diabatic heating is confined to a very

narrow region at radius r9. It satisfies the boundary

conditions

dG(r, r9)

dr
5 0 at r5 0, rG(r, r9) ! 0 as r ! ‘

(3.3)

and the jump conditions

[G(r, r9)]r5r91
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dG(r, r9)

dr

� �r5r91

r5r92

5 21,

(3.4)

the latter of which is derived by integrating (3.2) across

a narrow interval centered at radius r9.

The solution of (2.24) could be obtained in an analo-

gous way. However, it is simpler to determine Gc(r, r9),

the Green’s function for c, directly from G(r, r9), the

Green’s function for the temperature tendency. This can

be accomplished by noting that the thermodynamic

Eq. (2.6), with the assumptions given in section 2, leads to

d[rG
c
(r, r9)]

rdr
52

gr
0

T
0
N2

G(r, r9) for r 6¼ r9. (3.5)

Thus, once we have determined G(r, r9), we can obtain

Gc(r, r9) by integration of (3.5).

The differential Eq. (3.2) for the Green’s function

G(r, r9) can be solved analytically only ifm(r) takes some

simple form. Here we present two simple cases. In the

first case (section 4) the atmosphere is assumed to be at

rest, so thatm is a constant. In the second case (section 5)

we consider a Rankine-like vortex, so thatm is piecewise

constant, with a large value of m in the vortex core and

a small value of m in the far field.

4. Green’s functions for a resting atmosphere

We first consider the case where y 5 0, so that

f̂ (r) 5 f and m(r) takes on the constant value mf. Then,

(3.2) reduces to the order zero modified Bessel equation

(Abramowitz and Stegun 2006, chapter 9) when r 6¼ r9.

The general solution of the problem is constructed from

a combination of the order zero modified Bessel func-

tions I0(mfr) and K0(mfr). Because of the boundary con-

ditions (3.3), only the I0(mfr) solution is valid for r , r9

and only theK0(mfr) solution is valid for r. r9. Matching

these solutions across r5 r9 involves the jump conditions

(3.4), which can be enforced with the aid of the derivative

relations dI0(x)/dx 5 I1(x) and dK0(x)/dx 5 2K1(x) and

the Wronskian I0(x)K1(x) 1 K0(x)I1(x) 5 1/x. The final

result is
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Integrating (3.5), using (4.1) and the derivative relations
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we obtain

G
c
(r, r9)5

gr
0
m
f

T
0
N2

�K
0
(m

f
r9)I

1
(m

f
r) if 0 # r, r9

I
0
(m

f
r9)K

1
(m

f
r) if r9, r,‘.

(

(4.2)

To compute the actual temperature tendency associated

with theGreen’s function (4.1), we return to (3.1) with the

condition Q̂(r9) 5 0 for r9 6¼ rh. Then (3.1) becomes

T̂
t
(r)5G(r, r

h
)

ðr
h
1

r
h
�

Q̂(r9)

c
p

r9 dr9. (4.3)

Note that according to (4.3), the spatial distribution

of T̂
t
(r) is given by G(r, rh) and the magnitude by

Ð r
h
1

r
h
�
[Q̂(r9)/c

p
]r9 dr9, which is somewhat arbitrary. We

have chosen this normalization factor to be

ðr
h
1

r
h
�

Q̂(r9)

c
p

r9 dr95 (26Kh21)(25 km)(10 km)[ S, (4.4)

which is the same normalization used by Schubert et al.

(2007) in their study of the distribution of subsidence in

the hurricane eye. With this normalization, the c(r, z)

and Tt(r, z) fields can be written as

c(r, z)5 SG
c
(r, r

h
)e2z/(2H) sin

pz

z
T

� �

, (4.5)

T
t
(r, z)5 SG(r, r

h
)ez/(2H) sin

pz

z
T

� �

. (4.6)

Figure 1 shows contours of rc and Tt in the (r, z) plane

for this resting atmosphere case. These plots have been

constructed from (4.5) and (4.6) using the Green’s func-

tion Eqs. (4.1) and (4.2). Note that rc is negative for r ,

25 km and positive for r . 25 km, which means that the

transverse mass flux is counterclockwise for r , 25 km

and clockwise for r. 25 km.The discontinuity of rc at r5

25 km means that infinite upward vertical velocity occurs

there. However, the vertical mass flux is finite because

r

ðr
h
1

r
h
2

w(r, z)r dr5 r
h
[c(r

h
1, z)2c(r

h
2, z)]

5
gr

0
S

T
0
N2

e2z/(2H) sin
pz

z
T

� �

, (4.7)

which follows from (4.2), (4.5), and the Wronskian. The

minimum value of rc, which occurs just inside r5 25 km,

is given in the sixth column of the first row in Table 1,

while the maximum value of rc, which occurs just outside

r 5 25 km, is given in the seventh column. Thus, at the

level of maximum vertical mass fluxes, the downward

mass flux inside r 5 25 km is 0.5339 3 106 kg s21, while

the downward mass flux outside r 5 25 km is 448.38 3

106 kg s21. Defining h 5 (rc)max/[(rc)max 2 (rc)min] as

the fraction of the upward mass flux that is compensated

by far-field subsidence, we see (eighth column of Table 1)

that approximately 99.88% of the upward mass flux is

compensated by downward mass flux outside r 5 25 km

and only 0.12% is compensated by downward mass

flux inside r5 25 km. As can be seen in the right panel of

Fig. 1, there is very little variation of the temperature

tendency on a fixed isobaric surface. In other words, the

Dirac delta function in the diabatic heating leads to

a transverse circulation that raises the temperature on a

given isobaric surface nearly uniformly over a large area.

The production of very weak horizontal temperature

gradients and corresponding weak vertical shears of the

azimuthal wind is consistent with the well-known result

that diabatic heating on a horizontal scale smaller than

the Rossby length is a very inefficient way to produce

rotational flow (e.g., Schubert et al. 1980; Gill 1982;

Shapiro andWilloughby 1982; Schubert andHack 1982).

Although the assumption of a resting atmosphere is too

restrictive for our present goals, the idealized Green’s

functions (4.1) and (4.2) provide useful comparisons for

the more general results of section 5.

5. Green’s functions for a nonresting atmosphere

a. A Rankine-like vortex

To treat radial variations of m(r) in a simple manner,

we consider the specific barotropic vortex in which the

square of the absolute angular momentum is given by

m2(r) 5 [ry(r)1½ fr2]2 5 1/4 f 2cr
4 for 0 # r # rc and by

m2(r) 5 m2(r
c
)1 1/4 f 2(r4 � r4c) for rc # r , ‘, where rc

and fc are specified constants giving the radius and

strength of the vortex core. It can easily be shown that

f̂ (r)5
›m2

r3›r

� �1/2

5 f 1
2y

r

� �

f 1
›(ry)

r›r

� �� �1/2

5
f
c
, if 0 # r, r

c
(vortex core),

f , if r
c
, r,‘ (far field),

(

(5.1)

so that fc can be interpreted as a specified constant giving

the effective Coriolis parameter in the vortex core. Be-

cause of (5.1), the inverse Rossby length m(r) also has

the piecewise constant form

m(r)5
m
c

if 0 # r, r
c
(vortex core),

m
f

if r
c
, r,‘ (far field),

�

(5.2)
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where the constants mc and mf are defined in terms of

the constants fc and f viamc5 ( fc/N)[(p/zT)
2
1 (2H)22]1/2

and mf 5 (f /N)[(p/zT)
2
1 (2H)22]1/2. Plots of y(r), com-

puted using the parameters listed in the second (sixth)

through the fifth (ninth) rows of Table 1, are shown

in the left column of Fig. 2 (Fig. 3). In constructing

Table 1 and Figs. 2 and 3, we have used f5 53 1025 s21

and mf
21

5 1000 km. Note that the y(r) profiles are

Rankine-like and that the strength of the tangential

winds range from tropical depression, through tropical

storm, to Category 1 on the Saffir–Simpson scale. The

Rossby length in the vortex core, given bymc
21 and listed

in the fifth column of Table 1, is less than 20 km for the

stronger vortices.

FIG. 1. Isolines of rc and temperature tendencyTt in the (r, z) plane for the resting atmosphere case. The radial axis

is labeled in km and the vertical axis in the dimensionless vertical coordinate z/zT. The radius of diabatic heating is

rh 5 25 km (as indicated by the vertical dashed line).

TABLE 1. Parameters for the resting case (first row) and the Rankine-like vortex cases (remaining rows): radius of the vortex core, rc;

maximum azimuthal wind, y(rc); dimensionless effective Coriolis parameter in the vortex core, fc/f ; and Rossby length in the vortex core,

mc
21. The last four columns show the minimum value of rc (which occurs just inside r5 rh), the maximum value of rc ( just outside r5 rh),

the fraction (h) of the downward mass flux that occurs in the region r . rh, and the maximum value of Tt.

Case rc (km) y(rc) (m s21) fc /f mc
21 (km) (rc)min (3106 kg s21) (rc)max (3106 kg s21) h (%) (Tt)max (K h21)

R0 — 0 1.0 1000.0 20.5339 448.38 99.88 0.0411946

A10 20 10 21.0 47.6 20.5266 448.39 99.88 0.0411952

A20 20 20 41.0 24.4 20.5081 448.41 99.89 0.0411969

A30 20 30 61.0 16.4 20.4830 448.44 99.89 0.0411992

A40 20 40 81.0 12.3 20.4557 448.46 99.90 0.0412018

B10 30 10 14.3 69.8 25.5922 443.31 98.75 0.43832

B20 30 20 27.7 36.1 218.099 430.75 95.97 1.47819

B30 30 30 41.0 24.4 235.154 413.61 92.17 3.05366

B40 30 40 54.3 18.4 253.852 394.81 88.00 5.04679
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FIG. 2. Isolines of rc(r, z) and temperature tendency Tt(r, z) for the four Rankine-like vortices shown in the left column. The radius of

maximum wind is rc 5 20 km and the radius of diabatic heating is rh 5 25 km (as indicated by the vertical dashed line).
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FIG. 3. As in Fig. 2, but for r
c
5 30 km, so the diabatic heating occurs inside the radius of maximum wind. Note the change in isoline

intervals from those used in Fig. 2.
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b. Diabatic heating outside the vortex core (rc , rh)

To solve the Green’s function problem (3.2)–(3.4)

for this Rankine-like vortex, we first consider the case

rc , rh. Then (3.2) reduces to

d

rdr
r
dG(r, r

h
)

dr

� �

2m2
cG(r, r

h
)5 0 if 0 # r, r

c
,

d

rdr
r
dG(r, r

h
)

dr

� �

2m2
fG(r, r

h
)5 0 if r

c
, r,‘

but r 6¼ r
h
. (5.3)

Now, in addition to the boundary conditions (3.3) and

the jump conditions (3.4), we require

[G(r, r
h
)]r5r

c
1

r5r
c
2
5 0 and

r

m2

dG(r, r
h
)

dr

� �r5r
c
1

r5r
c
2

5 0,

(5.4)

the latter of which is derived by integrating (3.2) across

a narrow interval centered at r5 rc. The solution of (5.3)

consists of linear combinations of the zeroth-order

modified Bessel functions I0(mcr) and K0(mcr) in the

region 0# r, rc and linear combinations of I0(mfr) and

K0(mfr) in the region rc , r , ‘. Because our boundary

condition requires that dG(r, rh)/dr5 0 at r 5 0, we can

discard the K0(mcr) solution in the inner region. Simi-

larly, because rG(r, rh)/ 0 as r/ ‘, we can discard the

I0(mfr) solution in the outer region. The solution of (5.3)

can then be written as

G(r, r
h
)5m2

f
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(r

c
, r

h
)K
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(5.5)
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Since F1(rc, rc) 5 0 and F1(rh, rh) 5 0, (5.5) guaran-

tees thatG(r, rh) is continuous at r5 rc and r5 rh, so that

the first entry in (3.4) and the first entry in (5.4) are

both satisfied. The jump condition on the derivative at

r 5 rh [i.e., the second entry in (3.4)] and the jump

condition on the derivative at r 5 rc [i.e., the second

entry in (5.4)] can be confirmed by using the Bessel

function derivative relations and the Wronskian. The

Green’s function for c can be obtained by integrating

(3.5), using (5.5) for G(r, rh). The result is

G
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(5.9)

To summarize for the case rc , rh, after specifying mc,

mf, rc, and rh, we can compute g1 from (5.7), and then

G(r, rh) from (5.5) and Gc(r, rh) from (5.8). Note that

when mc 5 mf, (5.7) reduces to g1 5 1, the first two lines

of (5.5) become identical, the first two lines of (5.8)
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become identical, and (5.5) reduces to (4.1) while (5.8)

reduces to (4.2).
c. Diabatic heating within the vortex core (rh , rc)

Now consider the case rh , rc. The Green’s function

for the temperature tendency is
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Note that the continuity of G(r, rh) at r 5 rh and r 5 rc follows directly from F2(rh, rh) 5 0 and F2(rc, rc) 5 0. The

Green’s function for c is
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Whenmc5 mf, (5.12) reduces to g25 1, the last two lines

of (5.10) become identical, the last two lines of (5.13)

become identical, and (5.10) reduces to (4.1) while

(5.13) reduces to (4.2).

6. Conditions for rapid development of a warm core

a. Inner-core response to heating

Plots of mass streamfunction rc(r, z) and temperature

tendency Tt(r, z) can now be constructed from (4.5) and

(4.6) using either (5.5) and (5.8) for rc , rh or (5.10) and

(5.13) for rh , rc. It can be shown that the rc(r, z) field

constructed in this way also satisfies the mass flux nor-

malization relation (4.7).

We first consider the case rc 5 20 km and rh 5 25 km,

which is typical of cases in which the diabatic heating lies

outside the radius of maximum wind. In the second and

third columns of Fig. 2 we show isolines of rc(r, z) and

Tt(r, z) for the four vortices displayed in the left column.

These vortices all have a maximum wind at rc 5 20 km,

but with y(rc) 5 10, 20, 30, and 40 m s21. The corre-

sponding values of fc /f and mc
21 are given in the fourth

and fifth columns of Table 1, along the rows labeledA10,

A20, A30, and A40. The most obvious feature of Fig. 2 is

the similarity of the four rc(r, z) fields and the fourTt(r, z)

fields, together with the fact that they differ little from

the resting case shown in Fig. 1. For example, the peak

value of Tt(r, z) is 0.041 195 K h21 for case A10 and

0.041 202 K h21 for case A40. Because the vortex core is

more inertially stable in case A40, the compensating

subsidence does not extend as far inward, which means

the subsidence is not as large at r5 0 and thus Tt is not as

large at r 5 0. This explains why the temperature ten-

dency in Fig. 2m is somewhat more localized than the

temperature tendency in Fig. 2c. This ‘‘warm-ring effect’’

has been observed in real storms such asHurricane Isabel

(2003; see Fig. 10 of Schubert et al. 2007). However, the

main conclusion to be drawn from Fig. 2 is that diabatic
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heating in the low-inertial-stability region outside the ra-

dius of maximum wind produces a temperature tendency

that is nearly uniform horizontally and similar to that

found for a resting atmosphere. In other words, diabatic

heating outside the radius of maximum wind is very in-

efficient at producing rotational flow, nomatter how small

the Rossby length inside the radius of maximum wind.

Now consider the case rh 5 25 km and rc 5 30 km,

which is typical of cases in which the diabatic heating lies

inside the radius of maximum wind. In the second and

third columns of Fig. 3 we show isolines of rc(r, z) and

Tt(r, z) for the four vortices displayed in the left column.

These vortices all have a maximum wind at rc 5 30 km,

but with y(rc) 5 10, 20, 30, and 40 m s21. The corre-

sponding values of fc /f and mc
21 are given in the fourth

and fifth columns of Table 1, along the rows labeled

B10, B20, B30, and B40. The most obvious features of

Fig. 3 are the much larger and more localized values of

Tt(r, z) near r5 25 km. The values are approximately 10

(0.4383 K h21 for case B10) to 100 (5.047 K h21 for case

B40) times the values in Fig. 2. Thus, when diabatic

heating occurs within the high-inertial-stability region

that lies inside the radius of maximum wind, there is en-

hanced subsidence inside the radius of heating1 and

a tendency to rapidly form a warm core.

It should be noted that while all results shown here

represent the heating as a Dirac delta function, these

results could be extended for amore general distribution

of heating of finite width. Because of the linearity of the

geopotential tendency equation and the transverse cir-

culation equation, we can construct solutions for general

diabatic heating fields by superposition of the Green’s

functionsG(r, r9) andGc(r, r9) for different values of r9.

This allows us to argue as follows: Suppose that the dia-

batic heating field consists of an annular ring of finitewidth

and that the radius of maximum wind occurs somewhere

between the inner and outer edges of this ring. In this case,

the portion of the diabatic heating that occurs inside the

radius of maximum wind contributes much more effi-

ciently to warm core formation and vortex intensification

than the portion of the diabatic heating that occurs outside

the radius of maximum wind. A consequence is that the

inward or outward movement of the radius of maximum

wind relative to the annular ring of convection can have

a large effect on the vortex intensification rate.

b. Outer core response to heating

Further physical insight may be gained by noting subtle

differences among Figs. 1, 2, and 3. Isolines of rc(r, z) for

the B40 vortex in Fig. 3l possess a discernible slope be-

tween rh and rc, whereas they do not in Figs. 1 and 2l.

This slope indicates that significant subsidence (and

therefore adiabatic warming) occurs locally outside of the

diabatic forcing region where the inertial stability re-

mains high. As a word of caution, it should be recognized

that our idealized vortex has a very large change of in-

ertial stability at the radius of maximum winds and

thereby accentuates the difference between the efficiency

of diabatic heating just inside and just outside this radius.

In real hurricanes the variation of inertial stability with

radius (Mallen et al. 2005; Holland and Merrill 1984) is

somewhat smoother, so there is a more gradual change

from the inefficient response to diabatic heating outside

the radius of maximum wind to the efficient response

inside this radius. In Holland and Merrill’s composite

tropical cyclone, inertial stability peaks at approximately

1000f2 at r ’ 30 km, decreases rapidly to 100f2 at r ’

80 km, and then drops off more gradually to 10f2 at r ’

200 km. The correspondingRossby length at r’ 200 km

is approximately 300 km, or one-third that of the far-

field value (1000 km), so the heating there will still be

considerably more efficient than in the far field. Thus,

heating in this transition region can still spin up the local

tangential wind and radially constrain the circulation

response—despite the fact that the heating is occurring

outside of the radius of maximum wind. This causes

strong subsidence warming and increased static stability

outside of the inner core, which will tend to inhibit con-

vection. According to the authors, this effect likely ex-

plains the relatively clear doughnut-shaped region

sometimes observed surrounding intense storms follow-

ing a period of rapid intensification.2 Annular hurricanes

have been noted to lack significant outer rainbands

(Knaff et al. 2003) and may also possess a vortex ‘‘skirt’’

outside of the radius of maximum winds. Our simple

analytic results suggest that the enhanced outer sub-

sidence associated with such a vortex skirt may be im-

plicated in suppressing these outer rainbands. This effect

has also been suggested by a recent full-physics modeling

study by Wang (2008).

c. Far-field response to heating

In passing, we note that the outer core (r ’ 50 km)

temperature tendencies are qualitatively similar be-

tween all three figures,3 but the far-field tendencies (e.g.,

r; 500 km, not shown) of Fig. 3 are slightly less than the

1 See the values of h listed in Table 1. Smaller h values indicate

that more of the mass flux recirculates into the eye.

2 For an example, see the remarkable clear ‘‘moat’’ that sur-

roundedHurricaneAllen (1980) shown in Fig. 1e of Jorgensen (1984).
3 This difference is not very apparent from the figures because

the isoline levels have been changed in Fig. 3 to highlight the en-

hanced inner-core tendency response.
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tendencies in Figs. 1 and 2. This difference is easily ex-

plained by recalling from (2.26) that the integrated local

temperature tendency must be equal to the integrated

diabatic heating. So in Fig. 3, the large temperature ten-

dencies of the small inner-core region are exactly com-

pensated for by the slightly reduced tendencies (compared

to Figs. 1 and 2) over the expansive far-field region.

7. Comparison to observed storms and further

discussion

In light of these results, we would be remiss if we did

not inquire as to the radial distributions of diabatic

heating and inertial stability in real storms. In particular,

does the location of the radius of maximum wind relative

to the heating really play a prominent role in controlling

intensification rates in observed storms? Seeking to an-

swer this question, we turn our attention to observational

studies that have shed some light on this issue.

a. Location of diabatic heating relative to the radius of

maximum wind in observed storms

Shea and Gray (1973) conducted a landmark study in

which they examined 533 radial flight legs from Atlantic

hurricanes over a 13-yr period. They characterized the

radius of maximum wind as the boundary between two

dynamically disparate regions of the storm. Outside the

radius of maximum winds, convergence and high winds

dominate, whereas high winds, high vorticity, and sub-

sidence are found inside the radius of maximum winds.

At low levels, air flowing in toward the radius of maxi-

mum wind meets air flowing outwards from the eye,

forcing a strong updraft at or near the radius of maxi-

mumwind. Thus, in the overwhelming majority of cases,

the radius of maximum wind occurs within the eyewall

cloud.4 In fact, on average, the radius of maximum wind

was located 8–10 km outward from the inner edge of the

eyewall (as observed by aircraft radar). Jorgensen (1984)

made additional observations of mature hurricanes that

possessed contracting eyewalls; his results show that the

maximum convective-scale updrafts (which correspond

to the maximum diabatic heating) are typically located

between 1 and 6 km inward from the radius of maximum

wind. These observations indicate that significant diabatic

heating normally occurs within the high-inertial-stability

region of most storms. Thus, the typical tropical cyclone

structure clearly supports intensification, but the more

interesting question still remains: what controls how

rapidly a storm will intensify?

It is not a trivial matter to resolve the radial distri-

bution of diabatic heating in a tropical cyclone. Several

past studies have used satellite-based passive microwave

radiometer data or aircraft to examine the relationship

between inner-core diabatic heating and intensity change.

Some general findings of those studies are summarized

here. (i) As a storm develops and intensifies from a dis-

turbance to the hurricane stage, inner-core diabatic

heating tends to increase and concentrate toward the

center (Adler and Rodgers 1977; Lonfat et al. 2004). (ii)

Episodes of enhanced heating seem to precede periods

of intensification, with perhaps a lag of a day or two

(Rodgers and Adler 1981; Steranka et al. 1986; Rao and

MacArthur 1994). (iii) The storm tends to become more

responsive to increases in inner-core diabatic heating as

the intensity increases (Rodgers et al. 1998); hurricanes

may need less of an increase in heating to intensify as

compared with tropical storms (Rodgers et al. 1994). (iv)

In themature stage, however, Marks (1985) observed no

relationship between Hurricane Allen’s (1980) intensity

changes and inner-core diabatic heating over a 5-day

period. Increases in latent heat seemed to be related to

areal increases in rainfall caused by rainband activity or

the presence of multiple eyewalls.

Most of the above studies share several common

weaknesses. First of all, it is difficult to separate the in-

tensification response due to increased inner-core dia-

batic heating from the general tendency of the diabatic

heating to concentrate near the center as the storm in-

tensifies. Additionally, the early satellite-based estimates

of diabatic heating could not adequately resolve the ra-

dial distribution of diabatic heating. Finally, these studies

did not include any information on the distribution of

heating relative to the radius of maximum winds.

One study has overcome some of these limitations.

Corbosiero et al. (2005; see their Fig. 6) have performed

a detailed investigation of Hurricane Elena (1985) data

during a 28-h period when it was well observed by both

ground-based radar and aircraft. These data show that

during Elena’s period of most rapid intensification, the

radius of maximum wind contracted to approximately

30 km and the inner edge of the eyewall convection

remained at approximately 20 km, while there appeared

to be periods of intense convection in the region be-

tween 20 and 30 km. According to the analysis pre-

sented here, the portion of the diabatic heating that

occurred between 20 and 30 km was most responsible

for the intensification of Elena. Because this is just one

case, and the intensification rate appears to be constant

during this period (as indicated from the best track,

4 In a small number of cases, the radius of maximum wind was

found inside the eye. This suggests that diabatic heating associated

with the eyewall updraft may occur entirely outside of the high-

inertial-stability region. Our Fig. 2 suggests that any such distri-

bution of heating will be very inefficient at intensifying the storm.
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which only gives intensity values every 6 h), it is difficult

to tell whether the concentration of diabatic heating

within the radius of maximum winds actually affected

Elena’s intensification rate.

Returning to the study of Shea and Gray, their Fig. 18

plots the difference between the radius of maximum

wind and the inner eye radius as a function of intensity.

This distance measures how far within the cloud area the

radius of maximumwind resides and can be thought of as

a crude proxy for the amount of efficient diabatic heating.

According to the figure, storms near minimal hurricane

intensity exhibit a wide variation in this quantity (with the

radius of maximum wind sometimes occurring near the

inner cloud edge but in other cases lyingmore than 40 km

outward from the inner cloud edge). Their figure bolsters

the view that the proportion of diabatic heating located

within the radius of maximum decreases as a storm in-

tensifies. But clearly an observational challenge remains

to continue to document, for a broad set of storms with

widely varying intensification rates, the relation between

the radius of maximum wind and the inner edge of eye-

wall convection.

b. Effects of eye formation and contraction

Because the formation of an eye5 must necessarily

remove some of the diabatic heating from the high-

inertial-stability region of a storm, Schubert and Hack

(1982) viewed eye formation as a stabilizing factor that

prevents runaway intensification. On the other hand,

observations suggest that storms often intensify most

rapidly during or immediately following the formation

of an eye (Mundell 1990). The argument for eye for-

mation as a stabilizer to storm intensification can be

summarized thus: Convective heating in the consolidat-

ing eyewall forces central axial subsidence, increasing

static stability in the nascent eye. At the same time, the

increased inertial stability associatedwith the intensifying

swirling flow of the developing eyewall acts as a barrier to

moist air flowing toward the center. With the moisture-

rich low-level source air becoming ‘‘locked out’’ from

the center, and any remaining convection being ‘‘locked

down’’ by the increasing static stability, diabatic heating

is removed from the high-inertial-stability region and

an eye appears. All things being equal, this change in

the radial distribution of heating should decrease a

storm’s overall heating efficiency, thereby retarding the

intensification rate.

However, all other things are clearly not equal when

an intensifying storm forms an eye. While it is true that

the development of an eye must necessarily remove

diabatic heating from the center, significant heating still

occurs between the inner edge of the eyewall and the

radius of maximum winds. During intensification both

the radius of maximum winds and the inner edge of

diabatic heating tend tomove inward in accordance with

the convective ring hypothesis discussed by Willoughby

et al. (1982, 1984) and Willoughby (1990). Although the

area of efficient heating may shrink in physical space,

when viewed in potential radius coordinates, the ‘‘dy-

namic size’’ of the heated area may actually increase if

the angular momentum surfaces move inward faster

than the edge of the convective heating (Schubert and

Hack 1983). Since the reduction in the radius of maxi-

mum wind and the increase in tangential winds both act

to dramatically shrink the local Rossby length in the

eyewall, the intensification rate of a storm increases as its

spatial scale shrinks and its intensity increases. This has

been shown recently by Pendergrass and Willoughby

(2009), who used a more general framework to solve the

Sawyer–Eliassen equation for a piecewise-continuous

balanced mean vortex that includes a realistic vertical

shear. Their realistic vortex case (their Fig. 9a) shows

that the tangential wind tendency experiences a rapid

increase as the maximum wind crosses the 30–35 m s21

threshold. As Shapiro and Willoughby (1982) note, this

is the threshold at which a tropical cyclone tends to form

an eye.

In addition to the effects of spatial scale and intensity,

the eyewall heating rate likely increases as the eyewall

organization improves. Thus, the storm concentrates its

diabatic heating in the area where the inertial stability is

most rapidly increasing. As a result, continued increases

in the efficiency of the eyewall heating can offset the

losses in efficiency that result from removal of diabatic

heating from the eye. Neglecting other factors, it seems

likely that the net effect of eye formation is to increase

the storm’s intensification rate.

c. Maturation of the warm core and approach to

a steady state

As the storm continues to intensify and warm air

overspreads the inner core, several factors begin to act

against further intensification. First of all, rising air par-

cels require increasing amounts of energy to overcome the

warmer temperatures aloft; this tends to hinder deep up-

right convection (Ooyama 1969). Second, the increased

static stability imposes an additional source of resistance

to the secondary circulation. This tends to reduce the

convergence ofmoisture and angularmomentum into the

inner core. Both of these factors decrease the inner-core

5 The dynamical mechanisms responsible for eye formation are

not discussed here, but most surely involve the remarkable prop-

erty for the boundary layer Ekman pumping to maximize at a finite

radius rather than at r 5 0 (see Eliassen and Lystad 1977).
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heating, countering the increased efficiency gains that

occur because of eye contraction. Eventually, the matu-

ration of the warm core should cause the storm to ap-

proach a steady state. These negative influences may be

minimized if the storm is able to concentrate the warming

as high as possible and as close to the center as possible

(Mundell 1990). The details of the vertical distribution of

the warm core response depend on the influence of baro-

clinity, an effect which is not included in our mathe-

matical framework but which is likely very important

[van Delden (1989) suggests that baroclinity enhances

deepening rates when themaximumwinds speed exceeds

30 m s21]. Eventually, the region of efficient heating in

the eyewall collapses to a small finite area through which

only a certain amount of mass flux can occur to drive

diabatic heating. These ideas suggest that the ultimate

intensity achieved by the stormmay depend in part on the

vertical and spatial distribution of the warm core and on

the amount of diabatic heating that remains in the effi-

cient region of the eyewall. This ‘‘dynamical limit’’ view

of intensification is surely not the whole picture, but it

may offer further avenues of investigation by models of

intermediate complexity.

d. Analogy to stratospheric sudden warming

Dr. T. Dunkerton (2009, personal communication)

has pointed out the existence of a useful analogy be-

tween the hurricane problem considered here and the

stratospheric sudden warming problem considered by

Matsuno and Nakamura (1979) and Dunkerton (1989).

In the idealized hurricane problem the secondary cir-

culation is driven by a ‘‘vertical delta surface’’ of dia-

batic heating, whereas in the idealized stratospheric

sudden warming problem the Lagrangian mean circu-

lation is driven by an Eliassen–Palm flux convergence

that is singular at a given height (i.e., by a ‘‘horizontal

delta surface’’ that provides a ‘‘zonal force’’ that drives

a transformedEulerianmean circulation). An important

difference between the two problems is that quasigeo-

strophic theory is a useful dynamical framework for

studying stratospheric sudden warming, but the gradient

balanced vortex model is necessary for the highly

curved, large-Rossby-number flows in hurricanes.

8. Concluding remarks

It has been known for several decades that one of the

necessary conditions for hurricane development is that

diabatic heating occur in the region of high inertial sta-

bility. Compared to past studies, the present study is

unique in that it has analytically solved for the temper-

ature tendency associated with a vertical delta surface of

diabatic heating in a vortex with a simple radial de-

pendence of inertial stability. The solutions emphasize

the fact that diabatic heating in the low-inertial-stability

region outside the radius of maximum wind is inefficient

at generating a warm core, no matter how large the cur-

rent storm intensity. In contrast, diabatic heating in the

high-inertial-stability region inside the radius of maxi-

mum wind is efficient at generating a localized tempera-

ture tendency, and this efficiency increases dramatically

with storm intensity. In other words, the present results

emphasize that the vortex intensification rate depends

critically on how much of the heating is occurring inside

the radius of maximum wind. However, when a tropical

cyclone reaches a minimum surface pressure of approxi-

mately 985 hPa and a maximum tangential wind of ap-

proximately 35 m s21, an eye forms, and diabatic heating

becomes at least partially locked out of the high-inertial-

stability region. Thus, it can be argued that storms that

continue rapid intensification after eye formation are

those in which at least some of the diabatic heating

persists in the high-inertial-stability region inside the

radius of maximum wind. Our results suggest that the

shrinking effect on the local Rossby length due to

the decreasing spatial scale and increasing tangential

winds compensates for the loss of efficiency due to eye

formation.

In closing, it is interesting to note that we have derived

the Green’s functions for the transverse circulation

Eq. (2.11) and the geopotential tendency Eq. (2.21) in

the special case of a resting atmosphere and the special

case of a height-independent Rankine-like vortex. In

these special cases the differential operators in (2.11)

and (2.21) simplify considerably. Obviously, it would be

useful to obtain the corresponding Green’s functions for

a general baroclinic vortex. Such baroclinic Green’s

functions would aid in understanding the role of eyewall

slope and in understanding how a steady state is ap-

proached as the ratio of _u to P becomes constant along

each absolute angular momentum surface. One ap-

proach to this more difficult baroclinic problem is to

transform (2.11) and (2.21) from (r, z) coordinates to

either (R, z) coordinates (where ½ fR2
5 m) or (r, u)

coordinates. In both cases, the operators on the left-

hand sides of (2.11) and (2.21) are considerably simpli-

fied, so that simple analytical solutions can be found.
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