
Rapid Development of User Interfaces
on Cluster-Driven Wall Displays with jBricks

Emmanuel Pietriga1,2 Stéphane Huot2,1 Mathieu Nancel2,1 Romain Primet1
1INRIA 2LRI - Univ Paris-Sud & CNRS

F-91405 Orsay, France F-91405 Orsay, France

ABSTRACT
Research on cluster-driven wall displays has mostly focused
on techniques for parallel rendering of complex 3D mod-
els. There has been comparatively little research effort ded-
icated to other types of graphics and to the software engi-
neering issues that arise when prototyping novel interaction
techniques or developing full-featured applications for such
displays. We present jBricks, a Java toolkit that integrates
a high-quality 2D graphics rendering engine and a versatile
input configuration module into a coherent framework, en-
abling the exploratory prototyping of interaction techniques
and rapid development of post-WIMP applications running
on cluster-driven interactive visualization platforms.

Keywords
Wall Displays, Clusters, Interaction, Toolkit, Prototyping

INTRODUCTION
Over the last decade, wall-sized displays have evolved from
experimental, CRT monitor-based setups to sophisticated ar-
rays of tiled projectors or LCD panels. The latter are of-
ten called ultra-high-resolution displays to emphasize their
significantly higher display capacity compared to projector-
based very-high-resolution displays. They typically accom-
modate several hundred megapixels, and are driven by clus-
ters of computers. As an example, the setup depicted in Fig-
ure 1 uses 32+1 graphic processing units in 16+1 computers
to display 20480×6400 ' 131 megapixels on a 5.5m×1.8m
surface (' 100dpi). These displays enable the visualization
of truly massive datasets. They can represent the data with
a high level of detail while retaining context [16], and en-
able the juxtaposition of data in various forms. To make
them interactive, wall-sized displays are increasingly cou-
pled with advanced input devices, e.g., motion-tracking sys-
tems, wireless multitouch devices, in order to enable multi-
device and/or multi-user interaction with the displayed data
[16, 17]. These interactive ultra-high-resolution displays can
be used in many application domains, including command
and control centers, geospatial imagery, scientific visualiza-
tion, collaborative design and public information displays.

E. Pietriga, S. Huot, M. Nancel, R. Primet.
Rapid Development of User Interface

on Cluster-Driven Wall Displays with jBricks
In EICS ’11: Proceedings of the 2nd ACM SIGCHI symposium on

Engineering interactive computing systems, ACM, June 2011.
Authors Version

These new environments pose new research challenges.
From a computer graphics perspective: how to render com-
plex graphics at high frame rates, taking advantage of the
cluster’s computing and rendering power. From a human-
computer interaction perspective: how to design effective
visualizations that take advantage of the specific character-
istics of large, ultra-high-resolution surfaces; how to design
interaction techniques that are well-adapted to this particular
context of use, and how to handle the multiple and hetero-
geneous input devices and modalities typically used in this
context. Finally, from a software engineering perspective:
how to enable the rapid prototyping, development, testing
and debugging of interactive applications running on clus-
ters of computers, providing the right abstractions.

In this paper, we focus on the latter research question, that
we consider essential to foster more research and develop-
ment from the HCI perspective. We present jBricks, a Java
toolkit for the development of post-WIMP applications ex-
ecuted on cluster-driven wall displays, that extends and in-
tegrates a high-quality 2D graphics rendering engine and a
versatile input management module into a coherent frame-
work hiding low-level details from the develeoper. The goal
of this framework is to ease the development, testing and de-
bugging of interactive visualization applications. It also of-
fers an environment for the rapid prototyping of novel inter-
action techniques and their evaluation through controlled ex-
periments, such as the one we recently conducted about mid-
air pan-and-zoom techniques for wall-sized displays [16].

Background and Motivation
The parallel-rendering techniques developed over the last ten
years enable the efficient display of 3D graphics on tiled dis-
plays driven by clusters of computers. This is usually done
by sending already rendered images to the cluster nodes,
or by sending geometry and performing compositing oper-
ations to produce the final wall-sized image. Different tech-
niques exist, including sort-first and sort-last pipelines as
well as various hybrid solutions. Well-known frameworks
include Chromium [11], Equalizer [10] and SAGE [13]. See
Ni et al. [17] for a comprehensive survey.

However, not all wall display applications use 3D graphics.
With the introduction of ultra-high resolution, high-quality
2D graphics open wall-sized displays to new applications,
e.g., in astronomy, geospatial intelligence and visual ana-
lytics at large, to give a few examples. These applications
essentially combine very large bitmap images, high-quality
text and 2D vector graphics, e.g., satellite imagery aug-

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 - 
13

 A
pr

 2
01

1
Author manuscript, published in "EICS '11: 2nd ACM SIGCHI symposium on Engineering interactive computing systems (2011)"

http://hal.inria.fr/inria-00582640/fr/
http://hal.archives-ouvertes.fr


(a) (b)

(c)

Figure 1. jBricks applications running on the WILD platform (32 tiles for a total resolution of 20 480 × 6 400 pixels). (a) Zoomed-in visualization of
the North-American part of the world-wide air traffic network (1 200 airports, 5 700 connections) overlaid on NASA’s Blue Marble Next Generation
images (86 400 × 43 200 pixels) augmented with country borders ESRI shapefiles. (b) Panning and zooming in Spitzer’s Infrared Milky Way (396 032
× 12 000 pixels). (c) Controlled laboratory experiment for the evaluation of mid-air multi-scale navigation techniques [17].

mented with data layers, or information visualization tech-
niques for the display of large datasets, e.g., for the visual
exploration of large networks (Figure 1-a). However, there
is currently no good solution for the distributed rendering of
high-quality 2D graphics on cluster-driven wall displays.

Low-level 3D graphics APIs such as OpenGL are currently
the main solution for developing cluster-driven visualiza-
tions. They work well for the high-performance visualiza-
tion of textured 3D scenes, but are ill-suited to program-
ming high-quality 2D graphics interfaces, lacking appro-
priate support for the management and efficient rendering
of text, line styles, arbitrary 2D shapes and WIMP wid-
gets. This was already observed for desktop application
programming [6], and remains true for cluster-driven wall-
displays. Pixel streaming approaches à la SAGE work well
when combining different windows of relatively limited size
from different applications, potentially running on different
machines. They would however not work for full-screen,
highly-dynamic visualizations on ultra-high-resolution dis-
plays: updating hundreds of megapixels forming a single co-
herent image at an interactive refresh rate would require sig-
nificantly more network bandwidth than is commonly avail-
able and would put an extremely heavy load on the node in
charge of rendering the image to be streamed.

Rich interactive 2D desktop applications, usually termed
post-WIMP applications, are typically developed with struc-
tured graphics toolkits [2, 7, 12, 18] that provide useful ab-
stractions on top of low-level APIs. They enable rapid pro-
totyping and development of advanced interactive visualiza-
tions. Our goal is to offer a structured graphics toolkit capa-
ble of running transparently on cluster-driven wall displays
and capable of handling a wide range of input devices and
modalities. From a graphics perspective, this requires hid-
ing the complexity entailed by having to distribute rendering
on multiple computers. While our focus is on expressiveness
and ease-of-use, we also pay attention to scalability issues,
adapting ideas originally developed for efficient distributed
3D rendering to our context, such as the use of a multicast
protocol to transmit updates to cluster nodes, and a culling

algorithm adapted to zoomable user interfaces. From an in-
put management perspective, this requires going beyond the
basic redirection mechanisms found in existing distributed
rendering frameworks that only support conventional input
devices, i.e., mouse and keyboard operated from the mas-
ter computer. For now, support for other devices is mostly
achieved via ad hoc solutions (drivers or libraries) that are
strongly integrated and statically linked within applications.
This approach is not generic and flexible enough when ex-
ploring and prototyping novel interaction techniques [9]. An
alternative approach consists in providing high-level abstrac-
tions of input modalities that enable association and runtime
substitution of devices. It has proven successful in other do-
mains, including physical ubiquitous computing [5], virtual
reality (Gadgeteer for VR Juggler [8]) and in the more gen-
eral context of post-WIMP applications (ICon [9], Squidy
[14]), and we adapt it to interactive wall displays.

jBricks FRAMEWORK ARCHITECTURE
The framework is essentially composed of two independent
modules: one for managing all graphical operations, and
one for handling input. The two modules are loosely cou-
pled. They communicate via a dynamic plugin architecture
and network sockets using high-level protocols such as OSC.
This makes the framework highly flexible: modules can be
instantiated multiple times and can run on different nodes.

Structured Graphics
Our goal is to provide an API and feature-set similar to those
of desktop structured graphics toolkits [2, 7, 12, 18] while i)
hiding the complexity entailed by distributed rendering, ii)
promoting ease of learning and ease of use, and iii) enabling
code reuse: visualization components initially developed for
desktop computers should run on cluster-driven wall dis-
plays with minimal changes to the original application code.
With these high-level objectives in mind, we chose to ex-
tend an existing structured graphics toolkit rather than start
developing a new one from scratch.

We used the open-source ZVTM toolkit [18], that supports
most Java2D drawing primitives but offers higher-level ab-

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 - 
13

 A
pr

 2
01

1



stractions that ease the management and manipulation of
graphical objects: rendering is handled in retained mode,
meaning that the toolkit retains a complete model of the ob-
jects to be rendered. ZVTM follows a monolithic approach,
as opposed to a polylithic one1. Experience has shown that
monolithic approaches are conceptually easier to handle by
developers, generate less lines of code and require managing
a smaller number of objects [7]; properties that we consider
of high importance for rapid UI development.

Featured types of graphical objects include polygons of ar-
bitrary shape, splines, Swing widgets, bitmap images and
high-quality text, with support for advanced stroke and fill
patterns. Those objects (Glyphs) are placed on infinite draw-
ing surfaces (Virtual Spaces) that are observed through one
or more Cameras. A camera renders the objects that lie in its
viewing frustum in a View, that corresponds to a window on
the screen. The toolkit makes it easy to create zoomable user
interfaces (cameras can be smoothly panned and zoomed).
It supports multiple independent views, as well as Portals
(views within views) [6], multiple layers within a view (each
corresponding to a different camera), as well as a variety
of built-in focus+context visualization techniques. Cameras
and glyphs can be animated using various pacing functions.

Cluster-based Structured Graphics Rendering
jBricks’ extension of ZVTM to render graphics on cluster-
driven tiled displays is conceptually straightforward. It takes
an approach similar to what sort-first algorithms do for par-
allel rendering of 3D graphics in retained mode: as ZVTM
already enables multiple cameras to observe a given vir-
tual space, implementing tiled rendering basically consists
in sharing that virtual space between all cluster nodes and
setting one camera per display tile. Each camera’s view-
ing frustum is configured so that their juxtaposition forms
an overall coherent image from the user’s perspective, ac-
cording to the physical layout of display tiles.

Distributed Virtual Spaces. jBricks adopts a client-server
model [17]: as shown in Figure 2, a single instance of the
application runs on a client node, generating the geometry
(populating virtual spaces with glyphs) and distributing it to
render servers running on cluster nodes. Virtual spaces and
glyphs contained therein are broadcast to all cluster nodes.
They are replicated and kept synchronized as glyphs are
added, removed, or have their properties changed. Paral-
lel rendering frameworks for 3D graphics have mainly fo-
cused on the visualization of static-geometry models where
only the camera(s) are manipulated interactively. The appli-
cations that jBricks aims to support typically manage much
more dynamic objects, both in terms of geometry and visual
appearance (color, stroke, font, etc.), potentially requiring
a lot of network bandwidth. Multicast communication can
greatly decrease bandwidth requirements for those updates
[15]. We use JGroups (http://www.jgroups.org) as our
group communication layer, that provides reliable messag-
ing over IP multicast. Over this layer, we exchange atomic
changes called Delta, which are serialized Java objects rep-
1Monolithic toolkits primarily use compile time inheritance to ex-
tend functionality, while polylithic toolkits primarily use run-time
composition to do so, typically using a scene graph [7].

Render
Server

Render
Server

Render
Server

Render
Server

Render
Server

Client App

Input
Server

Input
Server

Render
Server

Render
Server

Render
Server

Runs Input messages Graphics messages

Figure 2. Example jBricks configuration: wall’s graphics client and
input server for motion tracker and tablet run on client node; input
server for mouse, keyboard and smartphone run on user’s laptop.

resenting a new value for a given glyph attribute, propagated
to the corresponding glyphs on render servers.

Performance. As noted by Bederson and Meyer [6] about
zoomable user interfaces: “Smooth real-time interaction is
crucial. If the system becomes slow and jerky, the metaphor
dies”. The use of a multicast protocol for updating glyphs
enables us to smoothly animate several hundred property
changes simultaneously and independently of the number
of render servers. Camera animations do not require sig-
nificant bandwidth, as moving a camera only requires up-
dating a maximum of three double-precision floating point
values per frame. A more serious bottleneck when panning
and zooming is the frame rate achieved by render servers.
ZVTM already implements efficient culling algorithms for
zoomable user interfaces. Glyphs get projected and rendered
for a given camera only if they lie in that camera’s viewing
frustum. jBricks benefits from this directly: each server ren-
ders only the glyphs that will eventually be visible in the
associated tile, which significantly decreases the computa-
tional and rendering load for scenes with high object counts.

Preliminary tests have shown that visualizations containing
up to 200,000 objects could be rendered at interactive frame
rates on the platform depicted in Figure 1. jBricks also ben-
efits from Java2D’s OpenGL pipeline, and from ZVTM’s
spatial indexing and dynamic external resource (un-)loading
mechanisms. These were developed to support multi-scale
navigation in very large datasets, such as gigapixel bitmap
images decomposed recursively as a region quadtree. We
adapted these mechanisms in jBricks to work in a distributed
context, enabling the interactive visualization of very large
images. Example images that have been visualized include
the 26 gigapixel panorama of Paris (354 048 × 75 520 pix-
els) and Spitzer’s Infrared Milky Way (Figure 1-b), that can
be freely panned and zoomed on a wall display.

Programming. jBricks adds cluster support to ZVTM by
monkey-patching the original toolkit using AspectJ, with-
out altering its source code. This makes the cluster exten-
sion module small (� 3 000 lines of code vs. � 39 000
for ZVTM) and facilitates forward compatibility. This also
keeps API changes to a minimum: virtual spaces, glyphs,
animations and most other constructs are managed through
the original ZVTM API; low-level mechanisms for distribu-
tion to render servers are hidden from the developer. Only

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 - 
13

 A
pr

 2
01

1

http://www.jgroups.org


cameras and views get created and managed in a slightly
different manner. The tiled display’s geometry has to be de-
clared: number of rows and columns, size of each screen
(pixels), options such as whether to paint pixels behind the
bezels separating the tiles (overlay approach) or ignore them
(offset approach). Clustered Views replace regular ZVTM
views: a clustered view is divided into blocks, each block
corresponding to a tile and render server. Render servers can
be instantiated multiple times on a single node if that node
drives multiple tiles. ZVTM-based desktop applications,
originally written to run on single hosts, can be adapted to
run on a cluster-driven large displays by changing as little as
four lines of code. Render servers are instances of a generic
display program that is part of jBricks, meaning that devel-
opers only have to modify the client application and do not
have to run application-specific code on cluster nodes. This
enables a quick development and deployment lifecycle. It is
also interesting to note that the client application and render
servers can run anywhere, including on the same computer,
which facilitates development outside the cluster platform.

Advanced Input & Interaction
Wall-sized displays are often augmented with a complex in-
teractive environment, made of heterogeneous input modal-
ities ranging from actual input devices (e.g., mouse, 6-DOF
devices, tablets), to the output of interactive systems used
for input (e.g., motion-tracking system software, multi-touch
table tracker, mobile device sensors interpreter). jBricks’s
cluster extension to ZVTM handles all aspects related to
graphics distribution and rendering, but supports little be-
yond basic input redirection for conventional devices. An
input management system is required to handle the multiple
input channels and to ease their fusion so as to eventually
deliver high-level input events to applications, that make the
description of complex interaction techniques easier [12].

We identified three main requirements for such an input
management system. The system should be able to han-
dle various kinds of distributed input in a generic way to al-
low easy substitution of input modalities, and should provide
generic output to several distributed applications, no matter
whether they were specifically developed for this platform
or not. The system should be extensible, making it easy to
support new devices and functionalities with re-usable pro-
cessing functions or interaction techniques. Finally, the sys-
tem should be adaptable, enabling runtime addition of new
devices and changes to the input configuration.

With these objectives in mind, we developed the jBricks
Input Server (jBIS), the distributed input and interaction
management system of jBricks. jBIS is built on top of
the FlowStates toolkit [3], that combines the ICon [9] and
SwingStates [2] libraries. ICon’s dataflow model can han-
dle multiple devices and describe advanced interactions ef-
ficiently [12]. Its visual editor makes it simple to connect
them to application input endpoints (Figure 3). SwingStates
extends the Java language with state machines and provides
a simple yet powerful programming language that simpli-
fies the description of interaction logics on the application
side. FlowStates integrates these two models seamlessly:
state machines are instantiated as dataflow processing de-

vices that can be graphically connected to input devices or
to other state machines in the dataflow configuration.

Input handling. Thanks to the ICon library, the jBricks In-
put Server has built-in support for various regular and ad-
vanced input devices: mouse, keyboard, various tablets,
Nintendo Wii remotes, VICON motion-trackers, interactive
pens, etc. These input devices are instantiated as dataflow
processing devices that can be connected to adapters or ap-
plication devices through the dataflow editor (see the mouse
device in Figure 3). These dataflow components are high-
level structured representations of input devices (or classes
of input devices) with typed output slots mapped to the var-
ious channels of the input device they handle.

We extended ICon to support generic devices through vari-
ous protocols with specific dataflow devices that can receive
and send OSC, Ivy or TUIO messages. This approach pro-
vides an implicit way of performing automatic device reg-
istration thanks to the addressing mechanism of these pro-
tocols: each input source that sends a message addressed
to a specific receiving device in a running configuration is
implicitly considered. For instance, a jBIS’ OSC receiver
device can listen to messages addressed to /jBIS/position

with two arguments, x and y. This device will then exter-
nalize the corresponding output slots. These will be updated
each time that a new /jBIS/position message is received,
wherever it comes from: a smartphone running an applica-
tion that sends OSC messages from touchscreen events, the
tracking software of an interactive table, mouse movements
from a laptop running another instance of the jBIS, etc.

Interaction configuration. Input configuration and the lower-
level description of interaction techniques (typically the con-
nection to inputs) get specified in jBIS with an ICon dataflow
configuration. ICon provides an extensive library of adapter
devices, e.g., math or logic operators, control structures,
flow control. These can be used to manipulate and transform
the raw values of input channels into higher-level data struc-
tures (e.g., the mult device in Figure 3). The jBIS built-in li-
brary also extends the basic processing devices of ICon with
platform-specific ones, adapted to interactive wall-sized dis-
plays: for instance, the pointed tile dataflow component re-
turns the display tile that is intersected by a 3D vector re-
ceived as input (typically modeling the user’s arm). More
than simple low-level processing components, these higher-
level devices are close to the re-usable interaction techniques
of [12], offering several levels of granularity to the user when
building an input configuration.

The jBricks Input Server also includes a plug-in mechanism
for the creation of custom dataflow devices with FlowStates
[3]: state machines are instantiated as dataflow components,
and their transitions are triggered by the connected inputs
(pointing and pan-zoom in Figure 3). Programmers can use this
descriptive and straightforward approach to extend the jBIS
library and to describe some parts of the interaction logic
of an application, or even more generic libraries that can be
used with multiple applications running on the platform.

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 - 
13

 A
pr

 2
01

1



Link with application/visualization software. In jBricks, the
higher-level interaction logic (manipulation of objects, graph-
ical feedback) is encoded in the client application (Figure
2) developed with ZVTM. The link between the jBIS and
this application can be established in two ways. The first
solution consists in using specific dataflow devices in the in-
put configuration to deliver high-level interaction events to
the application through a networking protocol such as OSC;
the client application interprets these messages and reacts
accordingly. The other solution consists in using the plug-
in mechanism of jBIS to implement application-specific de-
vices that will be instantiated as endpoints of the dataflow.
These plugins can define their own protocol to communicate
with the client application, or even encapsulate it, enabling
direct communication as the client node is running in the
same process (same Java Virtual Machine) than jBIS.

Finally, jBIS can be controlled remotely, so that applications
can trigger commands (start/stop/change the input config-
uration) or dynamically install a plugin. Several jBIS in-
stances can run simultaneously, communicating through net-
working dataflow devices (Figure 2). This modularization,
based on the description of partial input configurations, re-
inforces the flexibility and adaptability of the platform as
partial configurations can easily be substituted.

The architecture of jBricks and the resulting development
and configuration tools make it possible to develop applica-
tions outside the platform, i.e., on a simple laptop, and then
deploy and run them on an actual cluster-driven wall dis-
play. On the graphics side, changes to the client application
are minimal (four lines of code) and can easily be managed
using, e.g., command line options or Maven profiles. On
the interaction side, the jBricks Input Server makes it easy
to dynamically reconfigure and adjust inputs according to
available devices and modalities. In the following section,
we illustrate these principles with a short scenario showing
how jBricks can be used for the prototyping and implemen-
tation of interaction techniques for a controlled experiment
on a wall-sized display.

jBricks IN ACTION
Abelard and Eloı̈se need to prepare an experiment to com-
pare one-handed mid-air interaction techniques for selection
of very small targets on wall-sized displays. They consider
two techniques: a very precise bi-modal pointing technique,
and a cursor-centered pan & zoom technique.

They first describe the two techniques with state machines
(Figure 3) and plan to implement and configure them as fol-
lows. The pointing technique will be operated with a gy-
roscopic mouse and will feature a coarse mode – i.e., ray-
casting – and a precise mode – i.e., relative pointing with a
low CD gain. Precise mode will be triggered using the right
mouse button; target selection using the left button (Fig-
ure 3-a). The pan & zoom technique is operated with an iPod
Touch. Vertical thumb movements control the zoom factor,
ray-casting of the user’s arm controls the cursor’s position.
Two small areas at the bottom of the iPod’s screen trigger
panning and target selection, respectively (Figure 3-b).

(a)

(b)

mouse
button

left

middle

right

pointer

x

y

wheel

-

-

coarse CD gain

precise CD gain

mult

mult COARSE

PRECISE

R-press

R-release

L-click

L-click

mult

mult

pointing
coarse

x

y

precise

x

y

click

mode switch

-

-

mouse
button

left

middle

right

pointer

x

y

wheel

-

-

CD gain mult

mult
pan-zoom
point

x

y

pan

click

-

magnification

POINT

B-press
C-release PAN

B-release

A-swipe

ZOOM

A-release

Figure 3. jBIS configurations of the pointing (a) and pan & zoom (b)
techniques and their corresponding state machines. A mouse is used to
control the techniques and simulate unavailable devices.

Prototyping
As jBricks’ graphics and input modules are loosely-coupled,
Abelard can work on the experiment’s graphics while Eloı̈se
implements and configures the two interaction techniques.

Abelard is working on the graphics part of the experiment.
Using ZVTM, he creates an application that displays the tar-
gets, cursor appearance and textual instructions on his per-
sonal computer without having to worry about the specifics
of the cluster-based wall display environment. He just needs
to consider the actual dimensions of his graphical scene (in
this case, a 20000 × 7000 pixel area). To make the entire
scene visible on his screen, he sets the zoom factor higher
than it will eventually be in the real experiment (a straight-
forward operation in a zoomable user interface).

Meanwhile, Eloı̈se implements each technique as a Flow-
States state machine and encapsulates them in a jBricks In-
put Server plugin, making them available as dataflow pro-
cessing devices. During this early prototyping stage, Eloı̈se
focuses on developing the interaction logic, using a basic
version of the graphics interface provided by Abelard. She
does not need to work on the actual hardware platform ei-
ther. She runs jBIS on her laptop and uses a regular mouse to
simulate the actual input devices that will be used eventually
(motion-capture system, gyroscopic mouse, iPod Touch).
In this testing configuration, ray-casting with the motion-
capture system and gyroscopic mouse are replaced by mouse
coordinates; the mouse wheel and buttons are used in lieu of
touch events. The output ports of the mouse device are con-
nected to the technique devices, pan-zoom and pointing (Fig-
ure 3), the two modes of the pointing technique being simu-
lated by applying constant multipliers to the mouse coordi-
nates (the mul and CD gain processing devices). Later, these
configurations will be slightly modified to handle the actual
input devices to be used in the experiment.

Porting to the Wall Display Hardware Platform
On the input side, Eloı̈se substitutes the devices used for pro-
totyping on her laptop with the platform’s actual devices, as
shown in Figure 4. The regular mouse can be directly substi-
tuted with the gyroscopic mouse, with only a CD gain adjust-
ment (changing the value of precise CD gain, Figure 4-a). jBIS
has built-in support for the 10-camera motion tracking sys-

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 - 
13

 A
pr

 2
01

1



(a) (b)

gyro mouse
button

left

middle

right

pointer

x

y

wheel

-

-

coarse CD gain

precise CD gain

mult

mult

mult

mult

pointing
coarse

x

y

precise

x

y

click

mode switch

-

-

VICON laser
coordinates

x

y

-

iPod (OSC)
zone A

x

y

press

zone B

press

zone C

press

-

-

-

pan-zoom
point

x

y

pan

click

-

magnification

mouse
button

left

middle

right

pointer

x

y

wheel

-

-

A

B C

CD gain mult

mult

VICON laser
coordinates

x

y

-

OSC

Figure 4. jBIS configurations of the final pointing (a) and pan & zoom
(b) techniques. The simulation inputs (in grey) can be reused at any
time simply by changing the connections.

tem in the room (the VICON laser device). For the iPod Touch,
Eloı̈se uses a built-in OSC receiver device in her input con-
figuration to receive touch events from a freely-available ap-
plication running on the handheld (Figure 4-b). To deploy
the client application on the actual hardware, Abelard only
needs to add a few jBricks instructions describing the Clus-
tered View. He then embeds the application into the jBIS
plugin made by Eloı̈se. The client application is launched
by jBIS; it has access to the state machines’ output and will
react according to the chosen interaction technique.

Further iterations, switching back and forth between the sim-
plified configuration running on personal computers and the
one for the actual wall display hardware is straightforward.
Abelard and Eloı̈se can also easily add new techniques by
implementing new state machines and test several input con-
figurations for each of them.

CONCLUSION
The jBricks framework extends and integrates state-of-the-
art structured graphics and input management toolkits to en-
able the rapid development of post-WIMP applications for
cluster-based wall displays equipped with advanced input
devices and modalities. Its architecture and features enable
easy deployment and reconfiguration, allowing developers
to partially implement and debug their applications on con-
ventional hardware such as a single laptop or workstation.

We have successfully used jBricks for the rapid prototyp-
ing of novel interaction and visualization techniques, and
to run controlled experiments for their evaluation [16]. It
is also used for the development of various applications for
the visualization of large datasets in other disciplines: as-
trophysics, social network analysis, geospatial intelligence.
The Java-based platform makes it easy to use existing li-
braries in client applications. In addition, ZVTM features
several extension modules that enable, e.g., the layout of
large networks, the visualization of treemaps, native high-
quality PDF rendering, FITS astronomy image display, inter-
active navigation in OpenStreetMap, from world overview
down to street level. Future work will focus on improving
the Java2D/OpenGL rendering pipeline by optimizing the
stream of instructions. The implementation of a higher-level
communication protocol, based on HID definitions on top
of OSC, will improve dynamic input device registration and
configuration. jBricks will be made available under an open-
source software license (http://insitu.lri.fr/JBricks).

ACKNOWLEDGEMENTS
We wish to thank Caroline Appert and Olivier Chapuis for helpful com-
ments on early drafts of this paper. This work is supported by a Région
Île-de- France / Digiteo grant.

REFERENCES
1. C. Andrews, A. Endert, and C. North. Space to think: large

high-resolution displays for sensemaking. In Proc. CHI ’10,
55–64. ACM, 2010.

2. C. Appert and M. Beaudouin-Lafon. SwingStates: Adding
state machines to Java and the Swing toolkit. SP&E,
38(11):1149 – 1182, 2008.

3. C. Appert, S. Huot, P. Dragicevic, and M. Beaudouin-Lafon.
FlowStates: Prototypage d’applications interactives avec
des flots de données et des machines à états. In Proc. IHM
’09, 119–128. ACM, 2009.

4. R. Ball, C. North, and D. Bowman. Move to improve: pro-
moting physical navigation to increase user performance
with large displays. In Proc. CHI ’07, 191–200. ACM, 2007.

5. R. Ballagas, M. Ringel, M. Stone, and J. Borchers. istuff:
a physical user interface toolkit for ubiquitous computing
environments. In Proc. CHI ’03, 537–544. ACM, 2003.

6. B. Bederson and J. Meyer. Implementing a zooming user in-
terface: experience building pad++. SP&E, 28:1101–1135,
August 1998.

7. B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit Design
for Interactive Structured Graphics. IEEE Trans. Software
Eng., 30(8):535–546, 2004.

8. A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker,
and C. Cruz-Neira. VR Juggler: A Virtual Platform for Vir-
tual Reality Application Development. In Proc. VR ’01, 89.
IEEE, 2001.

9. P. Dragicevic and J.-D. Fekete. Support for input adaptabil-
ity in the icon toolkit. In Proc. ICMI, 212–219. ACM, 2004.

10. S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer:
A Scalable Parallel Rendering Framework. IEEE TVCG,
15(3):436–452, 2009.

11. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski. Chromium: a stream-
processing framework for interactive rendering on clusters.
ACM Trans. Graph., 21(3):693–702, 2002.

12. S. Huot, C. Dumas, P. Dragicevic, J.-D. Fekete, and
G. Hégron. The MaggLite post-WIMP toolkit: draw it, con-
nect it and run it. In Proc. UIST ’04, 257–266. ACM, 2004.

13. B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguil-
era, A. Johnson, and J. Leigh. High-performance dynamic
graphics streaming for scalable adaptive graphics environ-
ment. In Proc. SuperComputing. ACM, 2006.

14. W. König, R. Rädle, and H. Reiterer. Interactive design
of multimodal user interfaces. J Multimod. UI, 3:197–213,
2010.

15. M. Lorenz, G. Brunnett, and M. Heinz. Driving tiled
displays with an extended chromium system based on
stream cached multicast communication. Parallel Comput.,
33(6):438–466, 2007.

16. M. Nancel, J. Wagner, E. Pietriga, O. Chapuis, and
W. Mackay. Mid-air pan-and-zoom on wall-sized displays.
In Proc. CHI ’11. ACM, 2011. In press.

17. T. Ni, G. S. Schmidt, O. G. Staadt, M. A. Livingston,
R. Ball, and R. May. A Survey of Large High-Resolution
Display Technologies, Techniques, and Applications. In
Proc. VR ’06, 223–236. IEEE, 2006.

18. E. Pietriga. A Toolkit for Addressing HCI Issues in Visual
Language Environments. In Proc. VL/HCC’05, 145–152.
IEEE, 2005.

in
ria

-0
05

82
64

0,
 v

er
si

on
 2

 - 
13

 A
pr

 2
01

1

http://insitu.lri.fr/JBricks

	Introduction
	Background and Motivation

	jBricks Framework Architecture
	Structured Graphics
	Advanced Input & Interaction
	Input handling
	Interaction configuration


	jBricks in Action
	Conclusion
	REFERENCES 

