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With its low-cost, label-free and non-destructive features, Raman spectroscopy is
becoming an attractive technique with high potential to discriminate the causative agent
of bacterial infections and bacterial infections per se. However, it is challenging to
achieve consistency and accuracy of Raman spectra from numerous bacterial species
and phenotypes, which significantly hinders the practical application of the technique.
In this study, we analyzed surfaced enhanced Raman spectra (SERS) through machine
learning algorithms in order to discriminate bacterial pathogens quickly and accurately.
Two unsupervised machine learning methods, K-means Clustering (K-Means) and
Agglomerative Nesting (AGNES) were performed for clustering analysis. In addition,
eight supervised machine learning methods were compared in terms of bacterial
predictions via Raman spectra, which showed that convolutional neural network (CNN)
achieved the best prediction accuracy (99.86%) with the highest area (0.9996) under
receiver operating characteristic curve (ROC). In sum, machine learning methods can
be potentially applied to classify and predict bacterial pathogens via Raman spectra at
general level.

Keywords: surface enhanced Raman spectra, bacterial pathogen, machine learning, convolutional neural
network, long short-term memory

HIGHLIGHTS

- Surface-enhanced Raman spectroscopy (SERS) has the potential to be used for detecting
bacterial pathogens in clinical settings.

- Pretreatment of SERS spectra facilitates the increment of signal-to-noise ratio and increases
the accuracy of bacterial detection rate.

- All machine learning algorithms showed their capacities in pathogen clustering and species
discrimination via SERS spectra.

- Convolutional neural network showed highest accuracy and robustness in discriminating
bacterial pathogens in terms of SERS spectral analysis.
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INTRODUCTION

Infectious diseases frequently cause major public health threats
and risks due to long-standing, emerging, and re-emerging
bacterial pathogens (Bloom and Cadarette, 2019), while rapid
and accurate identification of the causing bacterial agents
could greatly improve therapeutical effectiveness and reduce
host mortality (Caliendo et al., 2013). Although conventional
methods are reliable and accurate in clinical diagnosis of
bacterial infections, they mainly rely on culture-based testing and
biochemical analysis that yield results in days or up to weeks
after sampling, not even mentioning the fastidious and viable
but non-culturable (VBNC) bacterial species under laboratory
conditions (Järvinen et al., 2009). Recently, matrix-assisted
laser desorption-ionization time of flight mass spectrometry
(MALDI-TOF MS) is emerging as an important tool in bacterial
identification in clinical laboratories due to its rapidity, reliability,
and cost-effectiveness (Singhal et al., 2015). However, MALDI-
TOF MS also suffers disadvantages such as lack of a complete
spectra database for known bacteria and inaccuracy of bacterial
discrimination at genus, species and sub-species levels like
Shigella and Escherichia coli, etc. (Sloan et al., 2017). Thus,
advanced and diverse detection methods should be developed in
order to facilitate the rapid and accurate diagnosis of bacterial
infections in clinical settings.

Raman spectroscopy is a non-destructive chemical analysis
based on interactions between the light and chemical bonds
within a material, which could generate detailed fingerprinting
spectra for a particular biological sample (Orlando et al., 2021).
Cumulative studies show that Raman spectroscopy (RS) has
the potential to rapidly analyze clinical samples and efficiently
identify bacterial species in simple procedures (Ho et al., 2019).
However, because of the intrinsically weak signal of Raman
effect, surface enhanced Raman spectroscopy (SERS) has been
developed for the analysis of biological samples, which not only
greatly improves the detection capacity of bacterial pathogens but
also opens new directions for the detection of analytes at very low
concentrations (Kuhar et al., 2018). Due to the complexity of the
raw Raman spectral data, traditional statistical methods are not
sufficient for data analysis and pattern recognition (Wang et al.,
2021), which hinders the application of Raman spectroscopy in
the field of infectious diseases. With the assistance of advanced
computational methods like machine learning methods, it would
be possible for the promising technique to overcome current
challenges and gradually realize its real-world applications in
clinical laboratories for the detection of bacterial pathogens.

In this study, we analyzed a group of 15 bacterial
pathogens belonging to different genera through SERS spectra.
All the Raman spectra were processed to calculate average
Raman spectrum for each bacterial genus, together with the
corresponding characteristic peaks. In order to discriminate these
bacteria efficiently, two representative unsupervised machine
learning methods, K-means and agglomerative nesting (AGNES)
were then applied to the spectral data for bacterial clustering.
Moreover, three classic supervised machine learning methods,
Random Forest (RF), Decision Tree (DT), and Support Vector
Machine (SVM), together with five deep learning algorithms,

Multilayer Perceptron (MLP), Convolutional Neural Network
(CNN), Recurrent Neural Networks (RNN), Gate Recurrent
Unit (GRU), and Long Short-term Memory (LSTM) were
implemented to all the bacterial SERS spectra, the results of
which were compared in terms of their prediction accuracies,
sensitivities and specificities. In order to evaluate the robustness
of supervised machine learning methods, artificial noise signals
were added to the SERS spectra and the prediction accuracies
were compared among algorithms, which revealed that CNN
had the best capacity in terms of noise interference during
species predictions. In sum, this study confirmed that Raman
spectroscopy has the potential in clustering, discriminating
and predicting bacterial pathogens from different bacterial
genera in clinical settings with the assistance of machine
learning algorithms.

MATERIALS AND METHODS

Bacterial Strains and Chemical Materials
A total of 15 clinical bacterial pathogens studied in this
experiment were directly isolated from clinical samples and
cultured on Columbia blood agar (35◦C, 18–24 h) at the
Department of Laboratory Medicine, Affiliated Hospital
of Xuzhou Medical University, which included six isolates
of Achromobacter xylosoxidans (n = 610), nine isolates of
Burkholderia cepacian (n = 600), 4 isolates of Chryseobacterium
indologenes (n = 690), one isolate of Corynebacterium
glucuronolyticum (n = 600), seven isolates of Elizabethkingia
meningoseptica (n = 601), 20 isolates of E. coli (n = 38), five
strains of Micrococcus luteus (n = 601), five isolates of Moraxella
catarrhalis (n = 600), seven isolates of Morganella morganii
(n = 130), five isolates of Myroides odoratimimus (n = 610),
two isolates of Neisseria flavescens (n = 601), three isolates of
Providencia rettgeri (n = 601), two isolates of Pseudomonas
putica (n = 100), 18 isolates of Serratia marcescens (n = 569),
and nine isolates of Vibrio parahaemolyticus (n = 600). The
letter n represents the total number of SERS spectra for all the
isolates of the same bacterial species. All bacterial pathogens
were cultured, isolated, and then identified using MALDI-TOF
MS and stored in freezer (Thermo Fisher Scientific, Waltham,
MA, United States) at −80◦C. Morphological, physiological, and
clinical features of these bacterial pathogens were summarized
in Supplementary Table 1. During analysis, all the strains were
thawed, inoculated onto and cultivated on standard Columbia
Blood Agar (CBA) for 24 h at 37◦C. Single colonies were then
randomly selected and mixed with negatively-charged silver
nitrate nanoparticle (AgNO3) substrate for SERS study. For
the preparation of the AgNO3 substrate, please refer to the
procedures described by Tang et al. (2021).

Surface-Enhanced Raman Spectroscopy
A single bacterial colony was mixed with 15 µL phosphate
buffer saline (PBS) via vortexing, which was then mixed
with 15 µL negatively-charged silver nanoparticle substrate
solution. The mixed solution was placed onto silicon wafer
and left on clean bench to air-dry completely. The commercial
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Raman spectrometer i-Raman R© Plus BWS 465-785H (B&W
Tek, Plainsboro, United States) was used to measure the dried
spot on the silicon wafer. Measurement parameters were set as
following: excitation light source wavelength at 785 nm; laser
power: 20 mW. Detection parameters were set as following: (1)
spectrum acquisition: 5 seconds; (2) detector type: high quantum
efficiency CCD array; (3) Raman shift range: 65-2800 cm−1; (4)
resolution: less than <3.5 cm−1 at 912 nm. Finally, signals ranged
from 519.56–1800.81 cm−1 were captured, which consisted of
657 value points in total for each spectrum.

Average Raman Spectra and
Characteristic Peaks
Removal of Outlier Raman Spectra
In this study, all the SERS spectral data for each clinical
isolate were obtained from Raman spectrometer via the software
BWSpec 4.02 (B&W Tek, United States). We identified outliers
in the raw SERS spectra via variance contribution rate. The
procedure was implemented through the PCount() function
in the mvoutlier package of the R programming language
(Filzmoser et al., 2008). Supplementary Table 2 showed the
number of SERS spectra before and after outlier analysis.

Average Raman Spectra
By calculating the repeated Raman intensity of all samples under
the same Raman shift for each bacterium, the average value
of the intensity at the Raman shift was obtained, and then
the average intensities at all the Raman shifts were calculated
to generate the average Raman spectrum of the particular
bacterial species. By following this procedure, 15 average Raman
spectral curves were obtained, and the standard deviation (SD)
of each average spectral line was calculated. Both average SERS
spectra and 20% SD band were visualized by the origin software

(OriginLab, United States). The width of the error band shows
the reproducibility of Raman spectra for each bacterial species.

Identification of Characteristic Peaks
In order to discriminate the differences among different bacterial
species through the SERS spectra, average Raman spectral
curves was preprocessed through software LabSpec 6 (HORIBA
Scientific, Japan), which included spectral smoothing, denoising,
baseline correction, and normalization. After that, characteristic
peaks in each average Raman spectrum were then identified.
The specific parameter settings were Degree = 4, Size = 5 and
Height = 50. The smooth function was used to denoise the
spectrum. For the baseline correction, the parameters were set
as type = Polynom, Degree = 6, Attach = No, and then the
Auto function was applied to perform baseline fitting. Finally,
the LabSpec software was used to fit the characteristic peaks.
GaussLoren function was used with parameters set to Level = 13%
and Size = 19 while other parameters were set by default. The
normalization operation was performed for better comparing the
curves of different bacterial species. The function search was used
for the identification of characteristic peaks.

Surface-Enhanced Raman Spectroscopy
Spectral Preprocessing for Machine
Learning Analysis
Before machine learning analyses, raw SERS spectra excluding
outliers require a series of pre-processing steps, which includes
spectral smoothing and denoising, baseline correction and
normalization. Through preprocessing of SERS spectra, data
quality was significantly improved and data dimensionalities
were reduced, which greatly facilitated further statistical analysis
of Raman spectra via supervised and unsupervised machine
learning algorithms.
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Smoothing and Denoising of Raman Spectra
Curve smoothing and denoising were performed to remove noise
signals in SERS spectra caused by dark current and fluctuation
of the external environment in order to improve the signal-to-
noise ratio (SNR). There were a variety of filtering algorithms that
could effectively reduce noise interference in the Raman spectra,
which included moving window averaging and Savitzky-Golay
filters and so on. In this study, Savitzky-Golay filtering method
in the Unscrambler R© X software was used, which was a weighted
average method highlighting the effect of the center point and
calculating the filter value with a window. In particular, it is
noteworthy that the number of points on both the left and right
of the center point was set to three while the derivative order was
set to two during data analysis procedures.

Baseline Correction and Spectral Normalization
Due to the noise interference in Raman spectroscopy, it was
necessary to perform baseline correction on Raman spectra.
Commonly used baseline correction methods include polynomial
fitting based on least squares and asymmetric least squares (Baek
et al., 2015). In this study, we used the Baseline function under
Transform in the software Unscrambler R© X to perform baseline
correction of previously smoothed SERS spectra. For parameter
setting, Rows and Cols were set to All, and the Method was set
to Baseline offset. In addition, each SERS spectrum in this study
contains 657 Raman shifts. In order to remove the influences of
signal intensities in the spectral data among different samples of
the same species, max-min normalization by column for each
spectrum was used.

Machine Learning Analysis
Unsupervised Machine Learning
This study used two clustering algorithms to evaluate whether
SERS spectral data belonging to 15 bacterial species were
separable. SERS spectra were first pre-processed via removal
of abnormal spectra, curve smoothing and denoising, baseline
correction, and normalization as described above. Principal
component analysis (PCA) was then applied to identify the
principal components according to their cumulative contribution
values, and only principal components with contribution
value greater than 95% were retained. That is, the top m
principal components whose cumulative variance contribution
rate reached 95% were kept. Two clustering algorithms, K-means
and AGNES were used to analyze the dimensionality-reduced
SERS spectral data via Python sklearn package. The n_cluster
parameter of the two clustering algorithms was preset to 15,
and the linkage parameter of AGNES was set to ward, which
minimized the sum of squared distances between all clusters.

Supervised Machine Learning
This study constructed and compared three classical supervised
machine learning algorithms (RF, DT, SVM) and five deep
learning algorithms (MLP, CNN, Simple RNN, GRU, LSTM)
in terms of their capacities in predicting Raman spectra into
different bacterial species, through which the best model(s) were
identified. The pre-processed SERS spectra for each bacterial
species were divided into training set, validation set and test set

by following the ratio of 6:2:2 while the labels in the dataset were
converted into the one-hot encoding form. In particular, one-hot
encoding mainly uses N-bit state registers to encode N states.
Each state has its own independent register bits, and only one
bit is valid at any time. In simple terms, it is the representation
of a categorical variable as a binary vector. Except for the integer
index representing the variable, all other values are 0, while the
variable is marked as 1.

Deep learning methods included two models, CNN and RNN,
in which MLP had a special CNN network structure while
SimpleRNN and GRU were simplified LSTM model (Figure 1).
In particular, CNN model consisted of one input layer, six
convolutional layers with convolution kernel sizes of 5∗1 and
3∗1, three maximum pooling layers, one fully connected layer
and a softmax output layer that achieved 15-dimensional outputs.
As for MLP, its network structure consisted of one input layer,
four fully connected layers and one output layer. The activation
function was selected as relu. In specificity, the framework of
MLP neural network model in this study included an input
layer, three hidden layers and an output layer. Each hidden
layer is paired with a dropout layer. The rate of dropout is
0.2 while the activation function of each hidden layer is used
relu. For the output layer, units are set to 15, and the activation
function selects softmax for multi-classification. Dropout layer
was mainly used to prevent curve overfitting and enhance the
generalization ability of the model. As for LSTM, SimpleRNN
and GRU, the three RNN modes were composed of three RNN
layers, two Dropout layers and a fully connected layer. All
the machine learning models were fitted and trained on the
training dataset, and their optimized parameters were listed in
Supplementary Table 3.

Accuracy rates (ACC) were compared in terms of prediction
abilities of different supervised machine learning algorithms on
SERS spectra. In order to verify the reliability of ACC, 5-fold
cross-validation was also performed, which could eliminate the
adverse effects of unbalanced data divisions. Moreover, this study
also used F1-score (F1) as an additional metric, which was
equivalent to the harmonic average of Precision (Pre) and Recall.
The larger F1 was, the better the model performance was. Similar
to accuracy and recall rate, receiver operating characteristic
(ROC) curve also functioned as a measurement of the model
quality. The optimal machine learning model was then selected
based on all the above-mentioned indicators. In order to assess
how many bacterial genera were misjudged as other genera, this
study also used a confusion matrix of CNN to quickly visualize
the proportion of misclassified genera.

Robustness of Machine Learning Models
Addition of noises to existing Raman spectral data could evaluate
the performance of different models in terms of their predicting
capacities. In this study, we added artificial noise with different
signal-to-noise ratios (SNRs) to the pre-processed data set in
order to test model robustness. The specific process was as
follows: set different values of SNR in advance (SNR = 1, 2, 3,
5, 15, 25, 35); generate the required input noise D randomly
(Formula 1); calculate SNR through dividing the signal power
(Power of Signal, PS, Formula 2) with noise power (Power of
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Nosie, PN, Formula 3); calculate the required noise ND (Formula
4) through PN and D; and the noisy signal (NS, Formula 5) was
finally obtained.

D = dmax −

∑n
i= 1 di

n
(
di ∈ (0, 1)

)
(1)

PS =
∑
|x|2 (2)

PN =
PS

10
SNR
10

(3)

ND =
√

PN√∑n
i= 1(D−µ)2

n

∗ D (4)

NS = ND + x (5)

In the above-listed formula, di was the randomly generated signal,
dmax was the maximum value of the randomly generated noise
signal, x was the original Raman spectral signal data, n was the
number of random signals generated, and µ was the arithmetic
mean of n random signals.

RESULTS

Average Surface-Enhanced Raman
Spectroscopy Spectra and
Characteristic Peaks
In this study, we calculated mean signal intensity at each
Raman shift for a specific bacterial species to generate average
SERS spectra, with the addition of 20% standard error (SE)
band. The thinner the error band, the smaller the standard
deviation, and the higher the reproducibility of Raman spectrum.
After that, the software LabSpec was used to perform curve
smoothing and denoising, baseline correction, and normalization
operations on each average Raman spectrum. According to
the results, all bacteria showed smooth and distinct spectral
distributions with observable signal peaks at different Raman
shifts (Figure 2A). Through analyzing average SERS spectra
via the LabSpec software, it was shown that different bacterial
pathogens had their own species-specific combinations of
characteristic peaks (Figure 2B). In addition, according to
previous studies, characteristic peaks of Raman spectra could be
matched to metabolites (Tang et al., 2021; Wang et al., 2021).
The corresponding metabolites of all the characteristic peaks in
the SERS spectra of the 15 bacterial pathogens were found in
literature and are presented in Supplementary Table 4.

Clustering of Pathogenic Bacteria
Two common unsupervised machine learning algorithms,
K-means and AGNES, were used to classify the SERS spectral data
into different groups. According to previous studies, K-means
algorithm has already been successfully applied to analyse Raman
spectra of biological samples. As for AGNES, it is a hierarchical
clustering method that divides data into different sets through

successive fusion of a single object, which has also been widely
used in biological sample analysis. However, these two methods
were rarely used for Raman spectral analysis. In this study,
the clustering results of K-means and AGNES were shown in
the form a scattering dot diagram in Figure 3. In order to
quantify the clustering effects of the two methods, the metric
Rand Index was used to evaluate the performance of the two
algorithms. K-means algorithm achieved the highest score that
was only 27.4%. The possible reason might be due to that data
in the same Raman spectrum had large differences between the
maximum and minimum intensities, and the number of samples
of different bacterial pathogens were unevenly distributed, which
made K-means unable to fit correctly.

Prediction of Pathogenic Bacteria
Eight supervised machine learning algorithms were compared in
this study to explore their predictive abilities in the identification
of bacterial pathogens through the analysis of their SERS spectra,
which included CNN, DT, GRU, LSTM, MLP, RF, SimpleRNN,
and SVM. A total of four evaluation indicators, which were
accuracy (ACC), precision (Pre), Recall and F1, together with
5-fold cross-validation were used to evaluate the performance
of the eight algorithms. According to the results summarized in
Table 1, CNN had the highest prediction accuracy (99.86%), and
its five-fold cross-validation was the most robust with the overall
accuracy of 99.47%.

In order to evaluate the diagnostic abilities of a supervised
machine learning algorithm, a probability curve called receiver
operating characteristic (ROC) curve was drawn at various
threshold settings, through which sensitivities (true positive rate,
TPR) and specificities (false positive rate, FPR) for different
values of a continuous test were visualized (Hoo et al., 2017).
In the ROC curve, upper left corner indicated higher TPR and
lower FPR. Thus, regions in the ROC curves closer to the
upper left corner had larger sum of sensitivity and specificity.
In order to quantify TPR and FPR, the index area under the
curve (AUC) was calculated, according to which, the larger
the AUC value, the better the performance of a supervised
machine learning model. According to the results in Figure 4,
it was apparent that CNN had the highest AUC that was closely
followed by LSTM.

Confusion matrix is an evaluation table to quantify the
classification performance of machine learning algorithms by
using true class and predicted class. Each row of the matrix
represents the probability that the model predicts a true sample,
and each column represents the probability that the model
predicts an incorrect sample. Since CNN model achieved the
best performance in bacterial identification in this study, we
calculated its confusion matrix to provide further classification
details (Figure 5). According to the matrix, most of the bacterial
pathogens could be accurately discriminated by the CNN model
with 100% accuracy.

Robustness of Machine Learning
Methods
Noise sources could greatly compromise the quality of Raman
spectra, causing issues in computational analysis of the spectral
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FIGURE 1 | Schematic illustration of the network structures of deep learning algorithms. (A) Multi-layer perceptron model architecture. (B) Convolutional neural
network (CNN) model architecture. (C) Network structure of three recurrent neural networks (RNN) models.

data and leading to inaccurate determination of specimen
composition (Tuchin et al., 2017). However, it is not known
to what degree that noises could influence the performance of
machine learning algorithms. In order to check the impacts
of noises on Raman spectral analysis, artificial noise intensity
was added to the pre-processed SERS spectra at 1, 2, 3, 5, 15,
25, and 35 dB, respectively. Eight different machine learning
algorithms were used to analyze the modified spectra, and the
effects of noises on these models were assessed via prediction

accuracy. According to the results shown in Figure 6, CNN
maintained a consistently high and stable prediction accuracy
at different noise intensities, which was followed by LSTM and
GRU. The prediction accuracies of three algorithms were kept
above 95%, showing good and stable performance during spectral
data analysis. It could also be seen that the prediction accuracies
of RF and DT models were less than 75% when SNR was equal
to 1 or 2, which indicated that performance robustness of RF and
DT models were poor with low SNRs.
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FIGURE 2 | Average Raman spectra and the corresponding characteristic peaks of 15 bacterial pathogens isolated from clinical samples. (A) Average surfaced
enhanced Raman spectra (SERS) spectra of 15 different clinical bacterial pathogens. Shaded part in each spectrum was 20% error band. (B) Dot plot distribution of
characteristic peaks in the Raman spectra for 15 bacterial pathogens.

DISCUSSION

Traditional methods for the detection of bacterial pathogens
mainly rely on culture and biochemical tests to perform

bacterial discrimination and phenotypic profiling, which, in
spite of their high accuracies, are generally time-consuming
and laborious while advanced molecular methods such as PCR
and ELISA require specially designed primers or antibodies
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FIGURE 3 | Schematic illustration of the clustering results of 15 bacterial pathogens used in this study via K-means and agglomerative nesting (AGNES).
(A) K-means. (B) AGNES. Dots with different colors represented different bacterial pathogens as indicated by the figure legends on the right.

and have relatively high costs and/or false positive rates
(Wang et al., 2021). For the newly developed high-throughput
sequencing technology, although the cost of sequencing has
dropped significantly, complex sample preparation procedures
and data analysis processes have limited its wide application in
clinical laboratories for routine diagnosis of bacterial pathogens
(Deurenberg et al., 2017). As a sensitive, low-cost, label-free,
and non-destructive technology of biological sample analysis,
Raman spectroscopy has potential in promoting fast diagnosis
of bacterial pathogens, though it is still considered as a novel
technology and is too arbitrary to ascertain that RS can be applied
in clinical settings at any time soon because a gap between
basic research and clinical implementation still exists for the
methodology (Wang et al., 2021).

Although SERS spectra have higher signal intensity and data
quality than Raman spectra, they still need to be preprocessed
in order to improve the performance of computational analysis
(Xiong and Ye, 2014; Tang et al., 2021). In addition, due

to the complexity of Raman spectral data, the classical linear
method is no longer suitable for its spectral data analysis
(Lussier et al., 2020). In this study, we aimed to understand

TABLE 1 | Comparative analysis of the predicative capabilities of eight machine
learning algorithms on surfaced enhanced Raman spectra (SERS) spectral data
belonging to 15 bacterial pathogens.

Algorithms ACC Pre Recall F1 5-Fold CV

CNN 99.86% 99.91% 99.91% 99.93% 99.47%

LSTM 98.87% 98.87% 92.20% 98.74% 96.76%

RF 98.71% 98.77% 98.80% 98.77% 98.35%

GRU 98.61% 97.91% 97.93% 97.92% 89.68%

SVM 97.30% 97.30% 97.08% 97.28% 97.93%

SimpleRNN 96.43% 96.91% 95.89% 95.91 83.63%

DT 96.01% 97.96% 97.53% 97.95% 97.48%

MLP 95.17% 96.07% 95.54% 95.86% 96.84%
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FIGURE 4 | Comparison of receiver operating characteristic curve (ROC) curves via area under the curve (AUC) values for eight supervised machine learning
algorithms.

the intrinsic differences among Raman spectra belonging to
15 bacterial pathogens through comparing the classification
and prediction abilities of both unsupervised and supervised
machine learning algorithms. Previously, PCA combined with
HCA was successfully applied to cluster Staphylococcus aureus
and E. coli into different groups (Boardman et al., 2016). In
addition, Weng et al. (2018) applied K-means to urine samples for
automatic filter of dynamic spectra and rapid detection of drugs
in urine, while Geng et al. (2021) used hierarchical clustering
analysis (HCA) to differentiate neural stem cells accurately
through label-free Raman spectroscopy. In this study, we used
two clustering algorithms, KMeans and AGNES, to classify the
15 bacterial pathogens. Pathogenic bacteria were clustered in
Figure 3. However, due to the uneven distribution of the spectral
data of different bacterial pathogens and the complex SERS
spectral data, the clustering effects were not ideal, indicating
that more advanced calculation methods were needed for further
investigations. In addition to this, more data corresponding
to distinct isolates and a more even representation of isolate
variability within each species are issues that should be addressed
in future research.

As for the prediction of bacterial species, we used three
traditional machine learning algorithms (RF, DT and SVM) and
five deep learning algorithms (CNN, GRU, LSTM, MLP, and
SimpleRNN) to analyze SERS spectral data. Although many
supervised machine learning algorithms were applied to the
analysis of Raman spectra (Riva et al., 2021), few studies
systematically compared the classification and prediction of
multiple algorithms among clinical pathogens belonging to

different genera. Previously, Tang et al. compared 10 supervised
machine learning algorithms in terms of performance on 2,752
SERS spectra from 117 Staphylococcus strains belonging to nine
clinically important Staphylococcus species, according to which
all supervised machine learning models achieved good prediction
results while CNN topped all other models and accurately
predicted Staphylococcus species with the highest accuracy at
98.21% (Tang et al., 2021). In this study, our results suggested that
the deep learning algorithm CNN had the best performance on
SERS spectra (accuracy = 99.86%) for the prediction of bacterial
species at general level (Table 1).

When dealing with low-dimensional data in small volumes,
it is convenient to pick-up outlier values through inter-quartile
range (IQR) analysis. However, the method is time-consuming
and labor-intensive when applied to large-scale data and is
not suitable for high-dimensional data analysis. Common
methods for processing high-dimensional data include
Mahalanobis distance, robust Mahalanobis distance and
principal component measurement method (PCout). In
particular, the Mahalanobis distance method could evaluate
whether a spectrum is an outlier or not by comparing the
distances of all the corresponding points between the tested
spectra and all other spectra one by one (De Maesschalck
et al., 2000). However, the method is not robust because
individual outliers will cause the mean vector and covariance
matrix to shift toward wrong direction, leading to abnormal
Mahalanobis distance and misidentified outliers; in contrast,
robust Mahalanobis distance method constructs a robust mean
and covariance matrix estimator through iteration to identify
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FIGURE 5 | Confusion matrix of the convolutional neural network (CNN) model for 15 different bacterial pathogens. The rows in the confusion matrix represented the
true categories of predictions, while the columns represented the categories of the incorrect predictions. The probability of correct prediction (diagonal) and the
probability of incorrect prediction (off-diagonal) were all present in the matrix.

FIGURE 6 | Schematic illustration of the influences of different signal-to-noise ratio on the prediction accuracies of eight machine learning algorithms. X-axis shows
different machine learning models. Y-axis represents prediction accuracy of machine learning algorithms under different signal-to-noise ratios. Lines with different
colors represent noises intensities. The smaller the signal-to-noise ratio (SNR) value, the more noise added to the spectra and the worse the data quality.

outliers, which is able to solve the problem (Cabana et al., 2019).
As the dimensionality increases, the distribution of data
in the coordinate system will become increasingly sparse,
leading to mis-judgement of real-data and increases and

insufficiency of outlier identification through distance methods.
Thus, in this study, we recruited PCount() function in the
mvoutlier package of the R programming language for outlier
identification and removal.
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It should also be noted that SERS spectral preprocessing
was important in reducing the noise signals and improving the
predictive ability of the model. Noise in signals was unavoidable
for Raman spectroscopy because of factors such as fluctuations
of environmental conditions, sample contaminations, and
background fluorescence, etc., leading to the generation of
abnormal spectra data that compromised data quality (Xiong and
Ye, 2014; Tuchin et al., 2017). Thus, in this study, artificial noises
were added to SERS spectra to objectively evaluate the robustness
of the model. According to the result in Figure 6, it was found
that CNN maintained a consistently high and stable prediction
accuracy at different noise intensities, indicating that the CNN
had strong robustness in classification and prediction of different
pathogens. Further research should focus on directly identifying
bacterial pathogens from clinical samples such sputum, blood
and urine, etc., which is very challenging and will greatly facilitate
the application of Raman spectroscopy in the clinical settings.

CONCLUSION

Raman spectroscopy has been widely investigated in terms of
its capacities in rapid diagnosis of bacterial pathogens such
as species discriminations, antibiotic resistance detections and
toxin identifications, etc. However, there is no rationale to
claim that Raman spectroscopy is applicable for microbiologists
and clinicians in real-world situations because a wide gap
still exists between basic research and clinical implementation.
In this study, we used surface enhanced Raman spectroscopy
combined with unsupervised and supervised machine learning
algorithms to detect 15 bacterial pathogens sourced from clinical
samples. According to the results, SERS could accurately identify
bacterial pathogens at general level with comparatively high
specificity and sensitivity through the assistance of machine
learning methods. Comparative analyses of all the supervised
machine learning algorithms used in this study revealed that
the deep learning algorithm CNN had the best prediction
performance. In addition, CNN also topped other algorithms
in terms of robustness when dealing with SERS spectra with
artificially added noises. However, there are still many machine
learning algorithms that have not been explored and should be
investigated in future studies. For example, when the sample
datasets are limited, a generative adversarial network can be
used to amplify data amount while for datasets with more
Raman shifts and higher dimensions, wavelength selection could
be used, which is conducive to identify and select important
bands for down-stream analysis. Moreover, standardized Raman
spectroscopy database with reproducible spectra for clinically
important pathogens should also be constructed, which could

greatly improve the implementation of Raman spectroscopy in
clinical environments. Taken together, Raman spectroscopy is a
promising technique with potential for label-free detection and
non-invasive identification of clinical pathogens, which is worthy
of extensive explorations in future studies.
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