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Rear-end collision crash is one of the most common accidents on the road. Accurate driving style recognition considering rear-
end collision risk is crucial to design useful driver assistance systems and vehicle control systems. 
e purpose of this study is to
develop a driving style recognition method based on vehicle trajectory data extracted from the surveillance video. First, three rear-
end collision surrogates, Inversed Time to Collision (ITTC), Time-Headway (THW), andModi�ed Margin to Collision (MMTC),
are selected to evaluate the collision risk level of vehicle trajectory for each driver. 
e driving style of each driver in training data is
labelled based on their collision risk level using K-mean algorithm.
en, the driving style recognition model’s inputs are extracted
from vehicle trajectory features, including acceleration, relative speed, and relative distance, using Discrete Fourier Transform
(DFT), Discrete Wavelet Transform (DWT), and statistical method to facilitate the driving style recognition. Finally, Supporting
VectorMachine (SVM) is applied to recognize driving style based on the labelled data.
e performance of Random Forest (RF), K-
NearestNeighbor (KNN), andMulti-Layer Perceptron (MLP) is also comparedwith SVM.
e results show that SVMoverperforms
others with 91.7% accuracy with DWT feature extraction method.

1. Introduction

Driving style refers to the ways that drivers choose to
habitually drive and the driver states that represent the
common parts of varied driving behavior [1]. Driving style
of drivers plays an important role in driving safety as well
as vehicle energy consumption. Di�erent driving styles may
lead to di�erent possibilities for trac incidents. Recognition
of a driver’s driving style based on rear-end collision risk
is of great signi�cance to improve the safety of driving.
With the development of connected autonomous vehicles
and Advanced Driver Assistance System (ADAS), there is
an urgent demand for enhancing recognition of driving
style. It is not only important to guarantee the safety and
adequate performance of drivers, but also essential to meet
drivers’ need, adjust to the drivers’ preference, and ultimately
improve the safety of the driving environment. Driving style
recognition also has potential value to help trac agencies
design control strategies e�ectively [2, 3].


e availability of high-de�nition surveillance camera
makes it possible to collect numerous vehicle motions from

real world trac �ow. 
e advanced video extraction so�-
ware can extract vehicle trajectory data accurately and e-
ciently from the surveillance video. 
e technologies provide
a good opportunity to recognize driving style using the video-
extracted vehicle trajectory data. Moreover, the machine
learning technique is playing a crucial role in driving behav-
ior recognition. A growing amount of studies on machine
learning algorithms have been conducted in recent years [4–
7]. 
is paper builds a driving style recognition model based
on vehicle trajectory data. Four supervised machine learning
algorithms, including Supporting Vector Machine (SVM),
RandomForest (RF), K-NearestNeighbor (KNN), andMulti-
Layer Perceptron (MLP), are used in model training. A
new method based on rear-end collision risk is proposed
to label the driving style of each driver in the sample data.

ree feature extraction methods, including Discrete Fourier
Transform (DFT), Discrete Wavelet Transform (DWT), and
statistical method, are also adopted to extract the most
e�ective features of driving style recognition.

To the best knowledge of the authors, there are three
main contributions in this paper: (1) 
is paper proposes
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Table 1: Comparison of di�erent driving behavior data collection approaches.

Collection Approaches Advantages Disadvantages

In-vehicle camera [29–33],
sensors, hardware [10, 24]

Real-world driving data; high-accuracy
data; Access to driver’s personal data and

vehicle control data

Expensive and time consuming; Lack of
data in extreme and dangerous driving

condition

Driving simulator [24–26]
Collect drivers’ behavior in designed and

controlled driving scenarios

Driving behavior observed in the simulator
may not always correspond to real-world

driving

Trac video [35–37]
Low expense; Easy to collect enormous
vehicle data in a short time; Observe
vehicle interaction in real trac �ow

Video extraction is challenging; No access
to driver’s personal data and vehicle

control data

Smartphone-based method [52–55]
Real-world driving data; Low expense in

the smartphone
Data accuracy is critical

a new method based on rear-end collision risk to evaluate
driving style. 
e trajectory of each driver is divided into
segments with di�erent risk level by the threshold of rear-end
collision surrogates. (2)
eDFT,DWT, and statistical feature
extraction methods are all applied on vehicle trajectory data,
and their performance is compared. (3) 
is paper builds a
driving style recognition model based on vehicle trajectory
data with 92.7% accuracy rate. 
e recognition results of
SVM and other popular classi�cation algorithms including
RF, MLP, and KNN are compared.


is paper is organized as follows. Section 2 presents the
related work on driving behavior data analysis and machine
learning algorithms. Section 3 introduces the data analyzed
in this paper. Section 4 details the driving style recognition
method implemented in this paper. Section 5 shows the
results and discussion. Section 6 concludes this paper and
raises the possible future work.

2. Literature Review

In recent years, the machine learning algorithms applied
to the driving behavior recognition have been studied in
many previous works. Di�erent types of neural network
(NN) algorithms have been used. Molchanov et al. [8]
proposed a convolutional deep neural network (CDNN) to
recognize the risky driving. Other types such an arti�cial
neural network (ANN) [9] and pulse coupled neural network
(PCNN) [10] were adopted to classify the driving behaviors.
In the study by Srinivasan [11], the e�ectiveness of three
types of NN methods was compared. 
e results show
that the Multi-Layer Perceptron (MLP) model can achieve
excellent classi�cation results. However, the learning rate
of NN is dicult to be determined, resulting in higher
possibility to be trapped in local minima. A larger size of
the network could lead to a long training time [12]. 
e
tree-like structures including decision tree algorithm [13] and
Random Forest algorithm [14] are also adopted to detect
the driving behaviors according to the extracted features.
Some researchers proposed Hidden Markov Model (HMM)
to e�ectively detect dangerous driving behaviors. Berndt et al.
[15] established the HMM to identify lane change, steering,
and follow-up intention. 
e recognition accuracy of le�-
change and right-change is, respectively, 76% and 74%.Meng
et al. [16] trained the HMM by collecting driver’s operation

data on acceleration pedal, brake pedal, and steering wheel
to recognize the driver’s pro�les online. Some researchers
also combined the HMM with dynamic Bayesian networks
or ANN to predict the driving behavior by learning the
driving data [17, 18]. While HMM requires long training
time, especially for a high number of states, the recognition
time also increases with the number of states [19]. 
erefore,
a more suitable and e�ective method should be found to
identify the driving style. SVM has been widely applied to
various kinds of pattern recognition problems, including
voice identi�cation, text categorization, and face detection
[6, 20, 21]. In addition, SVM performs well with a limited
number of training samples, and SVM has fewer parameters
to be determined [22, 23]. 
erefore, many studies employed
SVM to build driving style recognition models [24–28].

Along with machine learning algorithms, driving behav-
ior data collection is crucial to the success of driving style
recognition. Table 1 summarizes the advantage and the
disadvantages of di�erent driving data collection approaches.
Researchers used instrumented vehicles to conduct nat-
uralist driving experiments to identify behaviors [29–31].
Some instrumented vehicles were equipped with in-vehicle
mounted cameras to capture video images of drivers [32, 33],
while others got help from specialized hardware and sensors
to acquire throttle opening, pedal brake, wheel steering, vehi-
cle speed, acceleration rate, and yaw rate [10, 24]. Although
the driver controlling data and vehicle kinematic data can
be collected on the instrumented vehicles, the requirement
of expensive devices and sensors is a major obstacle to large
scale naturalist driving experiments. In addition, extreme
driving conditions, like extreme weather and driving under
the in�uence, could be unobservable in naturalist driving
studies. Some research adopted driving simulators to collect
driving behavior data [24–26] in the designed and controlled
driving environment. However, the results heavily relied
on the �delity and validity of the driving simulator used
in research, because the driving behavior observed in the
simulator may not always correspond to real-world driving.

Besides Naturalist Driving Studies (NDS) and driving
simulator, another important data source is trac video,
because surveillance cameras deployed on the roadside can
provide a large amount of trac environment data and
vehicle trajectory data [34]. Trac video contains all vehicle
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trajectory data on the road and can o�er a full view of
vehicle’s interactions with other during car-following and
lane-change, etc. However, extracting vehicle trajectory from
video could be challenging, which depends on video quality
and algorithms used [35–37].

Except for unsupervised machine learning algorithms,
for example, clustering, other machine learning algorithms
require labelled or partially labelled driving behavior data. In
the �eld of driving style recognition, the method of driving
style labelling for each driver in the sample is of great
importance to the reliability of the recognition model. 
ere
are severalmethods to label driving style.One is the behavior-
based or accident-based method. 
e driver’s driving style
depends on risky behavior or accident happened during
observation. Chen et al. [20] de�ned the dangerous driving
behaviors according to criteria as frequent lane changes,
abrupt double lane change, and illegal lane occupation.

e accidents data are also adopted to determine the risk
level of driving behavior [38]. However, risky behavior or
accident is hardly observable in daily trac.
erefore, driver
self-reported questionnaire [39] and expert scoring [13] are
also adopted to evaluate driving style. However, these two
methods rely on subjective judgments of drivers or experts
and can be very time-consuming when the number of drivers
in the sample is hundreds or even thousands. Some research
used the facial movement or driving duration to label driver’s
drowsiness or fatigue driving [9, 10]. 
e unsupervised
clustering methods including the K-means [40] and fuzzy
clustering [41] are also used to label drivers in each clustering
group.


is paper proposes a new driving data labelling method
based on collision surrogates. 
ere are many e�ective
surrogates to evaluate the collision risk [42, 43]. Mahmud et
al. [44] compared the advantages and disadvantages between
temporal proximity indicators, i.e., Time to Collision (TTC),
Time to Accident (TA), Time-Headway (THW), and distance
based proximal indicators, i.e., Margin to Collision (MTC),
Proportion of Stopping Distance (PSD). Many automobile
collision avoidance systems or driver assistance systems used
TTC as an important warning criterion for its theoretical
and reliable reasons [45–47]. Since TTC can not handle zero
relative speed in car-following, the Inversed TTC (ITTC) was
adopted to measure the collision risk [41]. THW is another
surrogate used to estimate the criticality of a follow-up
situation, which is applicable in all trac environments [44].
MTC provides the possibility of con�ict when the preceding
and following vehicle at the same time decelerate abruptly
[48].Modi�edMTC (MMTC) considers the reaction time for
drivers when preceding vehicle abruptly decelerates. 
ese
three surrogates can be adopted to label the driving style
corresponding to di�erent rear-end collision e�ectively.

In this paper, the vehicle trajectory data extracted from
trac video is analyzed to study the driving style. 
ree
surrogates, i.e., ITTC, THW, and MMTC, are used to e�ec-
tivelymeasure the rear-end collision risk and label the driving
style. 
is labeling method is more ecient and objective
compared with questionnaires [10] and expert scoring [20].

en the SVM is applied to build a driving style recognition
model. 
e vehicle trajectory features are extracted using

the Discrete Fourier Transform (DFT), Discrete Wavelet
Transform (DWT), and statistical methods.
e performance
of SVM is also compared with RF, KNN, andMLP.
is paper
provides an ecientmethod to identify driving style based on
the trajectory data.

3. Data

A high-�delity vehicle trajectory dataset, Next Generation
Simulation (NGSIM), was collected by U.S. Federal Highway
Administration (FHWA) in 2005. 
is dataset is still widely
used in transportation research, especially in trac �ow anal-
ysis and modelling, trac-related estimation and prediction,
and vehicular ad hoc network-related studies [49]. It has
rarely been applied to driving style recognition. Since this
dataset was collected more than a decade ago, the accuracy
of NGSIM dataset was questioned in recent years [50]. 
e
measurement errors in NGSIM dataset were found to be far
beyond negligible, partially due to low-resolution cameras
and mis-tracking of vehicles from video images. Montanino
et al. [51] removed outliners and noise and reconstructed the
I-80 dataset 1 (from 4:00 p.m. to 4:15 p.m.), which showed
signi�cant improvement over the original NGSIM dataset.

In this paper, the I-80 trajectory dataset is adopted to
study driving style. 
e trajectory data was collected on
a segment of I-80 freeway in Emeryville, California. 
e
segment contains 6 lanes, where lane 1 is a high occupancy
vehicle (HOV) lane.
e frequency of data collection is 10Hz,
and each leader-follower pair of dataset contains detailed
information including the vehicle ID, position, length, and
width of the vehicle, velocity, acceleration, lane ID, and
following and preceding vehicles. About 206,000 records of
vehicle trajectory for 370 Leader-follower Vehicle Pairs (LVP)
on HOV lane are chosen to study the driving style in this
paper since there are fewer interrupting vehicles from other
lanes.

4. Methodology


e �ow of driving style recognition in this paper is depicted
in Figure 1. 
ree collision risk surrogates are used to
determine the risk level of every moment in the car-following
process for each LVP. K-means algorithm is applied to
group the drivers as normal or aggressive driving style based
on their trajectory risk levels. Given the labeled driving
data, driving style recognition model is built using machine
learning algorithms. 
e input features of machine learning
algorithms are extracted by DFT, DWT, and statistical meth-
ods from trajectory features, without using surrogates and
risk levels. 
e recognition results recognized by SVM are
compared with other machine learning algorithms.

4.1. Collision Risk Surrogates. For each driver, it is essential
to �nd the most e�ective surrogates to describe the collision
risk when driving on the road. Vehicle trajectory data such as
velocity and acceleration of the vehicle usually are not good
enough to estimate the rear-end collision risk.
ree collision
surrogates are considered to measure the collision risk,
including Time to Collision (TTC), Time-Headway (THW),
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Figure 1: Research methodology framework.

and Margin to Collision (MTC). 
ese three collision risk
surrogates are de�ned and modi�ed as follows.

Inversed Time to Collision (ITTC). TTC is the predicted time
to collision between the preceding vehicle (PV) and following
vehicle (FV) when two vehicles remain the current relative
velocity.

��� = −��
V�
= −
(�� − ��)
(V� − V�)

(1)

where �� and V� denote relative distance and velocity
between two following vehicles, respectively. �� and ��
denote the front position of FV and rear position of PV,
respectively. V� and V�, respectively, denote the velocity of
FV and PV, respectively. However, TTC can be very large
with lower relative velocity for two following vehicles, which
happened a lot in the real driving environment. To reduce the
scope of TTC, the ITTC is adopted to measure the collision
risk in the paper. 
e risk of rear-end collision is higher with
larger ITTC value.

���� = 1��� (2)

Time-Headway (THW). THW indicates the time for FV to
reach the present position of PVwith the current velocity.
e
potential collision risk of drivers is determined by THW in
the steady vehicle following situation.

��	 = −��
V�
= −
(�� − ��)

V�
(3)


e potential collision risk can be evaluated by THW when
FV approaches PV with constant V�. Lower THW indicates a
higher potential collision risk.

�e Modi�ed Margin to Collision (MMTC). MTC indicates
the �nal relative position of PV and FV if two vehicles
decelerate abruptly.

MTC =
(−�� + 
�)

�
=
(−�� − V2�/2��)
(−V2�/2��)

(4)

where af and ap denote the deceleration for FV and PV,
respectively. Usually, both are de�ned as 0.7�. A modi�ed
MTC (MMTC) is used in the paper to include the reaction
time of the following vehicle when the PV abruptly deceler-
ates. 
e equation is modi�ed as follows.

MMTC =
(−�� + 
� − 
�)

V�

=
(−�� − V2�/2�� + V2�/2��)

V�

(5)

MMTC evaluates the minimum reaction time needed for
FV to avoid a collision when PV abruptly decelerates at 0.7�.
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e collision risk is higher with lower MMTC value since
there is little time for drivers to react. MMTC can evaluate
potential collision risk with abrupt deceleration of PV.

4.2. Driving Style Clustering. 
e threshold values of surro-
gates are adopted to divide the trajectory of each driver into
several collision risk levels. 
en the K-means method is
used to group the drivers into normal or aggressive driving
style based on their components of collision risk levels. 
e
purpose of the method is to provide an objective and stable
label of driving style for each driver in the sample data and
then make it ready to use in supervised machine learning.

Assume that there are � sets of driving data, and each set
consists of v dimensional features denoting ��, which belongs
to a class ��. 
erefore, the driving data of each driver can
be described as {��, ��}. 
e K-means method �nds the best
class �� for each driving data. 
e objective function of the
K-means algorithm is to minimize the total in-class error
squares shown as follows.

min
�
∑
�
∑
�∈��

�����(�, ��) − (�̂�, ��)
�����
2

(6)

where � is the number of classes. (�̂�, ��) is the mean vector of
all points in class ��.

4.3. Trajectory Feature Extraction. In this paper, the vehicle
acceleration af, relative distance xr, and relative velocity vrare
adopted to recognize the driving style. 
e Discrete Fourier
Transform (DFT), Discrete Wavelet Transform (DWT), and
statistical method are used, respectively, to extract the e�ec-
tive features from the vehicle acceleration af, relative distance
xr, and relative velocity vr.

4.3.1. Discrete Fourier Transform. DFT has been applied to
convert time series of trajectory data to signal amplitude in
the frequency domain [7]. 
e DFT of a given time series
(�1, �2, . . . , �	) is de�ned as a sequence of N complex
numbers (���0, ���1, . . . , ���	−1):

���� =
	−1
∑

=0
�
�(−(2��/	)�
) (7)

where � is the imaginary unit. 
e �rst 10 DFT coecients of
trajectory data are used to recognize the driving style.

4.3.2. Discrete Wavelet Transform. DWT is shown to be
more suitable to analyze and decompose a given signal in
some studies [54]. 
is paper follows the DWT method
described in [54] and uses the energy of approximation sub-
time series and detail sub-time series, which are decomposed
from vehicle acceleration af, relative distance xr, and relative
velocity vr, to recognize the driving style.

4.3.3. Statistical Method. 
e key statistical parameters that
can capture most of the distribution information of vehicle
acceleration af, relative distance xr, and relative velocity vr

Table 2: Pearson correlation analysis of ITTC, THW, and MMTC.

Surrogate THW MMTC ITTC

THW 1 .980∗∗ -.240∗∗

MMTC .980∗∗ 1 -.385∗∗

ITTC -.240∗∗ -.385∗∗ 1

∗∗: signi�cant correlation at 0.01 level (bilateral).

are also selected for recognition.
e statistical parameters are
themaximum,minimum,mean, standard deviation, and 85%
percentiles, which were proved useful in previous driving
behavior study [20].

4.3.4. Feature Combinations. For each driver, during car-
following process, there are three time series: acceleration af,
relative distance xr, and relative velocity vr. 
is paper tries
7 di�erent feature combinations as the input of driving style
recognition model:

Single-source features: use only one time series out of
acceleration af, relative distance xr, and relative velocity vr,
and extract features from this time series.

Two-source features: use two time series out of accelera-
tion af, relative distance xr, and relative velocity vr.
erefore,
there are three combinations: af + xr, xr + vr, and vr + af.
Features are extracted from two time series separately.

�ree-source features: use all three time series and
extract features from three time series separately.

5. Results and Discussion

5.1. �e Sample Data Labelling

5.1.1. �rehold Value of Collision Risk Surrogates. 
e corre-
lation analysis among three surrogates is shown in Table 2.

Table 2 shows that the Pearson coecient between THW
and MMTC is 0.980, indicating a strong positive correlation.
ITTC and THW have a weak negative correlation. 
erefore,
ITTC and THW are selected to measure driving behavior
risk. 
e classi�cation result will not be in�uenced by the
adopting of THW instead of MMTC because of the strong
correlation between the two surrogates.

To make a reasonable adjustment on collision risk along
the car-following process, each surrogate has a risk threshold
that can be obtained through the probability density distribu-
tion and �tting results of ITTC, THW shown in Figure 2.

Figure 2(a) shows the �tting results of ITTC, THW by
adopting three distributions, i.e., normal distribution, logistic
distribution, and � distribution. 
e t distribution achieves
a better �tting performance than other two distributions
on probability density distribution of ITTC and THW.

erefore, the � distribution is adopted to determine the
threshold value of features. 
e percentile values of ITTC
are shown in Figure 2(b). 
e 25%, 45%, 65%, 85%, and
95% percentile values of ITTC are 0.02, 0.08, 0.12, 0.19, and
0.28 s−1, respectively. 
e 25%, 45%, 65%, and 85% percentile
values of THW are 1.26, 1.71, 2.13, and 2.73 s, respectively.

ITTC. 
e upper threshold of ITTC is 0.28 s−1, which is
equivalent to 3.5 s for TTC. Previous studies show that
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Figure 2: Fitting results and thresholds of surrogates.

the desirable TTC is 4 s for urban road [46] and 3.5 s for
nonsupported drivers [45]. 
e desirable TTC for signalized
intersection and two-lane rural roads is 3 s [47]. 
erefore,
3.5 s is adopted in this paper as the rear-end collision risk
threshold. When TTC is lower than 3.5 s, the FV is labeled
as having a higher collision risk.

THW. Since a lower THW indicates a higher collision risk,
the author �rst chose the 25% percentile, which is 1.26 s.
However, many road administrations in European countries
recommend a safe THW of 2 s [48]. 
e THW below 2 s may
cause uncomfortable driving feelings and potential risk for
drivers. Finally, 2 s is used as the threshold value for THW in
this study.

5.1.2. Trajectory Risk Level. 
e threshold values of ITTC and

THW, i.e., 0.28 s−1 and 2 s, are used to divide the driving
trajectory into di�erent risk levels. To be more speci�c,
the di�erent values of ITTC and THW are corresponding
to di�erent driving risk level. 
e driving trajectory for
each driver can be divided into four risk levels: safe, low-
risky, high-risky, and dangerous driving behavior, shown in
Figure 3.

Safe Driving Behavior. 
e FV has THW above 2 s and ITTC

below 0.28 s−1, which indicates that the FV keeps low velocity
and a large gap with the PV at car-following state.

0.28 0.50

2.0

6.0

THW (s)

Dangerous

Low-risk

High-risk

Safe

）４４＃ (Ｍ
−1
)

Figure 3: 
e threshold values of surrogates indicating di�erent
driving risk.

Low-Risky Driving Behavior. 
e FV has THW above 2 s and

ITTC above 0.28 s−1, which indicates that the FV keeps low
velocity and a small gap with the PV at car-following state.

High-Risky Driving Behavior. 
e FV has THWbelow 2 s and

ITTC below 0.28 s−1, which indicates that the FV remains
high velocity and a large gap with the PV at car-following
state.

Dangerous Driving Behavior. 
e FV has THW below 2 s and

ITTC above 0.28 s−1, which indicates that the FV remains
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Figure 4: Trajectory segments for four drivers based on threshold values of ITTC and THW.

high velocity and a small gap with the PV at car-following
state.


e driving trajectory of each driver can be divided
into several segments, which belongs to di�erent driving
risk levels. Two drivers are selected to show the trajectory
segments according to the threshold values of ITTC and
THW, shown in Figure 4.

As Figure 4 shows, formost drivers, the safe and high-risk
driving behaviors account for over 80% of driving trajectory.

e proportion of dangerous driving and low-risk driving
behaviors is limited to 10% and 5%, respectively. 
e driving
style of each driver can be determined by the proportions of
trajectory segments with di�erent risk levels. 
e 370 drivers
are clustered into two groups in Section 5.1.3.

5.1.3. Driving Style Clustering. Based on the proportions of
trajectory segments determined by the threshold values of
ITTC and THW, the drivers can be grouped into two classes
using the K-means algorithm. 
e results show one class has
246 drivers and the other has 124 drivers. On average, drivers
in the �rst class have 45.5% safe driving behavior, 37.5%
high-risk driving behavior, and 11.4% dangerous driving
behavior, and drivers in the second class have 7.4% safe
driving behavior, 77.8% high-risk driving behavior, and 13.5%
dangerous driving behavior. 
erefore, drivers in the �rst
class are labelled as normal drivers, while drivers in the
second class are labelled as aggressive drivers. 
e driving
style labels provided by K-means are used to train SVM in
Section 5.2.

5.2. Driving Style Recognition. 
e SVM method is adopted
to recognize the driving style for 370drivers. In this paper, the
trajectory data including the vehicle acceleration af, relative
distance xr, and relative velocity vr are adopted to recognize
the driving style, respectively. 
e DFT, DWT, and statiscal
methods are both applied to extract e�ective features from
trajectroy data. Every single feature can also be combined
with other features as multisource features to recognize the
driving style. 
e recognition accuracy rates are compared
to �nd the best feature extraction method and the most
important trajectory features. 
e z-score method is adopted
to standardize features before model training.

In the study, the accuracy, precision, and recall rates are
assessed to evaluate themodel’s ability to recognize aggressive
drivers among all vehicles on the road. 
e performance of
the recognition model is evaluated using the “leave-one-out”
cross-validation method. Driving style recognition results
based on di�erent feature extraction methods and SVM are
shown in Tables 3–7. Except mentioned, the SVM algorithm
uses linear kernel function.

5.2.1. Discrete Fourier Transform. Shown in Table 3, the
recognition accuracy rate is 83.2% based on vrand 88.9%
based on xr. 
e recognition accuracy rate is 88.9% based
on xr and af, and 87.8% based on xr and vr. In general,
the features xr and vr are better than �� in recognizing the
driving style. A possible reason is that the driving style label
is determined by the rear-end collision risk, the feature af
can not accurately describe the relative motivation between
two following vehicles. 
e accuracy rate based on all three
features can achive 87.6%. Suprisingly, using DFT coecients
of xr along has the highest accuracy rate.

5.2.2. Discrete Wavelet Transform. For DWT, there are two
parameters to be determined, which could a�ect the per-
formance of the recognition model. One is an appropri-
ate wavelet mother function; the other is the number of
decomposition levels. 
is paper tried 15 di�erent wavelet
mother functions (listed in Table 4) and 5 decomposition
levels (listed in Table 5). 
e results show that Daubechies
4 mother function can generate the highest accuracy rate:
91.7%. 
e best decomposition level is 1, while decomposing
time series further does not help to improve the accuracy
rate.

With Daubechies 4mother function and 1 decomposition
level, SVM performance is assessed with di�erent combina-
tions of features. Shown in Table 6, the recognition accuracy
rate is 83.8% based on vr and 86.8% based on xr. 
erefore,
when using xr along in SVM, DFT extraction method works
better than DWT. 
e recognition accuracy rate is 88.7%
based on xr and af and 90.2% based on xr and vr. 
e
accuracy rate based on all three features can achive 91.7%.
Compared with DFT coecients, DWT methods also get
higher precision rate 92.8% and higher recall rate 81.8%.
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Table 3: 
e evaluation results of driving style based on SVM using DFT.

Features Accuracy Precision Recall

�� 67.0% 55.0% 17.5%

V� 83.2% 80.2% 67.5%

�� 88.9% 86.3% 80.2%

�� + V� 83.2% 80.8% 66.7%

V� + �� 87.8% 86.5% 76.2%

�� + �� 88.9% 84.6% 82.5%

�� + V� + �� 87.6% 85.1% 77.0%

Table 4: 
e accuracy of driving style recognition using DWT-SVMwith di�erent wavelet mother functions.

Wavelet Mother Accuracy Wavelet mother Accuracy Wavelet mother Accuracy

Daubechies 1 90.3% Symlet 1 90.3% Coi�et 1 90.8%

Daubechies 2 90.0% Symlet 2 90.0% Coi�et 2 90.3%

Daubechies 3 91.1% Symlet 3 91.1% Coi�et 3 89.7%

Daubechies 4 91.7% Symlet 4 89.7% Coi�et 4 90.0%

Daubechies 5 91.1% Symlet 5 90.5% Coi�et 5 88.4%

Table 5: 
e performance of DWT-SVM with di�erent decompo-
sition levels.

Decomposition
Level

Accuracy Precision Recall

1 91.7% 92.8% 81.8%

2 90.5% 91.0% 80.2%

3 86.5% 83.3% 75.4%

4 87.0% 83.1% 77.8%

5 85.1% 80.8% 73.8%

5.2.3. Statistical Method. Driving style recognition results
based on the features extracted by statistical method and
SVMare shown inTable 7.With any combinations of features,
the accuracy rate of the statistical method is lower than that
based onDFT and DWT.
e highest accuracy rate in Table 7
is 85.7% when adopting three features.

5.2.4. Machine Learning Algorithms. 
is section tests the
performance of four machine learning algorithms: RF, MLP,
KNN, and SVM using all three features and DWT method.

e accuracy, precision, and recall rates are listed in Table 8.
SVM outperforms other machine learining algorithms. Ran-
dom Forest is the second best algorithm. MLP gives the
highest recall rate among all candidates. KNN, as the sim-
plest classi�cation method, unsurprisingly obtains the worst
performance.

6. Conclusion

In this study, a novel driving style labelling method is
proposed to assign normal and aggressive labels based on
collision risk, which is critical to sample data needed in
supervised machine learning. 
e method is based on the
vehicle trajectory extracted from trac video. 
e rear-
end collision risk surrogates are adopted to evaluate the

risk during the car-following process. 
e study also applies
the SVM algorithm to recognize the driving style based
on the trajectory features. 
ree feature extraction methods
are tested. Other machine learning algorithms including RF,
MLP, and KNN are also adopted to compare with the SVM.
Several conclusions can be obtained from this study.

(1) 
ree e�ective rear-end collision risk surrogates,
namely, ITTC, THW, and MMTC, are selected to evaluate
the collision risk in the car-following process. Since THW
and MMTC show a strong positive correlation, only ITTC
and THW are kept to evaluate driving risk level. 
is paper
gives threshold values of ITTC and THW based on their
distribution and previous studies. Each driver’s trajectory
can be divided into four risk levels, and all drivers can be
grouped into two classes using the K-means algorithm. Using
NGSIM dataset, this method labels 246 normal drivers and
124 aggressive drivers. On average, normal drivers have 45.5%
safe driving behavior, 37.5% high-risk driving behavior, and
11.4%dangerous driving behavior, and aggressive drivers have
7.4% safe driving behavior, 77.8% high-risk driving behavior,
and 13.5% dangerous driving behavior.

(2) DFT, DWT, and statistical methods are adopted to
extract the e�ective features from trajectory data to facilitate
the driving style recognition. Using relative distance along
DFT method can convert relative distance time series into
coecients in the frequency domain and help SVM reach
the accuracy rate of 88.9%, the precision rate of 86.3%,
and the recall rate of 80.2%. However, when using multiple
features, including acceleration, relative distance, and relative
speed, DWTmethod can improve the accuracy rate to 91.7%,
precision rate to 92.8%, and recall rate to 81.8%. Among
15 wavelet mother functions tested, Daubechies 4 mother
function provides the best results.

(3) 
e driving style can be accurately recognized by the
proposed SVM model based on the trajectory features with
91.7% accuracy rate. 
e recognition accuracy is superior to
other famous and frequently used classi�ers: RF, MLP, and
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Table 6: 
e evaluation results of driving style based on SVM using DWT.

Features Accuracy Precision Recall

��∗ 69.5% 74.1% 15.9%

V� 83.8% 83.0% 65.9%

�� 86.8% 88.1% 70.6%

�� + V� 82.4% 81.4% 62.7%

V� + �� 90.2% 90.2% 80.2%

�� + �� 88.7% 89.6% 75.4%

�� + V� + �� 91.7% 92.8% 81.8%

∗: using polynomial kernel function in SVM to produce better results.

Table 7: 
e evaluation results of driving style based on SVM using the statistical method.

Features Accuracy Precision Recall

��∗ 66.2% 51.6% 12.7%

V� 79.7% 72.6% 65.1%

�� 83.5% 80.4% 68.3%

�� + V� 78.7% 71.2% 62.7%

V� + �� 83.2% 79.6% 68.3%

�� + �� 84.6% 79.5% 73.8%

�� + V� + �� 85.7% 79.2% 78.6%

∗: using polynomial kernel function, in SVM to produce better results.

Table 8: 
e performance comparison of multiple algorithms.

Features Algorithm Accuracy Precision Recall

�� + V� + ��

RF 91.6% 89.2% 82.0%

MLP 88.1% 73.0% 87.3%

KNN 87.6% 85.7% 76.2%

SVM 91.7% 92.8% 81.8%

KNN. 
is result indicates that the SVM method is a more
appropriatemethod for driving style recognition based on the
trajectory features.

(4) 
e proposed method can be e�ectively used to label
and recognize the driving style based on the trac video
surveillance systems.
e development of network connected
vehicles can help to collect the data more preciously. 
e
model with machine learning algorithm can be trained to
better recognize driving style. It can help to evaluate the
collision risk on the road network and also provide real-time
decision support to drivers.


is study o�ers the possibility of developing more
sophisticated driving style recognition methods. For further
work, the proposed method can be extended by selecting
other features that can re�ect the driving style more accu-
rately. As we know, the driving style is also in�uenced by the
road conditions and trac �ow level. Such results can also be
used to improve the driving style recognition. It is possible to
use some semi-supervised and unsupervised methods to save
the label time in the future.
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