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Abstract. An efficient and inexpensive sulfated polyborate catalyst was applied for the rapid synthesis of
quinoxaline derivatives from various substituted o-phenylenediamines and 1,2-diketones/α-hydroxy ketones
using sulfated polyborate is described. The catalyst has the advantage of Lewis as well as Bronsted acidity and
recyclability without significant loss in catalytic activity. The key advantages of the present method are high
yields, short reaction times, solvent-free condition, easy workup, and ability to tolerate a variety of functional
groups, which give economical as well as ecological rewards.
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1. Introduction

The importance of quinoxaline and its derivatives has
been reported in the literature.1 Quinoxaline deriva-
tives are valuable for their wide spectrum of biological
activities viz antiviral,2 anticancer,2 antibacterial,3 anti-
depressant,4 antiamoebic,5 anticonvulsant,6 antima-
larial,7 anti-inflammatory-antioxidant,8 antiprotozoal
activity,9 and activity as kinase inhibitors.10 They are
basic scaffolds for various insecticides, herbicides,
and fungicides.3 In addition, several antibiotics such
as actinomycin, echinomycin, levomycin and triostins
bear quinoxaline nucleus.11 Quinoxaline moiety is also
part of bioactive natural products like Izumiphenazine-
C.12 Other applications of quinoxaline as fluorescent
dyes,13 electroluminescent materials,14 organic semi-
conductors,15 cavitands,16 DNA cleaving agents1 have
been reported. Because of such a widespread applica-
tions of quinoxaline compounds in medicinal as well
as industrial fields, it remains an attractive target for an
organic chemist to develop new synthetic methods for
the preparation of quinoxaline derivatives.

The most common methods for the synthesis of
quinoxaline is condensation of aromatic 1,2-diamines
with 1,2-dicarbonyl compounds in refluxing ethanol or
acetic acid for 2–12 h with 34–85% yields.17 Over the
years, various improved methods have been developed
using grinding,18 microwave,19 sonication,20 ball mill
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heating,21 catalytic and reagent systems. Many catalysts
and reagents have also been reported such as sulfamic
acid,22 CuSO4.5H2O,23 amidosulfonic acid,24 polyani-
line sulfate,25 p-TSA,26 ionic liquid (Hbim)BF4,27 Mn
octahedral molecular sieves,28 Ga(OTf)3,29 Montmoril-
lonite K-10,30 Keggin-type heteropolyacids (H4SiW12

O40),31 Amberlyte-15,32 SnCl2,33 SnCl2/SiO2,34 Zr(DS)4,35

ZrO2 mixed metal oxide,36 iodine,37 silica bonded S-
sulfonic acid,38 silica supported SbCl3,39 Zn[(L)pro-
line,40 etc. Recently, many new improved methods were
also reported using silica gel,41 alumina,42 Sm(OTf)2,43

KHSO4,44 silica sulfuric acid in PEG,45 glycerol,46

CeCl3-7H2O in glycerin,47 triethylamine/O2,48 FeCl3/
morpholine,49 Ga(ClO4)3,50 p-TSA/H2O,51 graphite,52

sulfated TiO2,53 and PEG-400.54

Furthermore, many of these methods have some syn-
thetic advantages individually, but still suffer from one
or more limitations, such as the use of toxic organic
solvents, long reaction times, requiring anhydrous con-
ditions, use of expensive or corrosive reagents, strong
acids, strong oxidants, and toxic or expensive cata-
lysts, harsh reaction conditions, tedious workup and
most importantly unsatisfactory yields. Thus, develop-
ment of a safe, environmentally benign, mild, efficient,
and high yielding rapid reaction procedure using cost
effective and recyclable catalyst for the preparation of
quinoxalines is desirable.

A literature search revealed that boric acid cat-
alyzes many important organic transformations at a
temperature above 100◦C.55 57 Boric acid dehydrates
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Scheme 1. Schematic representation of sulfated polyborate catalyzed quinoxaline synthesis.

above 100◦C and converts to its polymeric forms,
which presumably are the active species catalyzing
the reaction.58,59 Dehydrative polymerization liberates
water molecules which may hamper the progress of the
reactions. This inspired us to develop a polymeric boric
acid catalyst with mild Bronsted acidity. To accomplish
this, boric acid was dehydrated at 200◦C to convert it
into its polymeric Lewis acid form and then sulfonated
using chlorosulphonic acid to introduce the mild Bron-
sted acid character. Boron is an electron deficient
element and electron withdrawing effect of adjacent
sulfate enhances its Lewis acidity, hence, it has both
Lewis as well as Bronsted acid characters (Scheme 1).

The development of a novel methodology which
serves green chemistry purpose by maximizing effi-
ciency and minimizing waste is currently in demand.
To achieve these objectives, herein we report sulfated
polyborate as a mild, efficient and eco-friendly catalyst
for synthesis of quinoxalines under solvent-free condi-
tion with high yields and short duration of times. The
catalyst was prepared from readily available boric acid,
as economic and non-toxic starting material. This is
the first report on the use of sulfated polyborate for
the synthesis of quinoxalines (Scheme 1). The catalyst
is environmentally benign due to its mild acidity and
non-toxic nature.

2. Experimental

2.1 Materials and methods

Melting points of all the compounds were recorded by
Analab ThermoCal melting point apparatus in the open cap-
illary tube and are uncorrected. The FTIR spectra (KBr) were
recorded on Shimadzu FTIR Affinity-1 Fourier Transform
Infrared spectrophotometer. 1H NMR spectra were recorded
on MR400 Agilent Technology NMR spectrometer using
tetramethylsilane (TMS) as an internal standard and DMSO-
d6 or CDCl3 as a solvent. Chemicals and solvents used were
of LR grade and purchased from SD fine, Avra Synthesis and
Spectrochem and used without purification. The purity deter-
mination of the starting materials and reaction monitoring

were accomplished by thin layer chromatography (TLC) on
Merck silica gel G F254 plates.

2.2 Preparation of sulfated polyborate

Sulfated polyborate catalyst was prepared from boric acid as
reported in the literature.60

2.3 General procedure for the synthesis of quinoxaline
derivatives

To a mixture of substituted o-phenylenediamines derivative
(2.0 mmol) and 1,2-diketone / α-hydroxy ketone (2.0 mmol),
was added sulfated polyborate (10 wt%). The reaction mix-
ture was stirred at 100◦C in an oil bath. The reaction was
monitored by thin layer chromatography (TLC). After com-
pletion of the reaction, the mixture was cooled to room
temperature and quenched by water. The resultant product
was filtered/extracted with EtOAc to get the product. Crude
products were either recrystallized from ethanol or purified
by column chromatography using silica as the stationary
phase and EtOAc: pet. ether as mobile phase. The products
obtained were known compounds and were identified by
melting point and 1H and 13C NMR spectroscopy. The
spectral data were compared with the literature values.

The catalyst was prepared and characterized by var-
ious analytical techniques such as potentiometric analy-
sis, Fourier transform infrared spectroscopy (FTIR), X-ray
diffraction (XRD), and scanning electron microscopy (SEM)
energy dispersive X-ray spectroscopy (EDAX).60

3. Results and Discussion

The acidity of the catalyst was determined by potentio-
metric titration in a mixture of water and glycerine (2:1)
against standard 0.1 N NaOH solution and the total con-
centration of H+ was found to be 19.5 mmol/g which is
due to both SO3H as well as associated B–O–H.

FTIR spectrum of the catalyst showed the presence
of a band at 3221 cm−1 corresponding to O–H stretch-
ing of B–O–H and at 1469 cm−1 for B–O stretching, and
bands at 1294 cm−1 for O = S = O asym. stretching,
1068 cm−1 for sym. stretching, 1004 cm−1 for S = O
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stretching of the SO3H group. Powder XRD pattern
showed significant peaks positioned at 2θ = 28.1◦

which confirms the presence of B–O bonds in the crys-
tal structure of the catalyst. EDAX shows boron: oxy-
gen: sulfur signal ratio of 30.32: 68.73: 0.96 wt% over
different areas.

Recently, we have reported the efficiency of sulfated
polyborate as a catalyst for one-pot multicomponent
synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones
via Biginelli60 reaction and synthesis of α-aminophos-
phinates via Kabachnik-Fields reaction61 both under
solvent-free conditions. Its ease of preparation, high
stability, mild acidity, and reusability prompted us for
exploration of its potential to catalyze other useful
reaction transformations.

In continuation of the development of greener, eco-
friendly catalysts for the synthesis of various hetero-
cycles, herein, we report sulfated polyborate used as
a catalyst for synthesis of quinoxalines from aromatic
1,2-diamines and 1,2-diketone/α-hydroxy ketone with
good to excellent yields (Scheme 2).

Initially, we designed our study to investigate the
suitability of sulfated polyborate as a catalyst at different
reaction conditions for synthesis of the quinoxaline deri-
vatives. An equimolar mixture of o-phenylenediamines,
a representative substrate and benzil were used

(Scheme 2). The effect of the catalyst loading on
time and yields of the reaction was assessed (Table 1,
entries 2–6). In the absence of the catalyst, the reaction
proceeded at 100◦C but it required longer time with
poor yield (Table 1, entry 1), while increased catalyst
loading resulted in an increased product yield with sig-
nificant reduction in reaction time. (Table 1, entries 2–
5). The catalyst loading beyond 10 wt% was not advan-
tageous (Table 1, entries 6). Hence, a 10 wt% catalyst
loading was optimum for further study.

Temperature played a significant role in the synthe-
sis of quinoxaline (Table 1, entries 5, 7 and 8). The
temperature effect was observed at ambient, 70◦C and
100◦C in presence of sulfated polyborate as a catalyst.
The reaction proceeded at 70◦C but took longer reaction
time with a lower yield (Table 1, entry 7). The reac-
tion did not proceed at room temperature (Table 1, entry
8), while it proceeded at 100◦C with increased prod-
uct yield in a shorter reaction time (Table 1, entry 5).
Therefore, 100◦C was chosen as optimum temperature
for the reaction. The effect of different solvents on yield
and time of the reaction was assessed (Table 1, entries
9–14). None of the solvents presented an advantage
over solvent-free condition. Therefore, the solvent-free
condition was regarded as the best for the cost and
ecological benefits.

Scheme 2. Synthesis of quinoxaline from o-phenylenediamines and benzil.

Table 1. Catalyst loading, temperature and solvent optimization study.

Catalyst Temperature Yielda

Entry (wt%) Solvent (◦C) Time (min) (%)

1. 0 solvent-free 100 320 52
2. 2.5 solvent-free 100 60 84
3. 5.0 solvent-free 100 30 90
4. 7.5 solvent-free 100 10 96
5. 10.0 solvent-free 100 5 99
6. 15.0 solvent-free 100 5 99
7. 10 solvent-free 70 60 50
8. 10 solvent-free RT 60 NRb

9. 10 water Reflux 60 95
10. 10 ACN Reflux 60 91
11. 10 THF Reflux 60 85
12. 10 Ethanol Reflux 60 89
13. 10 Toluene Reflux 60 93
14. 10 DMSO 100 60 94

aIsolated yield, bNo reaction.



144 Krishna S Indalkar et al.

Table 2. Efficiency of sulfated polyborate in comparison with polyborate and boric
acid.

Entry Catalyst Conditions Time (min) Yielda (%)

1. Sulfated polyborate solvent-free/100◦C 5 99
2. Polyborate solvent-free/100◦C 30 97
3. Boric acid solvent-free/100◦C 40 96

aIsolated yield.

Table 3. Substrate scope for quinoxaline synthesis.

Melting point (◦C)

Entry 1,2-Diamine (R) Diketone (R1) Time (min) Yielda (%) Obtained Literature

1. H C6H5 5 99 126–128 128–12952

2. 6-CH3 C6H5 5 98 113–115 112–11452

3. 5-CH3 C6H5 5 97 118–120 120–12162

4. 6-C4H9 C6H5 7 97 80–82 8363

5. 6-Cl C6H5 5 96 122–124 124–12662

6. 6-NO2 C6H5 10 95 187–189 188–19052

7. H CH3 3 99 111–113 109–11062

8. 6-CH3 CH3 3 98 93–95 94–9562

9. 5-CH3 CH3 3 98 74–76 76–7762

10. 6-C4H9 CH3 3 97 liquid NAb

11. 6-Cl CH3 3 96 94–96 92–9362

12. 6-NO2 CH3 7 96 132–134 130–13264

13. H H 3 99 31–33 29–3067

14. 6-CH3 H 3 98 liquid liquid67

15. 5-CH3 H 3 98 liquid 18–2068

16. 6-C4H9 H 3 97 liquid NAb

17. 6-Cl H 3 97 64–66 63–6465

18. 6-NO2 H 5 96 172–173 17466

aIsolated yields, bNot Available in literature.

Herein, the comparison of sulfated polyborate with
polyborate and boric acid is shown in Table 2, which
revealed that sulfated polyborate showed advantages
over its precursors with respect to time and yields
(Table 2).

To study the scope and generality of the present pro-
tocol, the optimized reaction conditions were applied
for the synthesis of a variety of quinoxaline deriva-
tives from substituted o-phenylenediamines and 1,2-
diketones in the presence of a sulfated polyborate
catalyst (Table 3, entries 1–18, Table 4, entries 1–
6). All the substrates gave excellent yields in short
reaction times. All reactions proceeded very cleanly
and no undesirable side reactions were observed,
while the reaction time for a 100% conversion of

the substrates and reaction yields of products were
highly dependent on the substituent. It was observed
that o-phenylenediamines with either electron donating
groups or electron withdrawing groups gave the corre-
sponding products in good to excellent yields. The dif-
ferences in the yields were very small but substrates
having electron-withdrawing groups gave lower yields
in increased reaction times compared to substrates hav-
ing electron-donating groups (Table 3, entries 1–18).
On the other hand, structurally diverse 1,2-diketone had
no significant effect on the yields and the reaction times.

The optimized protocol was also applied to the reac-
tion of α-hydroxy ketone, benzoin with substituted o-
phenylenediamines for the synthesis of quinoxalines
derivatives. The reaction gave lower yield with longer
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Table 4. Quinoxaline synthesis using benzoin under solvent-free condition.

Time Melting point (◦C)

Entry 1,2-Diamine (R) (min) Yielda (%) Obtained Literature

1. H 20 96 126–128 128–12952

2. 6-CH3 20 95 113–115 112–11452

3. 5-CH3 20 93 118–120 120–12162

4. 6-C4H9 20 94 80–82 8363

5. 6-Cl 20 92 122–124 124–12652

6. 6-NO2 30 89 187–189 188–19052

aIsolated yields.

Figure 1. Reusability of the catalyst.

reaction time presumably due to subsequent air oxidation
of 2,3-diphenyl-1,2-dihydroquinoxaline, an intermediate,
to give 2,3-diphenylquinoxaline (Table 4, entries 1–6).

The reusability of the catalyst in the model reac-
tion under solvent-free conditions at 100◦C was evalu-
ated. After completion of each cycle of the reaction, the
catalyst was recovered by adding water and the prod-
uct was filtered off. The filtrate was evaporated under
reduced pressure to recover the catalyst quantitatively.
The recovered catalyst was reused four times with no
significant loss in a catalytic activity (Figure 1).

4. Conclusions

In conclusion, sulfated polyborate is a mild, efficient,
eco-friendly and inexpensive catalyst for the synthesis of
quinoxalines of various substituted o-phenylenediamines
and 1,2-diketones/α-hydroxy ketones under optimal
conditions. Mild reaction conditions, shorter reaction
times, higher yields, ease of workup, recyclability of the

catalyst and environment-friendliness are the key fea-
tures of the present protocol. Moreover, this method has
the ability to tolerate a wide variety of substituents.

Supplementary Information (SI)

Full experimental details, 1H and 13C NMR spectra of com-
pounds are available in Supplementary Information at www.
ias.ac.in/chemsci.
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