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Rapid emergence of climate change in
environmental drivers of marine ecosystems
Stephanie A. Henson1, Claudie Beaulieu2, Tatiana Ilyina3, Jasmin G. John4, Matthew Long5, Roland Séférian6,

Jerry Tjiputra7 & Jorge L. Sarmiento8

Climate change is expected to modify ecological responses in the ocean, with the potential for

important effects on the ecosystem services provided to humankind. Here we address the

question of how rapidly multiple drivers of marine ecosystem change develop in the future

ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate

change-driven trends in multiple ecosystem drivers emerge from the background of natural

variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by

2050 under a ‘business-as-usual’ scenario. However, we also demonstrate that the exposure

of marine ecosystems to climate change-induced stress can be drastically reduced via climate

mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers

within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple

drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-

economic systems alike.
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M
arine ecosystems provide services of high socio-
economic value1, including the primary protein
source for one in seven of the world’s population2

and regulation of Earth’s climate via the uptake and storage of
atmospheric carbon dioxide3,4. However, climate change is
predicted to have profound consequences for marine
ecosystems, affecting both their structure and functioning, for
example, refs 5–7. The Intergovernmental Panel on Climate
Change (IPCC) identifies four principal climate drivers that affect
marine ecosystem structure, functioning and adaptive capacity8:
pH, temperature, oxygen concentration and food availability.
All four are subject to substantial perturbations in projections of
future climate change scenarios.

Research has generally focused on the potential negative effects
of climate change on marine ecosystems. For example, ocean pH
is reduced by increasing atmospheric CO2 concentration, which
may result in reduced viability of calcareous organisms, among
other effects5. Warming ocean temperatures are associated with
increased ocean stratification, which restricts nutrient supply to
photosynthetic organisms in surface waters9. The solubility of
oxygen and exchange of subsurface waters with the atmosphere
will also be reduced with warmer temperatures, driving lower
oceanic oxygen concentrations with potentially negative effects on
marine organisms10. Although regionally variable, the combined
effect of these changes is predicted to be an overall global decrease
in primary production (PP), which is the ultimate determinant of
food availability to marine ecosystems11. However, in some cases
positive (or neutral) responses to potential marine stressors have
been observed12,13, implying that uncertainty surrounding the
future of the marine ecosystem is large. Here we adopt the
terminology that a change in a potential stressor where the
ecosystem response is unknown (and may not necessarily be
negative) is termed a ‘driver’.

Although the projected climate change response over the
coming century in these environmental drivers is large, so is the
natural variability encountered by marine organisms, suggesting
that some species have the capacity to adapt or acclimate to
change5,14,15. Importantly though, natural variability occurs on
timescales of a few years (interannual variability) to millennia
(glacial–interglacial cycles), whereas climate change is essentially
a one-way street, so that associated changes in the marine
environment are unlikely to be reversed. Hence, climate change
will eventually push marine ecosystem drivers beyond the range
of natural variability, potentially resulting in migration of
species16, reorganization of ecological niches, the establishment
of novel climates14,17 and the requirement for socio-economic
systems to adjust to these changes so that livelihoods and human
well-being are protected.

In addition, marine ecosystem drivers rarely vary in isolation
and multiple factors may act additively or synergistically to increase
the impact of a single driver18–20. For example, ocean acidification
may alter the carbon to nitrogen ratio of sinking organic material
so that more oxygen is required for remineralisation21,22. Ocean
acidification may act in concert with rising temperatures to reduce
coccolithophore abundance or calcite production23. In turn, lower
pH and oxygen concentration can enhance temperature sensitivity
in corals24,25 and crustaceans26. The synergistic effects of multiple
drivers are challenging to investigate in field or lab studies, due to
the difficulties of undertaking multi-factorial experiments over
multiple generations. However, existing observational evidence
tends to suggest that co-occurring stress can add to or amplify the
effect of a single stressor18, as seen in a microalgal species grown in
96 experiments where population growth declined with the number
of environmental drivers27. Other studies have shown, however,
that multiple stressors can interact in unexpected ways, sometimes
resulting in a positive or neutral effect12,28. For example, warming

and ocean acidification have antagonistic effects on sea urchin
larval growth, resulting in minimal overall impact (although both
have a negative effect on larval abnormality29).

Although the response of the marine ecosystem to changing
drivers is not yet clear, it is nevertheless important to quantify
when, where and which combinations of stressors are likely to
occur. Of particular relevance for an organism’s ability to adapt to
a changing climate is the speed with which drivers of ecosystem
stress emerge from the background of natural variability30–32.
The environmental niche that organisms occupy roughly matches
the ambient conditions that they experience33,34, that is, the
organisms must be resilient to the range in natural variability.
Organisms must be adapted to at least the annual extrema in
conditions during winter and summer (the seasonal variability),
which in almost all locations exceeds interannual variability. The
more rapidly the system is pushed out of its natural range of
variability, the less time the organisms will have to adapt or
acclimate to the new conditions or migrate to more suitable areas.
Where rapid emergence of multiple drivers occurs, marine
ecosystems and dependent socio-economic systems may be
unable to adjust sufficiently quickly to avert disruption.

Here we examine how rapidly climate change signals in the
annual extrema of the drivers of ecosystem stress emerge from
the background of natural variability in several ocean properties
(sea surface temperature (SST), pH, PP and interior oxygen
content), focusing on when and where multiple drivers occur
simultaneously. Further, we investigate whether mitigation efforts
are able to slow the pace at which multiple drivers emerge. We
quantify when the climate change signal exceeds natural
variability in the principal drivers of marine ecosystem stress
identified by the IPCC under two climate change scenarios35:
a ‘business-as-usual’ scenario (RCP8.5)36,37 and a mitigation
scenario (RCP4.5). The mitigation scenario was chosen as
representative of a possible post-COP21 situation, as a result of
which nations submitted Intended Nationally Determined
Contributions to indicate their intended level of emissions post
2020. Even if achieved, these intended cumulative emissions
still imply a median warming of 2.6–3.1 �C by 2100 (ref. 38),
which is within the range of RCP4.5. Currently, global emissions
are tracking along the upper end of the IPCC scenarios, as
represented by RCP8.5 (refs 39,40).

Results
Time of emergence. Using a multi-model ensemble from
the CMIP5 archive (Supplementary Table 1), we construct time
series for each variable of annual maxima (for SST) or minima
(for pH, PP and oxygen) for the period 1860–2100 using
a combination of the historical runs (1860–2005) and future
scenarios (2006–2100)41. The start of the climate change signal
is defined as the year when conditions become persistently
uni-directional, and the time of emergence (ToE) is defined as the
year when annual extrema exceed the long-term trend
persistently for the remainder of the time series. The long-term
trend is presented in Supplementary Note 1; the ‘Methods’
section and Supplementary Fig. 1 provide more details on
ToE definition. The ToE presented here thus represents the
exposure of the ecosystem to conditions outside the range of
previously experienced seasonal variability. In contrast to
previous work on emergence of marine stressors, for example,
refs 11,42–44, we define natural variability using the seasonal
amplitude derived from monthly model output. (The same
analysis performed on annual mean model output results in
earlier ToE and more rapid pace of climate change;
Supplementary Note 2 and Supplementary Figs 2–6). We
recognize that variability on shorter timescales, such as diurnal
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or extreme event-related (for example, heatwaves, storms), can
also be pronounced and important45, but we are constrained here
by the temporal resolution of the available model output. In
addition, the coarse model grid (1�� 1�) eliminates small-scale
spatial variability. If natural variability is higher than we estimate
(but the trend is of similar magnitude) then ToE will be later than
we calculate.

The ToE is illustrated in Fig. 1a–d. The climate change
signals of pH and SST emerge very rapidly (global median of
1924 (±4.7 years) for pH and 2034 (±8.8 years) for SST;
±¼ inter-model s.d. on the global median). Indeed, the climate
change signal in pH already exceeds the bounds of natural
variability (ToEo2016) in 99% (±0.5%) of the open ocean. The
climate change signal in SST has also already emerged in the

subtropics and the Arctic. The climate change trends in PP and
interior oxygen content emerge later (global median of
2052 (±12 years) for oxygen and 2070 (±8.3 years) for PP).

The pace of climate change is represented here by the length of
time (in years) between the start of the climate change signal and
its emergence from the background natural variability (Fig. 1e–h).
The pace of change is uniformly very rapid in pH, occurring in
B25 years almost everywhere (see also Supplementary Fig. 7).
pH undergoes both a rapid pace of change and emerges early,
due to its very small interannual variability, and because a large
fraction of anthropogenic CO2 has been absorbed by the ocean46.
(Note however that in coastal waters, which are not resolved by
these global models, variability in pH is substantially greater47).
For SST, the pace is most rapid (o25 years) in subtropical
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Figure 1 | ToE and pace of climate change in ecosystem drivers. Multi-model median of the year when annual extrema exceed the climate change

trend (see ‘Methods’ section) for (a) SST, (b) PP, (c) pH and (d) interior oxygen content in the ‘business-as-usual’ scenario (RCP8.5). Note the different

colour scales for each variable. (e–h) The pace of climate change: the number of years between the start of climate change and the signal emerging

(see ‘Methods’ section). White areas indicate where ecosystem stress does not emerge above the range of variability for that parameter by 2100.
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and Arctic regions, and considerably slower in subpolar areas
(450 years). Interior oxygen content evinces a slower pace
of change, with the exception of the Northeast Pacific, where
models likely underestimate the large natural variability
associated with major climate modes48. PP shows the slowest
pace of change, potentially because PP acts as an integrator
of changes in light, temperature and nutrients. The later ToE in
PP is consistent with previous observations that trends are more
rapidly detectable in parameters such as SST and pH than in PP,
primarily due to the large natural variability in the latter49,50.

Emergence of multiple drivers. Where the rapid emergence of
multiple drivers co-occurs is where ecosystems are likely to
experience the greatest exposure to climate change20,51. Here we

demonstrate that by 2030 regions encountering multiple drivers,
principally by pH and SST, dominate the ocean (Fig. 2a–d).
Species sensitive to change in pH and/or temperature will likely
need to adapt to these new conditions very rapidly. In particular,
regions of low variability (for example, subtropics) will potentially
be more vulnerable to climate change as these areas emerge both
earliest and most rapidly. However, although ocean acidification
and warming are widespread, the climate change signal in PP and
oxygen remains smaller than the substantial natural variability in
most regions in the near future. The exception is the Arctic,
which appears to be a hotspot of change with rapid emergence of
the climate change response in pH, SST and oxygen content.
(However, note that the Arctic Ocean is also a region of high
model uncertainty in projections of PP44,52).
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Figure 2 | Emergence of multiple drivers. Combination of stressors that have emerged above the background of seasonal variability by (a) 2010,

(b) 2030, (c) 2050 and (d) 2100 for a ‘business-as-usual’ scenario (RCP8.5), based on the model mean ToE estimates shown in Fig. 1. (e–h) same, but for

the mitigation scenario (RCP4.5). In the legend, T refers to SST, PP to primary production and O2 to interior oxygen concentration.
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By 2050, a mosaic of multiple environmental drivers has
emerged (Fig. 2c). Where previously climate change trends in
pH and SST dominated the patterns of environmental change,
a more heterogeneous patchwork of multiple drivers now
develops. In 86% (±10%) of the ocean, multiple drivers have
emerged, implying the potential for widespread disruption to
marine ecosystems. By 2100 an ocean environment has developed
in which climate change trends have emerged in all four marine
drivers of ecosystem stress in 62% (±5%) of the ocean (Fig. 2d),
and a further 37% (±4%) of the ocean is experiencing a novel
combination of conditions in pH, oxygen content and SST.

The effect of mitigation. As we have shown, following
a ‘business-as-usual’ emissions pathway (RCP8.5) results in
rapid emergence of multiple drivers of the marine environment.
The aim of mitigation activities is to reduce the magnitude
and rate of climate change impacts. To what extent then can
mitigation limit or slow the pace of ecosystem stress emergence?
Projections with the IPCC RCP4.5 mitigation scenario demon-
strate that the climate change trend in marine ecosystem drivers

is reduced (Supplementary Figs 8 and 9). As a result, mitigation
slows and delays the emergence of the climate change signal
by several years (Fig. 3 and Supplementary Fig. 6); for example,
the SST trend emerges in 2050 (±10.5 years). For PP, mitigation
results in only small regions of the ocean experiencing climate
change-driven conditions outside the range of natural variability
before 2100 (Fig. 3).

The effect of mitigation on the emergence of multiple
ecosystem drivers is clear (Fig. 4). Within the next 15 years, only
34% (±9%) of the ocean becomes susceptible to multiple drivers
in a mitigation scenario41, compared with 55% (±12%) under
a ‘business-as-usual’ scenario (Fig. 4). Note, however, that ocean
acidification is unavoidable; although reduced in a mitigation
scenario, it has already emerged as a driver across the entire open
ocean. The pronounced reduction in multiple stress conditions
due to mitigation persists through 2050 with only 69% (±12%)
of the ocean exposed, compared with 86% (±10%) under the
‘business-as-usual’ scenario. Even by 2100, in the mitigation
scenario only 30% (±4%) of the ocean is affected by all four
ecosystem drivers, in contrast to the 62% (±5%) in the ‘business-
as-usual’ scenario, and there exist large areas where PP remains

−200 −100 0

−200 −100 0 −200 −100 0

−50

0

50

 

 

1900

1920

1940

1960

1980

−50

0

50

 

 

1980

2000

2020

2040

2060

2080

−200 −100 0

−50

0

50

 

 

0

20

40

60

80

100

−50

0

50

 

 

0

20

40

60

80

100

−200 −100 0

−50

0

50

 

 

1980

2000

2020

2040

2060

2080

−200 −100 0

−50

0

50

 

 

2020

2040

2060

2080

2100

−200 −100 0

−50

0

50

 

 

0

20

40

60

80

100

−200 −100 0

−50

0

50

 

 

0

20

40

60

80

100

Time of emergence Pace of climate change

S
S

T
P

P
p
H

O
x
y
g
e
n

a

b

c

d

e

f

g

h

Figure 3 | ToE and pace of climate change in ecosystem drivers under a mitigation scenario. Multi-model median of the year when climate change

trend exceeds the range of natural seasonal variability (see ‘Methods’ section) for (a) SST, (b) PP, (c) pH and (d) interior oxygen content in a mitigation

scenario (RCP4.5). Note the different colour scales for each variable. (e–h) Number of years between the start of climate change and the signal emerging

(see ‘Methods’ section). White areas indicate where ecosystem stress does not emerge above the range of seasonal variability for that parameter by 2100.
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within the range of natural variability. Mitigation slows the
pace of potential ecosystem exposure substantially, delaying
the widespread emergence of the ‘quadruple whammy’20 by
B25 years (Fig. 4). The exception is the Arctic, where mitigation
does little to slow the emergence of multiple drivers (Fig. 2).

Discussion
The vulnerability of the marine ecosystem to climate change is
considered to be a function of exposure and sensitivity to
stressors, combined with adaptive capacity53,54. In this study, we
quantify one part of this equation—the potential for exposure to
environmental drivers. Marine ecosystems, and the individual
organisms that make up those ecosystems, are adapted to the
range of conditions they experience33,34. When the environment
changes sufficiently that new conditions, or a new combination of
conditions, emerge and persist, the organisms must adapt,
migrate to more favourable areas, or face extinction. In this
way, climate forcing can induce changes at the organism level,
which result in changes to ecosystem structure, species
interactions and food web dynamics55,56. If novel conditions
emerge rapidly, species have less time to either adapt or migrate,
potentially increasing the probability that disruption to the
ecosystem will occur.

We find that the climate change-driven trend in pH already
exceeds the range in natural seasonal variability over most of the
ocean, as does SST in the subtropics and Arctic. For PP and
interior oxygen content, although the trend is large, the natural
variability is also large, resulting in later ToE. Species adapted to
living in regions of low variability are likely to have relatively
narrow environmental niches8 and may be living close to
their maximum tolerance57. Subtropical and tropical species
are therefore likely to be more sensitive to the rapid emergence
of climate change trends. Polar species are also particularly
vulnerable as they cannot shift their geographical range
northward in response to emerging drivers and so must either
adapt to changing conditions or go extinct58. However, new
ecological niches may open for species resilient to ocean
acidification and warming waters and inured to the large
natural variability that occurs in PP and oxygen.

Our model results suggest that seasonal minimum pH levels
have been lower than the previously experienced natural range for
490 years already. This is consistent with analyses of (shorter)
observational records, which suggest that trends in ocean
acidification are likely to be anthropogenically driven50,59.
However, evidence that this change has had a significant or
lasting impact on marine organisms is scarce, except perhaps for
warm-water coral communities60. Does this imply that the
marine ecosystem is actually rather resilient to climate change?
The key factor may be the speed with which climate change
emerges in marine ecosystem drivers relative to the speed with
which organisms can adapt. Individual species can seemingly
adapt relatively rapidly (compared with the timescales of climate
change) to new conditions. For example, a tropical reef fish was
found to acclimate to acute exposure to warmer temperatures
within two generations (damselfish have lifespans of 45 years61).
Organisms with shorter lifespans, such as phytoplankton
(Bfew days), adapt correspondingly more rapidly. Coccolitho-
phores, for example, adapted to a large degree to more acidic
conditions within 500 generations62. The fossil record can also
provide some insight into the possible impacts of climate change
on marine ecosystems (although the paleoclimate changed at
slower rates than projected for anthropogenic climate change).
During the Paleocene–Eocene Thermal Maximum for example,
up to 50% of benthic foraminifera went extinct63 and warm-water
species expanded their ranges northward64,65. Although the limits
of adaptation capacity are presently very poorly known, past
extinctions at slower rates of climate change suggest that
adaptation rates in some organisms are unlikely to be fast
enough to keep pace, ultimately implying extinction.

We demonstrate that a heterogeneous mosaic of multiple
environmental drivers develops in the next 50 years (Fig. 2c). This
mosaic suggests that species resilient to change in one driver but
negatively affected by another may be able to migrate to newly
formed suitable habitats, provided the velocity of climate change
(sensu16) does not outpace migration speed. In addition, some
species may be able to alter their depth range so that they avoid
decreases in thermocline oxygen whilst still remaining within
their thermal niche (note that here we only assess changes in
surface temperature). Again, little is known about the potential
migration speed of marine organisms. Large motile species such
as fishes and mammals are likely to be able to migrate rapidly to
more favourable conditions (although locating these refugia may
not be as simple as tracking a northward-moving isotherm).
Smaller motile species, such as zooplankton, have also been
observed to migrate in response to climate trends or variability, as
in the North Atlantic where the distribution of warm-water
copepod species has shifted northward in recent decades66.
Planktonic species may be able to rely on rapid dispersal to
maintain populations, whereas sessile species may not be able to
migrate sufficiently rapidly to keep pace with future climate
change. Returning to the Paleocene–Eocene Thermal Maximum
as an analogy, mobile crustaceans avoided significant community
changes67, whereas sedentary sediment dwellers were heavily
impacted63.

Translating the emergence of climate drivers that we
present here into an understanding of how the structure and
functioning of the marine ecosystem may respond is an extremely
challenging task. The interplay between biogeochemical
stressors, including synergistic effects, adaptation and migration
potential and speed, the bioclimatic envelope, organisms’ climate
sensitivity, non-linear responses to changing conditions, short-
term acclimatization and extinction risk is complex in the
extreme. Even the first step, of connecting the emergence of
climate change in ocean conditions with potential stress in
marine organisms, requires the implicit assumption that the
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niche width of an organism scales with the local variability
it experiences, and if conditions exceed that variability then
a response (whether negative or positive) may occur. However,
many species appear to thrive in environments that are less
than optimal, for example, some marine fish and invertebrates
have warmer or cooler temperature optima than the environment
in which they are found54. In addition, the emergence of
persistent, anomalously low oxygen (compared to previous
seasonal variability) may not be of relevance to individual
organisms if concentrations still remain above hypoxic levels,
although oxygen has been found to limit animal life even at
higher concentrations8.

Currently, it is not clear whether ecosystem-wide adaptation
or migration can outpace the speed at which multiple drivers
emerge (Fig. 1). How individual species will fare, or how the
ecosystem as the sum of its parts will fare, is poorly understood.
What is clear however is that there are likely to be winners and
losers in the future ocean68. However, lacking the ability to
predict the future impact of drivers on marine ecosystems creates
significant challenges to determining an appropriate course for
sustainable management of the ecosystem services, such as
fisheries, that they provide. The quantification of the ToE of
multiple drivers presented here is an important first step in
achieving an understanding of the response of marine ecosystems
to future climate change.

Slowing the pace of climate change could give species more time
to adapt to changing conditions or migrate to more suitable areas,
potentially reducing extinction risk. Although most ecosystems
have the capacity to adapt to changing conditions to some
extent14,69, for species endemic to the Arctic or sensitive to ocean
acidification, there may be no refuge from climate change impacts,
regardless of mitigation efforts. For other species, the timescales
over which threshold changes in environmental stressors emerge
will be key to determining the degree of disruption17,30,69. Our
results demonstrate that mitigation measures substantially slow the
pace of climate change (Fig. 4), and so likely ameliorate its impacts;
it would also allow time for additional conservation planning and
adaptation of fisheries and aquaculture, likely resulting in reduced
species extinction risk17,69–71. Given that global CO2 emissions are
currently tracking the IPCC’s business-as-usual scenario39,40,
timely implementation of the reductions pledged under COP21 is
needed to slow the rapid development of ubiquitous multiple
ecosystem stress.

Methods
Model output. Output from 12 IPCC-class Earth system models run for the
CMIP5 exercise driven by greenhouse gas, aerosol and ozone concentrations
prescribed in a specific representative concentration pathway scenario of climate
change were downloaded from the archive at http://cmip-pcmdi.llnl.gov/cmip5/
data_portal.html. The models and institutions providing the output are listed in
Supplementary Table 1. For all models the monthly output for 100-year sections
taken from the end of the preindustrial control run, the historical run (1860–2005)
and for the RCP8.5 and RCP4.5 scenarios for 2006–2100 were downloaded. The
variables SST (‘tos’ in the CMIP archive), surface pH (‘ph’), total annual vertically
integrated PP (‘intpp’) and dissolved oxygen (‘o2’) in the thermocline (200–600m
depth range, as in refs 11,20) were used. All data were re-gridded onto
a regular 1�� 1� grid using linear nearest-neighbour interpolation. In the case of
depth-resolved dissolved oxygen concentrations, monthly output is not a standard
CMIP5 output. Data were therefore sourced from the model progenitors directly;
however, output could not be obtained for HadGEM2-CC, HadGEM2-ES or
IPSL-CM5B-LR models and so only nine models were used for the monthly oxygen
analysis. Preindustrial control run output was detrended, if necessary, using a linear
regression prior to further analysis. For each year of model output, the annual
maxima (for SST) and minima (pH, thermocline oxygen and PP) were extracted.
Supplementary Note 3 and Supplementary Fig. 10 contain a comparison of model
output with observations.

Regression analysis. A generalized least-squares model with a first-order auto-
regressive error term (AR(1)) was applied to time series of the annual maxima

(SST) or minima (other variables) using R package ‘nlme’72:

Yt ¼ mþotþNt; ð1Þ

where Yt is the annual extreme in the variable, m is a constant term (the intercept),
t is the linear trend function (here time in years), o is the magnitude of the trend
(the slope) and Nt is the unexplained portion of the data, which is modelled as an
AR(1) process. Trends for SST are reported as �C per decade; for PP, pH and
oxygen as the % change per decade with respect to the mean of 1986–2005. The
assumption of normality in the annual extrema was checked using the Lilliefors
test. Approximately 80% of pixels pass the test for pH and SST, and B65% for
PP and oxygen. The majority of pixels failing these tests are in the Arctic.

Definition of ToE. All analyses are performed at every model grid cell, separately
for each model. To calculate the ToE, first the time series of annual extrema in the
conjoined historical and warming scenario runs is created. Then, an inflection
point is located by calculating the cumulative sum of the gradient in Yt (qY/qt) and
identifying the year when it exceeds zero (for a positive trend) or drops below zero
(for a negative trend) for the remainder of the time series—we refer to this as the
start of the climate change signal (see Supplementary Fig. 1). The trend in Yt is then
calculated from that start point forward to 2100 using equation (1). The natural
variability (or noise) is defined as one standard deviation in annual extrema
of a 100-year section of the model’s control run. As a consequence, the natural
variability as defined here accounts for only the unforced natural variability,
excluding the influence of changing incoming solar radiation or volcanoes. The
ToE is then defined as:

ToE ¼ ð2 � noiseÞ=o: ð2Þ

This criterion ensures that the trend exceeds 95% of the values in the noise,
assuming it is normally distributed, and therefore that the emerging signal is highly
unusual. Any values of ToE exceeding 2100 are excluded from further analysis.
Assumptions of normality and heteroskedasticity in the residuals from the trend
regression were checked using the Lilliefors and Breusch–Pagan test, respectively.
Approximately 5–30% of pixels fail one of the tests and, for most models and
variables, these pixels are predominantly in the Arctic. Assuming a normal
distribution for trends in annual extrema is reasonable given the low percentage
(5–30%) of pixels where the assumption is not met. Where the assumptions are
not met, the ToE criterion will not necessarily indicate that the trend exceeds
95% of the noise values, and may instead be lower. The ToE is calculated for each
individual model and the median year for each pixel is then used as the ensemble
mean. The inter-model difference in ToE is expressed as ±1 s.d. The pace of
climate change is described here by the difference (in years) between the ToE and
the start of the climate change signal. All analyses were performed in Matlab
(Mathworks).

Data availability. The model output analysed here is publically available via the
CMIP5 archive. The data used in the figures and the code used to generate them
will be made available via request to the corresponding author.
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