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We experimentally demonstrate flipping the phase state of a parametron within a single period of its
oscillation. A parametron is a binary logic element based on a driven nonlinear resonator. It features two stable
phasestates that define anartificial spin.Themostbasicoperationperformedonaparametron is abit flipbetween
these two states. Thus far, this operation involved changing the energetic population of the resonator and
therefore required a number of oscillations on the order of the quality factorQ. Our technique takes a radically
different approach and relies on rapid control of the underlying potential. Our work represents a paradigm shift
for phase-encoded logic operations by boosting the speed of a parametron bit flip to its ultimate limit.

DOI: 10.1103/PhysRevLett.123.254102

Introduction.—Since the invention of the solid-state
transistor, the overwhelming majority of computers fol-
lowed the von Neumann architecture that strictly separates
logic operations and memory [1,2]. Today, there is a revived
interest in alternative computation models accompanied by
the necessity to develop corresponding hardware architec-
tures [3–6]. For example, phase-based logic architectures
can be realized with artificial spins such as the parametron
that arises in driven nonlinear resonators [7–17]. The para-
metron encodes binary information in the phase state
of its oscillation. It enables, in principle, logic operations
without energy transfer and the corresponding speed lim-
itations [18].
The parametron is a logic device employing the principle

of parametric driving [11,19–24]. Consider a resonator
whose natural frequency f0 is modulated at a drive fre-
quency 2fd. If fd is chosen close to f0, and themodulation is
sufficiently strong, the resonator experiences a negative
effective damping and is forced to oscillate at fd with large
amplitude, as illustrated in Fig. 1(a). With the frequency of
the motion being half that of the modulation, the resonator
undergoes a spontaneous time-translation symmetry break-
ing [25,26].As a result, the system is locked to one of the two
available phase states that are degenerate in amplitude but
separated by π in phase (relative to a clock running at fd). In
phase space spanned by normalized displacement X and
momentum Y [27], this locking mechanism can be illus-
trated by the quasipotential landscape shown in Fig. 1(b).
The quasipotential features a double-well structure, where
each well corresponds to a stable phase state. The two phase
states of the parametron represent a classical bit or, analo-
gously, an Ising spin. In the lab frame, the states rotate
around the phase-space origin at the drive frequency fd
[Fig. 1(c)].

(a)

(b)

(d)

FIG. 1. Parametron phase states and basic idea of rapid phase
flipping. (a) Parametric driving corresponds to a harmonic modu-
lation of the resonator’s natural frequency f0. Solid (dashed) lines
represent the modulated (original) potential. If the drive is
sufficiently strong, the resonator locks to fd and settles into one
of two stable phase states that are separated by π, illustrated as
oscillating red and blue spheres. (b) In phase space, the parametri-
cally driven resonator experiences an effective double-well poten-
tial, which is the key signature of the parametron. The phase states
now appear as stationary red and blue spheres in the quasipotential
minima. (c) Simplified illustration of the parametron in phase
space. In the lab frame, the two states rotate around the origin at
frequency fd. (d) Illustration of rapid phase flip. The parametron is
initialized in the red phase state (ϕ ¼ π). At time t ¼ 0, the phase
evolution of the system is paused for half an oscillation period by
freezing the resonator’s position. Upon release, the parametron
resumes oscillation in the blue phase state (ϕ ¼ 0).
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While the parametronwas already patented at the dawn of
the digital era [7,8], it is only with recent experimental
advances that an implementation of the concept appears
useful. Research groups using nanomechanical resonators,
Josephson junction circuits, and optical parametric oscil-
lators have devised prototypical parametron-based Ising
machines thatmay solve nondeterministic polynomial-time-
hard problems much faster than conventional computers
[13–15,17,24,28]. The most basic logic operation on a
parametron is a bit flip, corresponding to a phase change
of π of the underlying resonator. Thus far, parametrons have
been flipped by first depleting the resonator and then re-
energizing it in the opposite phase state [13,21]. The flipping
speed of this method is limited by the ring-down time
τ ¼ Q=ðπf0Þ, where Q ≫ 1 is the quality factor of the
resonator. This speed limitation is directly related to the
energy gap between energized and depleted states. However,
flipping the phase state of a parametron does not strictly
require energy transfer. Indeed, the two logic states are
degenerate in energy and protected by a “phase gap” [18]. It
should therefore be possible to devise a protocol to flip
between the phase states at a speed much faster than the
ringdown time τ, which is often (erroneously) deemed a
fundamental limit for resonator operations [29,30]. Despite
the fact that such a protocol would unlock the full potential
of phase-encoded logic, an experimental demonstration has
remained elusive to date.
In this Letter, we experimentally demonstrate flipping

between the two phase states of a parametron within a single
oscillation period. Our technique allows logic operations on
a timescale of 1=f0, and therefore Q times faster than the
ring-down time. Our protocol temporarily freezes (or slows
down) the evolution of a resonator to bridge the phase gap
separating its phase states. The speed of ourmethod relies on
the fact that it does not require energy transfer into or out of
the system. The demonstrated protocols are platform inde-
pendent. We present two complementary variations of our
phase-flip paradigm on different experimental systems and
assess their performances. Our results call for a reevaluation
of the fundamental limits for high-speed and low-energy
computation using parametron bits.
Phase-flip protocols.—The general idea for rapid para-

metron phase flipping is illustrated in Fig. 1(d). The
resonator is initially in one of the two stable phase states.
Without limitation of generality, let us consider the red
phase state with phase ϕ ¼ π. At t ¼ 0, the resonator
evolution is frozen (or slowed down), such that it acquires a
phase delay relative to its initial state. Careful timing results
in a delay of exactly π. Upon release, the resonator resumes
oscillation in the blue phase state with phase 0. In the
following, we consider two methods to achieve such a
phase delay by π. They make use of “potential deforma-
tion” and “potential displacement,” corresponding to a
change in the restoring force and to the application of
an external force, respectively.

Phase flip via potential deformation.—We first demon-
strate rapid parametron phase flipping via potential
deformation, corresponding to switching the underlying
resonator’s natural frequency f0. As an experimental plat-
form, we use a silica nanoparticle optically levitated in a
focused laser beam in vacuum, as illustrated in Fig. 2(a)
(see [31] and the Supplemental Material [32] for details).
The light scattered by the particle provides us with a
measurement of its position. Each degree of freedom of the
particle’s center-of-mass represents a nonlinear resonator
[36]. To minimize the effect of thermal fluctuations, we
feedback-cool all three degrees of freedom to a temperature
of 1 K. Throughout this Letter, we focus on a single
oscillation modewith a resonance frequency f0 ∼ 164 kHz.
The power spectral density of the feedback-cooled mode
under consideration is shown in Fig. 2(b).
Weak periodic modulation of the trapping laser intensity

turns the levitated particle into a parametron. In contrast, a
sudden and strong reduction of the laser intensity leads to a
deformation of the potential and can be used for phase flips.
Consider the particle confined in a potential of natural
frequency f0 under parametric driving at 2fd (with
fd ∼ f0), such that the parametron is locked to one of
the two stable phase states [Figs. 2(c) and 2(d)]. When the
particle reaches its maximum displacement (and its velocity
vanishes), we reduce the power of the trapping laser to
switch the natural oscillation frequency to f0=2 for a time
τdef . If we choose τdef ¼ 1=f0, the particle has time to travel
to the opposite side of the potential. At this moment, we
switch the laser intensity (and thus the trap stiffness) back
to its original value and the particle continues to oscillate at
a frequency fd. Importantly, relative to the clock at fd, the
phase state of the parametron has been flipped by π during
the protocol.
We show an experimental demonstration of our idea in

Fig. 2(e), where we plot the phase state of the optically
levitated parametron as a function of time. Themeasurement
signal is the output of a lock-in amplifier fedwith the position
signal. The trap frequency is switched twice per second from
f0 ¼ 164 kHz to the reduced value 82 kHz for a duration
τdef ¼ 8.1 μs. Indeed,we observe two phase states separated
by π and flipping between them at the expected rate of 2 Hz.
The phase flips happen instantaneously on the timescale set
by the 220 Hz bandwidth of our lock-in detection.
A striking feature in Fig. 2(e) is the failed phase flip

around 8 s, indicating that the success probability Pflip of
our potential deformation scheme is less than unity (we
define Pflip as the ratio of observed phase flips to flipping
attempts). We attribute this observation to the fact that we
did not choose the nominally ideal value of τdef ¼ 6.1 μs.
To corroborate this hypothesis, we record Pflip for varying
τdef . In Fig. 2(f), we observe that Pflip is indeed a periodic
function of τdef with the expected period 2=fd. When τdef is
an even multiple of 1=fd, the parametron phase remains
unaltered by the pulse and Pflip vanishes. In contrast, for
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τdef equal to an odd multiple of 1=fd, Pflip approaches
unity. We note that a pulse of length τdef ¼ 2=fd can be
interpreted as a sequence of two back-to-back pulses of
length 1=fd. The data in Fig. 2(f) therefore demonstrate that
it is possible to fully exploit the switching speed of our
method by concatenating several rapid phase-flips.
Figure 2(f) reveals that the transitions of PflipðτdefÞ

between zero and unity are not infinitely sharp but display
a finite width of about 2 μs, which we attribute to thermo-
mechanical fluctuations. The solid line in Fig. 2(f) indicates
a model calculation of Pflip based on thermal phase noise
(see the Supplemental Material [32]). This model reprodu-
ces our data well for τdef > 5 μs. We attribute the deviations
between data and model for short τdef to the finite response
time and the resulting transients of the modulator that
switches the laser power.
We note that in our experiment, we triggered a phase flip

when the resonator displacement was at its maximum. The
protocol is, however, applicable with any starting condition
(see the Supplemental Material [32]). Indeed, under the
applied potential deformation, a harmonic oscillator with
initial phase state (X, Y) will always evolve towards
−ðX; YÞ within half a period. By extension, the protocol
is applicable to arbitrary mixtures of states, including
thermal states. Finally, we point out that the flipping time
of our protocol could be further reduced to 1=ð2fdÞ by
completely turning off the trapping potential. For our

particular experimental situation, switching off the poten-
tial also reduces the parametric drive to zero. On the short
timescale of the flipping process, this is not problematic
because parametric locking is only effective on time scales
of the order of τ. However, the scheme implemented in this
work is significantly more resilient against inevitable
thermal fluctuations of the particle motion which can lead
to particle loss.
Phase flip via potential displacement.—In the following,

we demonstrate that rapid parametron phase flips are also
possible by displacing the potential, corresponding to the
application of a force to the resonator. We experimentally
realize this method with the electrical LC circuit illustrated
in Fig. 3(a) (see [37] and the Supplemental Material [32] for
details). Here, the resonator displacement corresponds to
the charge separated across the varicap diode with capaci-
tance C, and the role of the force is assumed by a voltage
Uflip. We characterize our resonator in the linear regime by
applying a weak drive tone Udrive whose frequency we
sweep around f0 while recording the output voltage Umeas,
as shown in Fig. 3(b). The circuit becomes a parametron
under sufficiently strong driving close to 2f0.
We use this system to realize the phase-flipping scheme

detailed in Figs. 3(c) and 3(d). When the resonator
displacement reaches its maximum value, a force is applied
to counter the restoring force and to freeze the resonator
evolution. This equals a displacement of the potential by
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FIG. 2. Experimental demonstration of phase flip via potential deformation. (a) Experimental setup. A silica nanoparticle (diameter
136 nm) is trapped in a focused laser beam (wavelength 1064 nm) inside a vacuum chamber (not shown). The stiffness of the optical
potential can be modulated with an electro-optic modulator (EOM). The particle displacement is detected with a quadrant photo diode
(QPD). (b) Thermally driven power spectral density Sx of the particle displacement. From the red line fit, we extract a quality factor
Q ¼ 1970. (c) Schematic illustration of the phase-flip protocol. The parametron is initialized in the red phase state. When the particle
reaches its maximum displacement, we reduce the resonator frequency from f0 (potential sketched as solid line) to f0=2 (dashed line) by
attenuating the laser intensity with an acousto-optic modulator (AOM). We then let the particle evolve for the pulse length τdef ¼ 1=f0,
such that the phase states of the parametron undergo a full oscillation, while the particle only traverses the trap and acquires a phase
delay of π. (d) Same as (c) but illustrated in phase space. (e) Measured phase of the parametron as a function of time. A switch of the
potential as outlined in (c) and (d) is applied at a rate of 2 Hz with τdef ¼ 8.1 μs, periodically flipping the parametron phase state. Note
the failed flip around 8 s. (f) Flipping probability Pflip for varying pulse length τdef . Our model (black line) takes into account the finite
thermal population of the resonator (see the Supplemental Material [32]). Error bars represent statistical uncertainty.
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the oscillation amplitude, such that the resonator tempo-
rarily finds itself at the potential center. After the force is
turned off, the resonator has acquired a phase delay of π
relative to its original evolution and is stable in the opposite
phase state.
In Fig. 3(e), we show two examples of the behavior of

the system for different pulse lengths τdis. In the first
example, the pulse length is set to τdis ¼ 1=ð2f0Þ, the ideal
pulse length for a bit flip. Indeed, the parametron flips its
phase state by π (i, blue data points). In the second
example, we set τdis ¼ 1.5 × 1=ð2f0Þ (ii, green). Here,
the parametron is transferred into a state between the two
stable phase states and evolves towards one of them on a
timescale given by Q=f0 ∼ 74 μs after the flip.
In Fig. 3(f), we plot the state of the resonator at t ¼

0.7 μs after the start of a bit flip in phase space (in a frame
rotating at the drive frequency) for different values of τdis.
The amplitude of the parametron after the flipping protocol
(corresponding to the radial distance from the plot center) is
independent of τdis, which results from the fact that the
resonator’s evolution is frozen at the point of maximum
displacement and vanishing velocity. Our data demonstrate
that via the choice of τdis we can transfer the parametron to
any point on the unit circle in phase space, in particular to
the two stable phase states.
Discussion and conclusion.—The two experimental dem-

onstrations in Figs. 2 and 3 establish a new paradigm for

resonator-based logic operations. Parametron phase flips
can be achieved within a single oscillation period and
completely independently from the quality factor Q. This
finding opens up new possibilities for applications that use
parametrons as phase logic units [7–9,11–14,16,17,38–41].
The states of the parametrons may be initialized and flipped
irrespective of the (desirable) high quality factors of the
underlying resonators, and the flips do not necessarily
involve energy exchange with a bath. In this way, our
schemes reconcile the two seemingly disparate notions of
rapid logic operations and long state coherence [42,43].
Beyond computation, rapid phase flips allow encoding
binary information through phase-shift keying [44].
While current phase-shift keying techniques use an
oscillator with constant amplitude and phase and achieve
different phase-space states through postprocessing, our
demonstrations show that information encoding on the
level of the resonator itself is feasible. This may enable
ultracompact and low-power encoders for specialized
applications such as autonomous nanobots in medical
research [45,46].
There are several factors that significantly relax the

required conditions for large-scale implementations of
our technique. First, the symmetry protection of the para-
metron makes the phase-flips very stable in the presence of
phase noise [18]. Consecutive rapid flips result in the
correct state as long as the summed phase error is below
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FIG. 3. Experimental demonstration of phase flips via potential displacement. (a) Schematic of the electrical LC resonator circuit with
a varicap diode to provide a nonlinear capacitance C. (b) Linear response of the resonator to a small external driving voltage
(Udrive ¼ 50 mV). From the red line fit we extract f0 ¼ 3.3 MHz and Q ¼ 245. (c) Illustration of the phase-flip protocol. The
parametron is initialized in the red phase state. When the resonator reaches its maximum displacement at t ¼ 0, the potential is displaced
by an external force (from dashed to solid lines) such that the resonator is momentarily at rest. At t ¼ 1=ð2fdÞ, the force is turned off and
the parametron resumes its evolution, now in the blue phase state. (d) Same as (c) but illustrated in phase space. (e) Demonstration of two
different phase flips, performed with (i) τdis ¼ 153 ns, the ideal pulse duration for flipping, and with (ii) τdis ¼ 230 ns. The signal was
demodulated by a digital lock-in amplifier and filtered for clarity (see the Supplemental Material [32]). (f) Results of flipping
experiments with varying τdis. Each datapoint represents the state of the resonator directly after a pulse. Here, u ¼ X cosð2πfdtÞ −
Y sinð2πfdtÞ and v ¼ Y cosð2πfdtÞ þ X sinð2πfdtÞ are the phase-space quadratures in a frame rotating at the drive frequency fd. A
black circle serves as a guide to the eye.
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π=2. After a sequence of rapid flips, phase errors will self-
correct through relaxation within the double-well. Second,
the external parametric driving signal can be utilized as a
clock with large signal-to-noise ratio. Estimating the
momentary state of a parametron is thus fault tolerant up
to π=2, while the amplitude is generally known.
The physics explored within our work may be translated

to nonlinear high-frequency resonators based on Josephson
junction circuits [17,22–24], micro- and nanomechanical
resonators such as carbon nanotube and graphene devices
[21,23,47–51], optical parametric oscillators in nonlinear
media [12,14,28], trapped ions [52], and cold atom lattices
[53]. It is thus a highly general concept that is potentially
useful in a wide variety of experiments and future
applications.
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S1. EXPERIMENTAL DETAILS: OPTICAL TRAPPING SETUP

We implement the bitflip based on a deformation of the potential using an optically trapped nanoparticle [S1]. An extended
sketch of the setup is shown in Fig. S1. In our experiment, we focus a linearly polarized laser beam (wavelength 1064 nm, focal
power 80 mW) with a microscope objective (0.8NA) inside a vacuum chamber. A dielectric nanoparticle (silica, diameter 136 nm)
is trapped by the optical gradient force in the laser focus. We collect the light scattered by the particle in the forward direction,
where it interferes with the transmitted trapping beam, and send it to a standard four-quadrant detection scheme. We can therefore
monitor the particle’s motion along all three coordinate axes as a function of time. We call the optical axis the z direction, while
the x and y axes lie in the focal plane with the x axis perpendicular to the polarization direction. The center-of-mass motion of
the particle resembles three Duffing oscillators [S2]. Our experiments take place at 5× 10−6 mbar, where the particle’s motion is
strongly underdamped. We use parametric feedback cooling to reduce the thermal oscillation amplitude of the particle along all
three axes to 1 K [S3]. At these low oscillation amplitudes any non-linear mode coupling is negligible. The feedback signal is
derived from the position measurement using a phase-locked loop whose output is frequency doubled and whose phase is adjusted
to achieve cooling. This feedback signal is applied to an electro-optic modulator (EOM). Throughout this work, we focus on the x
mode of the particle with natural frequency f0 ≈ 164 kHz.

Under parametric driving at a frequency 2fd (with fd close to the natural frequency f0), the particle motion locks to the
drive and acquires a large oscillation amplitude [S4]. Driving the x mode leaves the remaining degrees of freedom essentially
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Figure S1: Experimental setup for phase flips via potential deformation.
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unaffected due to the large frequency difference between the modes (fz ≈ 50 kHz, fy ≈ 130 kHz). The parametric driving in our
experimental system corresponds to a harmonic modulation of the laser intensity which sets the stiffness of the optical trap. We
realize this parametric driving using the same EOM used for feedback cooling. The parametric driving signal is the frequency
doubled output of a function generator producing a harmonic tone at fd.

To effect the potential deformation leading to the flip of the parametron phase, we reduce the stiffness of the optical potential
using an acousto-optic modulator (AOM). We have calibrated the device to switch the potential to half of the original stiffness
by observing the natural frequency of the particle oscillation mode as a function of voltage applied to the AOM. To carry out a
bitflip, we generate a square pulse of length τdef with an arbitrary waveform generator (AWG). In order to effect the potential
deformation at the desired time, we trigger the AWG by the parametric drive fd to which the particle motion is locked in phase.

We extract the phase of the parametron by demodulating the detector signal of the measured particle position x(t) at the drive
frequency fd using a lock-in amplifier (LI). The demodulated output of the LI is recorded by a data acquisition card (DAQ). A
typical time trace of the phase output of the LI is shown in Fig. 2e of the main text. The timing resolution in this experiment is
given by the bandwidth of the lock-in amplifier, which is chosen at 220 Hz in the presented experiments and is limited by the
signal-to-noise ratio of the position measurement. With this timing resolution, the phase flips appear as essentially instantaneous
in Fig. 2e and it is not possible to generate a highly time-resolved measurement of the phase as shown in Fig. 3e for the experiment
with the LC resonator (which offers a dramatically higher signal-to-noise ratio). To gain information about the dynamics of the
phase flip with higher timing resolution, we have devised the experiment shown in Fig. 2f. Here, our sub-microsecond control
over the pulse length τdef (provided by the waveform generator), allows us to investigate the dynamics of the phase flip on the
timescale set by the natural frequency of the underlying resonator.

S2. MODEL FOR BIT-FLIP SUCCESS RATE

In this section, we describe the model giving rise to the solid line in Fig. 2f of the main text. Naively, one would expect
Pflip to be a periodic rectangular function of τdef, since the parametron will settle into the phase state φ = 0 (φ = π) if the
deformation pulse takes it to a phase value in the range [−π/2 . . . π/2] ([π/2 . . . , 3π/2]). However, Fig. 2(f) reveals that the
transitions of Pflip(τdef) between zero and unity are not infinitely sharp but display a finite width of about 2 µs, which we attribute
to thermomechanical fluctuations.

To model our system, we describe the phase-space distribution of the parametron as a thermally broadened coherent state
with a Gaussian probability distribution. The width of this Gaussian is determined by the temperature of the nanoparticle’s
center-of-mass motion. Under feedback cooling, the root-mean squared amplitude due to thermal activation is around 2 nm. The
displacement of the Gaussian from the origin by the coherent drive amounts to 7 nm. When the trapping potential is deformed to
have natural frequency f0/2, the phase-space distribution rotates around the origin at that frequency. We calculate the bit-flip
success rate Pflip(τdef) as the fraction of the phase-space distribution falling into the halfspace with negative amplitude X , given
that the system was started with its phase-space distribution initially centered on the positive X axis. The resulting (appropriately
normalized) variation of the complementary error function is plotted in Fig. 2f as a solid line. We note that the width of the
transitions from zero to unity is given by the ratio of the amplitude due to the thermal drive relative to the thermal population.
Both these quantities were independently measured. The period of the undulations of Pflip is given by f0/2, and a fixed parameter
as well. The only free parameter we allow for is a phase shift corresponding to a temporal delay of 1.3 µs to account for the finite
response time of our AOM switching the trapping potential.

S3. EXPERIMENTAL DETAILS: ELECTRICAL RESONATOR SETUP

In Fig. S2, we show the full electrical schematic of the experiment used for rapid phase flipping with the potential displacement
method. Calibration measurements for this setup were performed in a previous study [S5]. A tuning voltage Utune ∼ 2 V is used
to bring the diode into reverse bias, and a second (large) capacitance C1 = 47 nF prevents DC currents from flowing withing the
resonator.

For every flipping event, we first switch on the driving voltage Udrive to drive the resonator into parametric resonance and lock it
to the drive. At the same time, the lock-in amplifier (HF2LI by Zurich Instruments) sends a clock signal phase-locked to Udrive to
the FPGA. After waiting for the resonator to reach a steady state (twait ≥ 0.2 s), we measure its phase state relative to the clock.

In the next step of the phase-flipping protocol, we use a RedPitaya FPGA to detect a zero-crossing of the clock signal. The
FPGA then outputs a single rectangular pulse after a calibrated delay that depends on the measured resonator phase. This
pulse triggers the lock-in amplifier to start logging Umeas, and is at the same time the ‘force’ applied to the resonator with an
additional delay ∆t (this delay ensures that the measurement captures the entire flipping process). We use an operational amplifier
(THS4271D) to preserve a high quality factor of the resonator and to enable a rapid switch of Uflip. The measured resonator
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response Umeas is measured as a time trace and later post-processed digitally in a computer. After the flipping event, the phase of
the resonator is measured once more by the lock-in amplifier to verify a successful phase reversal.

For each phase flip event, we run the raw signal through a digital lock-in amplifier at fd to obtain the phase space quadratures.
We then perform a fast Fourier transform (FFT) and apply a SINC filter with a cut-off frequency at fd to eliminate unwanted
harmonic responses. After a back-transformation into the time domain, we calculate the phase φ that is shown in Fig. 3e.

S4. THEORY DETAILS: FOKKER-PLANCK SIMULATIONS OF RAPID FLIPPING

In the following, we numerically investigate the robustness of the switching protocol based on the potential-deformation
method. In particular, we demonstrate that the flipping fidelity of the potential-deformation method is independent of the time
when the switch is executed within the parametron oscillation cycle. We perform these investigations using numerical simulations
of corresponding time-dependent Fokker-Planck equations [S6].
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Figure S2: Experimental setup for phase flips via potential displacement.
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Figure S3: Probability density function (PDF) p(X,Y, t) of the parametron’s steady state for our simulation parameters. The colorbar ranges
from p = 0 (white) to p = 2425 (grey). The integration of p over the entire phase space yields unity. We use the phase-space population in the

half space X < 0 as the initial state for simulations of the bit-flip protocols.
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Figure S4: Fokker-Planck simulation of the potential-deformation protocol with noise. The bit-flip is initialized when the resonator has
maximum (negative) displacement and minimum momentum. The three subfigures are snapshots of the flipping process at different times during

the protocol and correspond to the three situations shown in Fig. 2d of the main text. The colorbars range from p = 0 (white) to p = 4850
(red/green/blue). (a) Initial state p(X,Y, t = 0), corresponding to the steady state in Fig. S3 in the region X < 0 of phase space. (b) Probability
density function (PDF) of the parametron in the middle of the flipping protocol, corresponding to time t = 1/(2f0). (c) PDF of the parametron

at the end of the flipping protocol at time t = 1/f0.

A. Details of the numerical model

In our analysis, we consider a nonlinear parametric resonator with additive force noise (originating, e.g., from thermal processes
or from a noisy pulse). Our model can describe both experimental platforms used in this work (see [S5] and [S4]). We choose to
discuss our model in the form of a mechanical resonator described by the equation of motion

Ẍ +
γ

m
Ẋ + ω2

0
[1− λ cos(2ωdt)]X +

α

m
X3 =

F (t)

m
+

σξ(t)

m
. (S1)

Here, X is the displacement, Y = Ẋ the velocity, dots indicate differentiation with respect to time t, m is the effective mass,
ω0 = 2πf0 is the angular resonance frequency, γ = mω0/Q is a damping term, and α describes the strength of a cubic restoring
force. The system is subject to a parametric drive with modulation depth λ at a rate ωd = 2πfd. Deterministic external forces are
summed up as F (t). Stochastic forces are described by the noise intensity σ and the white noise process ξ(t) with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t− t′), where δ(t) is a Dirac-delta distribution.

The system can be described by the following Fokker-Planck equation for the probability density function (PDF) p(X,Y, t) of
finding the system at the phase-space point (X,Y ) at time t. We rewrite Eq. (S1) as two coupled first order differential equations
to obtain

Ẋ = Y, (S2)

Ẏ =
1

m

{

F (t)− γY −mω2

0
[1− λ cos(2ωdt)]X − αX3

}

+
σ

m
ξ(t). (S3)

The Fokker-Planck equation for p(X,Y ) is then given by [S6]

∂

∂t
p(X,Y, t) =− Y

∂

∂X
p(X,Y, t)−

1

m

∂

∂Y

{

F (t)− γY −mω2

0
X[1− λ cos(2ωdt)]− αX3

}

p(X,Y, t) (S4)

+
σ2

2m2

∂2

∂Y 2
p(X,Y, t).

For all following calculations, we use the dimensionless parameters m = 1, Q = 1000, ω0 = ωd = 1, λ = 0.003, α = 1, F = 0
and σ = 2.4× 10−4.

In a first step, we find the steady-state probability distribution psteady of the parametron, see false-color plot in Fig. S3. The
distribution psteady features appreciable values only in two distinct lobes in (X,Y ) phase space. These two regions correspond to
the two stable phase states of the parametron and differ in phase by π as expected. The width of the two lobes is given by the
magnitude of the fluctuating forces σ together with the damping rate γ, while the radial distance of the lobes’ respective centers
from the phase-space origin is set by the driving strength λ and the non-linearity parameter α. In order to investigate the behavior
of the phase-space distribution under our bit-flip protocols, we use as an initial distribution pini the part of psteady residing in the
half of phase space with X < 0. In other words, to obtain pini, we set psteady to zero in the region X > 0 and renormalize the
amplitude. In the following, we investigate the phase-space distribution p(X,Y, t) after execution of a phase-flip protocol.
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Figure S5: Fokker-Planck simulation of the potential deformation protocol with noise. The three subfigures correspond to flipping protocols
that start at different times tstart within the oscillation cycle. The pulse length is set to the optimal value τdef = 1/f0. Each panel combines the
initial (red) and the final (blue) state in a single graph. (a) Potential deformation phase flip initialized at tstart = 0 when resonator has maximum

displacement and minimum momentum. This is the same data as in Figs. S4a and c. (b) Potential deformation phase flip initialized at time
tstart = 1/(8f0), when resonator has equal (normalized) displacement and momentum. (c) Potential deformation phase flip initialized at time

tstart = 1/(4f0), when the resonator has minimum displacement and maximum momentum. The colorbars range from p = 0 (white) to
p = 4850 (red/blue).

B. Numerical results: Potential deformation

We now numerically investigate the method termed ‘potential deformation’ introduced in the main text, where it was imple-
mented with the levitated nanoparticle. To this end, starting with the distribution pini(X,Y, t = 0), we switch the potential to
ω0 = 0.5 during the flip time τdef. In Fig. S4, we show the results of our simulations for an optimal pulse length τdef = 1/f0.
The time t = 0 where the pulse starts is chosen such that the resonator has maximum (negative) displacement and minimum
momentum. (Note that this is the situation that we experimentally realized.) In the different panels, we show snapshots of
p(X,Y, t) at the beginning (t = 0, panel a), in the middle [t = 1/(2f0), panel b], and at the end (t = 1/f0 = τdef, panel c) of the
deformation pulse. We observe that the probability distribution is slightly distorted during the pulse (see panel b), However, at the
end of the pulse, the phase-space distribution is essentially indistinguishable from the starting distribution, except that it has been
rotated by π in phase space.

Having found that our phase-flip protocol based on potential deformation retains the shape of the initial phase-space distribution,
we further investigate the robustness of our method to variations in the starting time of the pulse. In Fig. S5, we show the results
of Fokker-Planck simulations of rapid phase flips for different starting times tstart of the potential-deformation pulse during
the oscillation cycle of the parametron. In each panel, we show the starting distribution pini(X,Y, tstart) in red, together with
the distribution pini(X,Y, tstart + τdef) in blue. Here, we have chosen the ideal pulse length τdef = 1/f0. Note that Fig. S5a
contains the combined information of Fig. S4a and c. Interestingly, looking at Fig. S5, we observe no appreciable difference
in the resulting phase state as we vary the starting time of the pulse through the oscillation period of the parametron. These
findings are in agreement with our expectation: During the time τdef = 1/f0, which corresponds to half an oscillation period in
the deformed potential, the phase state of the oscillator inverts, i.e., it evolves from (X,Y ) to −(X,Y ), irrespective of the starting
state. Accordingly, our bit-flip protocol based on potential deformation can be executed at any arbitrary point in time throughout
the parametron oscillation cycle. Furthermore, our results show that the phase-flip protocol based on potential deformation leaves
the width of the phase-space distribution essentially unchanged. Consequently, we conclude that the protocol is robust against
inevitable additive force noise which can arise due to coupling to a thermal bath.
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