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Abstract 23 

Fisheries capture has plateaued, creating ever-greater reliance on aquaculture to feed growing 24 

populations. Aquaculture volumes now exceed those of capture fisheries globally1,2, with China 25 

dominating production through major land-use change; more than half of Chinese freshwater 26 

aquaculture systems having been converted from paddy fields1,3. However, the greenhouse gas 27 

(GHG) implications of this expansion have yet to be effectively quantified. Here we measure 28 

year-round methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy 29 

fields and new, extensively managed crab aquaculture ponds. The conversion increased associated 30 

global warming potentials (GWP) from 8.15 ± 0.43 to 28.0 ± 4.1 Mg CO2 eq ha–1, primarily due to 31 

increased CH4 emission. After compiling a worldwide database of different freshwater aquaculture 32 

systems, the top 21 producers were estimated to release 6.04 ± 1.17 Tg CH4 and 36.7 ± 6.1 Gg N2O 33 

in 2014. We found that 80.3% of total CH4 emitted originated in shallow earthen aquaculture 34 

systems, with far lower emissions from intensified systems with continuous aeration4. We therefore 35 

propose greater adoption of aerated systems is urgently required to address globally significant rises 36 

in CH4 emission from the conversion of paddy fields to aquaculture.37 
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With increasing demand for animal proteins due to rising populations and a leveling off in capture 38 

fisheries, global aquaculture production has increased by 500% since the late-1980s, and now 39 

represents a major global industry1. In 2014, aquaculture volume amounted to 101 million tons (Mt) 40 

and is projected to reach 230 Mt by 2030, accounting for 62% of global fish and shellfish supply for 41 

human consumption1,2. This ever-expanding aquaculture sector relies heavily on application of 42 

aquafeeds5,6 which increase nutrient loadings and carbon (C) burial in aquaculture systems and 43 

adjacent water bodies7,8. Only 25% (11–36%) of the nitrogen (N) consumed by fish was converted 44 

to biomass with the remainder excreted into water as un-ionized ammonia9,10. Likewise, a 45 

substantial proportion of feed C was transformed to CO2 and CH4 by animals and microbes11 or 46 

buried in aquaculture systems7. In 2016, about 10.9 Tg C and 1.82 Tg N from the 39.9 Mt aquafeeds 47 

were estimated to be discharged to environments in global aquaculture12. Moreover, fertilizers are 48 

widely used in the extensive and semi-intensive aquaculture systems to stimulate phytoplankton 49 

production13. These intensive C and N loadings have the potential to drive aquaculture systems to 50 

become major anthropogenic sources of CH4 and N2O emissions.  51 

Williams & Crutzen14 tentatively estimated N2O emission from the aquaculture sector at 0.09 Tg 52 

in 2008, accounting for 0.33% of global N2O emission. Using the N2O emission factor of influent N 53 

(EFN = 1.80%) in wastewater treatment plants15, global N2O emission from aquaculture was 54 

estimated to increase from 0.15 Tg in 2009 to 0.60 Tg in 2030, which could contribute 5.72% of 55 

global anthropogenic N2O emission10.  However, large uncertainties in these estimates may arise 56 

from differences in management levels16,17 and yield difference between species17,18. Besides N2O, 57 

aquaculture ponds could be important anthropogenic CH4 sources with characteristics of intensive C 58 

loading, shallow water and frequent mixing19. To date, >40% of worldwide aquaculture production 59 

has been carried out in earthen ponds, while estimates of overall CH4 budgets in global aquaculture 60 
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remain scarce. 61 

China is the world’s largest aquaculture producer, contributing ∼60% of global volume1; 62 

furthermore the volume and area of that aquaculture is steadily rising3. Above 70% of Chinese 63 

freshwater aquaculture production is carried out in extensive and semi-intensive earthen ponds3. 64 

More and more paddy fields have been, and will continue to be, converted to aquaculture ponds. 65 

They currently account for 51.3% of Chinese inland fish ponds3,18. There is clearly an urgent need 66 

for greater appreciation of the costs associated with GHG emissions incurred during the ongoing 67 

unprecedented levels of conversion of paddy fields towards industrial-scale aquaculture. 68 

 69 

Effect of conversion of paddy field to aquaculture on GHG emission 70 

We measured year-round fluxes of CH4, N2O and CO2 from three adjacent crab aquaculture ponds 71 

converted from paddy fields 12 years ago and neighboring paddy fields (PF) in the Tai Lake basin 72 

(31°02′N, 120°25′E; Supplementary Figs. 1 and 2) during 2013–2014. Wheat-rice rotation is the 73 

typical cropping system in this region. Urea was applied in PF at 150 and 280 kg N ha–1 during 74 

wheat and rice seasons, respectively. Crab ponds differed in size and water depth (Supplementary 75 

Table 1). They were not equipped with aerators but were fertilized during culturing. Chinese mitten 76 

crab (Eriocheir sinensis) were fed with commercial feed pellets, trash fish and corn seeds at the 77 

same rate in each pond during crab production period from March to October. Annual C and N 78 

inputs in crab ponds were 1.20 Mg C ha–1 and 244 kg N ha–1, respectively (Supplementary Tables 79 

2–4). 80 

Annual CH4 emission in PF was 218 ± 7.28 kg CH4 ha–1 (Fig. 1a), which was located in the 81 

upper end of the previously reported ranges (98.3–240 kg CH4 ha–1) for paddy fields without 82 

organic amendment in this area20. However, conversion from PF to crab ponds sharply increased 83 
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CH4 emission to 962 ± 62 kg CH4 ha–1; this value was higher than the summarized amount of 572 84 

kg CH4 ha–1 in permanently inundated temperate wetlands and the default emission factor (900 kg 85 

CH4 ha–1) for tropical inland freshwater wetlands proposed by the Intergovernmental Panel on 86 

Climate Change (IPCC; ref. 21).  87 

The CH4 EFC of C inputs from feeds and fertilizer in crab ponds was estimated at up to 60.0% 88 

(Table 1), which may be attributed to the enhanced availability of labile organic substrates and 89 

highly anaerobic environment in crab ponds. The C output as harvested crab was 0.19 Mg C ha–1 90 

(Supplementary Table 4), accounting for 16.1% of the C inputs excluding the photosynthates by 91 

submerged macrophytes. The remaining 1.04 Mg C ha–1 was deposited into sediments as 92 

unconsumed feed and feces, which led mean dissolved organic C (DOC) concentrations in pond 93 

sediments to reach 7.97-fold greater than that of PF (Supplementary Table 1). Additionally, organic 94 

compounds in feed remnants and feces such as starch and protein can be more easily decomposed22 95 

to methanogenic substrates than crop residues in PF. Moreover, pond sediments were permanently 96 

inundated, thereby creating anaerobic environments ideal for methanogenesis.  97 

Annual N2O emission in PF was 7.11 ± 0.23 kg N2O ha–1 (Fig. 1b). The EFN of fertilizer-N 98 

applied was 1.05%, closing to the IPCC default value (1.00%) for agricultural soils23. Conversion 99 

from PF to crab ponds significantly decreased annual N2O emission by 95.4% to 0.33 ± 0.07 kg 100 

N2O ha–1, with an EFN of 0.09 ± 0.02% (Table 1). The lower N2O emission in crab ponds was 101 

disproportionate to the differences in N application rates (244 vs 430 kg N ha–1), let alone the 102 

relatively higher total inorganic N content in pond sediments (Supplementary Tables 1). Nitrous 103 

oxide is derived from both nitrification and denitrification, although denitrification produces more 104 

N2O (ref. 24). It is likely that the much lower redox potential (–124 to –160 mV) suppressed 105 

nitrification in pond sediments, which reduced overall NO3
– concentrations to <1 mg N kg–1. This 106 
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concentration was lower than the threshold value of 5 mg N kg–1 for active denitrification25. 107 

Moreover, the high DOC concentrations and anaerobic conditions permit N2O to be further reduced 108 

to N2 through denitrification26.  109 

Using the net ecosystem C balance method, annual loss of soil organic C (SOC) in PF was 110 

estimated to be 0.04 ± 0.05 Mg C ha–1 (Table 1), which fell in the range of –0.27 to 0.67 Mg C ha–1 111 

estimated previously in paddy fields of Tai Lake basin27. The CO2 fluxes measured by transparent 112 

chambers in crab ponds were regarded as net ecosystem exchange. On an annual basis, crab ponds 113 

were weak net CO2 sources, releasing 0.13–1.99 Mg CO2 ha–1 (Fig. 1c).  114 

Conversion from PF to extensive crab ponds increased the 100-yr GWP from 8.15 ± 0.43 to 115 

28.0 ± 4.1 Mg CO2 eq ha–1, mainly due to increased CH4 emission with a contribution of 96.3% 116 

(Table 1). Our results contrast with those of Liu et al.18, who reported such conversion significantly 117 

reduced CH4 and N2O emissions by 48% and 56%, respectively. Annual CH4 emission in Liu’s 118 

ponds (equipped with aerators and classified as semi-intensive, see below) was just 32.6 kg CH4 ha–119 

1 despite the much greater feeding rate and higher sediment DOC concentration compared to test 120 

extensive ponds. Hence, substrate availability was not the limiting factor for CH4 emissions in 121 

feeding aquaculture systems, while oxygen exposure by aeration was the key factor affecting CH4 122 

emissions. Our results highlight that GHG emissions clearly differ from one aquaculture system to 123 

another, greatly depending on the intensity of operational management. This observation illustrates 124 

the potential for mitigating the effects of future paddy field conversion through careful 125 

management. 126 

 127 

Global CH4 and N2O budgets of freshwater aquaculture 128 

Here, we classified aquaculture into four systems: rice-fish, extensive, semi-intensive and intensive 129 
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based on local conditions and aquaculture facilities especially whether aerators are used or not (see 130 

Methods). We compiled a worldwide database of CH4 and/or N2O emissions that were measured in 131 

45 inland freshwater aquaculture systems during 2003–2015 (Supplementary Table 5). Land-use 132 

and production statistics were also compiled for different aquaculture systems of top 21 freshwater 133 

aquaculture producers (Supplementary Table 6); however, data from extensive and semi-intensive 134 

systems were pooled because of unavailability of aerator-use data for separate classification. In 135 

2014, the top 21 producers contributed 97.5% of global freshwater aquaculture volume1. 136 

The synthesized data show that CH4 fluxes ranged from –0.03 to 37.0 mg CH4 m–2 h–1 in 137 

rice-fish, extensive, and semi-intensive systems. Mean CH4 flux in rice-fish system was the highest 138 

at 12.6 ± 3.9 mg CH4 m–2 h–1, followed by extensive and semi-intensive systems (Fig. 2a). The 139 

absence of CH4 flux in intensive systems can be attributed to a combination of continuous aeration, 140 

water exchange and a lack of habitats for methanogens4. The rice-fish system also had the highest 141 

mean N2O flux followed by semi-intensive and extensive systems (28.4 ± 9.8 and 7.56 ± 3.02 μg 142 

N2O m–2 h–1, respectively; Fig. 2b). The EFN and yield-scale N2O EF (EFY) in intensive system 143 

were 1.16 ± 0.18% and 2.48 ± 0.42 g N2O kg–1 yield, respectively, which were significantly higher 144 

than the corresponding values in extensive (0.24 ± 0.10% and 0.66 ± 0.22 g N2O kg–1 yield) and 145 

semi-intensive (0.35 ± 0.16% and 0.88 ± 0.41 g N2O kg–1 yield) systems. The EFY in intensive 146 

systems was close to the IPCC default EFY (2.66 g N2O kg–1 yield) that is widely used in model 147 

estimate for aquaculture10,21, but was 2.75- and 1.82-fold greater than that for extensive and 148 

semi-intensive systems, respectively. Considering the large volume of extensive and semi-intensive 149 

aquaculture (Supplementary Table 6), previous estimates10,14 of global aquaculture N2O emission 150 

may have been overestimated because of the higher default EFY mentioned above.  151 

The estimated CH4 and N2O emissions from the top 21 producers in 2014 were 6.04 ± 1.17 Tg 152 
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CH4 and 36.7 ± 6.1 Gg N2O, respectively (Table 2), which accounted for 1.82% and 0.34% of 153 

global anthropogenic CH4 and N2O emissions, respectively. Methane was a key contributor (94.6%; 154 

Fig. 2e) to GWP in freshwater aquaculture, of which 1.19 ± 0.27 Tg CH4 was emitted from rice-fish 155 

system and 4.85 ± 1.04 Tg CH4 from extensive plus semi-intensive systems. To our knowledge, this 156 

is the first global estimate of CH4 emission from freshwater aquaculture. Our estimated total N2O 157 

emission was much lower than the previous estimates of 90 Gg N2O (ref. 14) and 146 Gg N2O (ref. 158 

10) of global aquaculture. Extensive plus semi-intensive systems contributed 87.0% of global 159 

volume of freshwater aquaculture, meanwhile, were the largest CH4 and N2O emitter (80.3% and 160 

45.2%, respectively) from this sector. Intensive systems accounted for 8.89% of the production, 161 

27.0% of total N2O emissions but negligible CH4 emissions. Rice-fish systems represented only 162 

4.30% of aquaculture volume, yet they accounted for 19.7% and 27.8% of CH4 and N2O budgets, 163 

respectively. 164 

The greenhouse gas intensity (GHGI, GWP/yield) was 3.59 ± 0.74 kg CO2 eq kg–1 yield in 165 

extensive plus semi-intensive systems, which was 4.46-fold greater than that in intensive systems 166 

(0.66 ± 0.11 kg CO2 eq kg–1 yield; Fig. 2f). Therefore, if half of the current productions from 167 

extensive plus semi-intensive systems (19.5 Mt) are replaced by intensive systems, the GWP of CH4 168 

and N2O emissions from freshwater aquaculture (excluding rice-fish) will be reduced by 40.1% 169 

from 143 Tg CO2 eq to 85.6 Tg CO2 eq.  170 

China has emerged as the world’s largest freshwater aquaculture emitter of CH4 (4.10 ± 0.10 Tg 171 

yr–1) and N2O (22.8 ± 7.1 Gg yr–1), contributing 68.0% and 62.1% of global budgets from the sector, 172 

respectively. In China, CH4 emissions from freshwater aquaculture with 7.57 × 106 ha equates to 173 

36.5% of total CH4 emissions from paddy fields, natural wetlands and lakes (11.3 Tg CH4 yr–1; ref. 174 

28). Since 83.0% of Chinese freshwater aquaculture CH4 emissions originate from extensive plus 175 
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semi-intensive systems, a substantial reduction in emissions could be achieved through improved 176 

management practices, such as installing more efficient aerators in earthen ponds and implementing 177 

optimized feeding strategies for reducing feed waste. 178 

In conclusion, the conversion of paddy fields to extensive crab aquaculture ponds sharply 179 

increased GWP, primarily through a drastic increase in CH4 release. Our findings emphasize the 180 

need to assess the climatic impacts of land-use shifts towards industrial-scale aquaculture. Methane 181 

is the most important GHG in freshwater aquaculture compared with N2O, and it was primarily 182 

sourced from extensive plus semi-intensive systems. Our findings indicate that effective 183 

management of extensive and semi-intensive systems through conversion to intensive systems is 184 

urgently required to mitigate GHG emissions from the unprecedented growth of aquaculture.  185 

 186 

Methods 187 

Methods, including statements of data availability and any associated accession codes and 188 

references, are available in the online version of this paper. 189 

 190 

Data availability 191 

The authors declare that the data supporting the findings of this study are available within the article 192 

and its supplementary information files. 193 
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Methods 270 

Site description Field experiments were carried out in a conventional paddy field (PF) and three 271 

adjacent crab ponds in the Tai Lake basin (31°02′N, 120°25′E), Suzhou City, Jiangsu Provence, 272 

China (Supplementary Fig. 1). This region is characterized by a subtropical monsoon climate with 273 

the long-term (1981–2010) mean annual air temperature of 16.5°C and precipitation of 1176 mm 274 

(http://cdc.nmic.cn/home.do). Paddy fields accounted for 65% of total cropland in this region, 275 

however, they are being rapidly converted to aquaculture ponds due to the greater economic 276 

benefits from the latter since 1980s (ref. 31).  277 

Soil was developed from alluvial sediments of the Yangtze River, and classified as stagnic 278 

Anthrosols based on the USDA soil taxonomy. The surface soil (0–20 cm) had a pH (H2O) of 5.95, 279 

bulk density of 1.25 g cm–3 and a loam texture with 40% sand, 34% silt and 26% clay, and 280 

contained 20.3 g kg–1 organic C and 1.81 g N kg–1 total N. Three neighboring aquaculture ponds for 281 

Chinese mitten crab (Eriocheir sinensis) cultivation were converted from paddy fields in 2001.  282 

 283 

Experimental design and field management Four independent 3 × 8 m2 plots were established in 284 

PF in November 2012. Winter wheat (Triticum aestivum L., Yangfumai 4) and summer rice (Oryza 285 

sativa L., Wuyunjing 23) was rotated during the period from November 2012 to May 2014. During 286 

wheat season, urea was applied at the rate of 150 kg N ha–1, with basal and supplemental 287 

fertilization ratio of 40%:60%. During rice season, urea was applied at the rate of 280 kg N ha–1, 288 

with the basal and supplemental fertilizer ratio of 50%:50%. Calcium superphosphate (40 and 125 289 

kg P2O5 ha–1 for wheat and rice, respectively) and potassium sulfate (60 and 125 kg K2O ha–1 for 290 

wheat and rice, respectively) were applied as basal fertilizers (Supplementary Table 2). The row 291 

distance was 25 cm for rice and wheat, and the hill distance was 15 cm for rice. No irrigation was 292 
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performed during wheat season, while rice was managed under a typical water regime mode of 293 

flooding-midseason drainage-reflooding-moist irrigation (F-D-F-M). Crop grain and straw were 294 

harvested and oven dried at 60°C until a constant weight.  295 

Parallel field experiments were conducted in three neighboring crab ponds with different size 296 

(CP1, 1.71 ha; CP2, 0.71 ha; CP3, 0.09 ha), from March 2013 to March 2014. Monoculture of 297 

Chinese mitten crab was employed at the same stocking density of 15000 ind ha–1 for each pond. 298 

The submerged western waterweed (Elodea nuttallii) naturally vegetated in ponds and provided 299 

molting shelters and foods for crabs. Feeds and fertilizers were applied at the same rates in each 300 

pond. Snails (Bellamya quadrata) were introduced into the ponds twice at the rates of 600 and 400 301 

kg ha–1 on April 4 and June 20, respectively, to filter feed residue and provide supplementary foods 302 

for crabs (Supplementary Tables 2 and 3). Crabs were fed with commercial feed pellets (2050 kg 303 

ha–1) (Purina Co. Ltd., Jiaxing, China), trash fish (1250 kg ha–1) and corn seeds (1150 kg ha–1), 304 

twice per day on 9:00 a.m. and 17:00 p.m. until the crabs were harvested. In order to stimulate 305 

phytoplankton and waterweed production, cake manure (residue of de-oiled oil seeds) at 40 kg ha–1 306 

was applied as basal fertilizer while urea, compound fertilizer and calcium superphosphate were 307 

applied at the rate of 130, 100 and 200 kg ha–1, respectively, with four splits of 25%:25%:25%:25% 308 

on March 29, June 5, August 12 and September 27. Annual inputs of C and N to crab ponds were 309 

1.20 Mg C ha–1 and 244 kg N ha–1, respectively. Water was constantly maintained all-year round, 310 

while the water depth differed between ponds. Crab harvest started from 1 to 30 October 2013, 311 

depending on crab maturity. Crab yield was expressed as fresh weight (Supplementary Table 4). 312 

Details management practices in the two systems are shown in Supplementary Table 3. 313 

 314 

Measurement of GHG fluxes Wooden boardwalks were installed in each plot to facilitate 315 
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collecting gas samples and measuring the auxiliary parameters (Supplementary Fig. 2). The static 316 

closed chamber technique was used to measure GHG fluxes; in PF, PVC chamber collars (50 cm × 317 

50 cm × 20 cm) with a water-filled channel were inserted into the soil at a depth of 15 cm. In crab 318 

ponds, a specially designed system, which included four stainless steel pegs for fixing the system 319 

and two adjustable crossbars for elevating or lowering the chamber collars with the fluctuation of 320 

water level, were installed along the boardwalks to minimize water wave impact on gas sampling. 321 

Three PVC chamber collars were placed on the crossbars in each pond. If necessary, the crossbars 322 

together with the chamber collars were adjusted to the best position one day before sampling. The 323 

transparent Plexiglass chambers (50 cm × 50 cm × 15 cm) in crab ponds and the stainless steel 324 

chambers (50 cm × 50 cm × 50 cm) insulated with white foam in PF were used. See Yuan et al.32 for 325 

further detailed information of the devices. 326 

The GHG fluxes were measured twice weekly in crab ponds during crab production period 327 

from March to October and weekly during period without crab production from November to 328 

February (Supplementary Fig. 3). In PF, GHG fluxes were measured twice weekly from April to 329 

November and weekly from December to March. Gas sampling was conducted at 08:00–10:00 local 330 

time to minimize diurnal variation in the flux pattern. During sampling, the chamber was fitted into 331 

the water trough of the chamber collars. Each time, four gas samples of the chamber headspace 332 

were drawn using a 50-mL syringes at 0, 10, 20, and 30 min after closure and injected into 22-mL 333 

pre-evacuated glass vials. Air temperature inside the chamber was simultaneously measured with a 334 

mercury thermometer. Concentrations of CH4, N2O and CO2 were determined by a gas 335 

chromatograph (Agilent 7890, Santa Clara, CA, USA) equipped with a flame ionization detector for 336 

CO2 and CH4 and a 63Ni electron capture detector for N2O. The gas standards were provided by the 337 

National Research Center for Certified Reference Materials, Beijing, China. The precision for GHG 338 
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concentrations was ±0.5% based on repeated measurements of gas standards. The GHG fluxes were 339 

calculated using a linear least squares fit to the four points in the time series of concentration for 340 

each plot. Data were omitted if the slope of the linear fitting had R2 < 0.90. Since the opaque 341 

chambers were used in PF, the measured CO2 fluxes were ecosystem respiration (Re); in contrast, 342 

CO2 fluxes in crab ponds measured by transparent chambers were net ecosystem exchange32. The 343 

dataset of GHG fluxes were supplied as Supplementary Table 7. 344 

Annual or seasonal cumulative CH4 (kg CH4 ha–1), N2O (kg N2O ha–1) and CO2 (kg CO2 ha–1) 345 

emissions (E) were calculated using the following equation: 346 

( ) ( )
=

−
++ ××−×+=

n

i
iiii ttffE

1

2
11 10242

 347 

where f represents the flux of CH4 (mg CH4 m
–2 h–1) or N2O (mg N2O m–2 h–1) or CO2 (mg CO2 m

–2 348 

h–1); i is the ith measurement; (ti+1 – ti) is the days between two adjacent measurements; and 24 × 349 

10–2 was used for unit conversion.  350 

 351 

Auxiliary measurements Redox potential of the intact soil and sediment at 10 cm depth was 352 

measured in situ using a PHB-6 pH/mV meter (Jiaoyuan Instrument, Yancheng, China). The soil of 353 

PF or sediment of ponds at 10 cm depth was collected weekly using a Russian corer for mineral N 354 

and dissolved organic C measuring. The NH4
+ and NO3

– were extracted with 2 M KCl solution 355 

(shaken for 1 h and then filtered); extracts were filtered and analyzed on a continuous-flow analyzer 356 

(SAN++, Skalar, Breda, the Netherlands). Dissolved organic C was extracted with deionized water 357 

(shaken for 30 min at 25°C, centrifuged for 25 min at 4000 rpm, and filtered through 0.45-μm 358 

membrane filter) and measured on a TOC analyzer (TOC Vcph, Shimadzu, Kyoto, Japan). Soil 359 

organic C (SOC) and total N contents were determined by the wet-oxidation redox method and the 360 
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Kjeldahl procedure, respectively33. 361 

Estimates of SOC change in paddy field and GWP The SOC change (δSOC) in PF was estimated 362 

from the net ecosystem C balance (NECB) using a coefficient of 0.213 for paddy soils in this 363 

study29, namely, the conversion rate of organic C gain to SOC is 213 g C kg–1. The NECB of the 364 

short-plant croplands was calculated according to Ma et al.27:  365 

ManureCHHarvestReGPPNECB 4 +−−−=  366 

where GPP (gross primary production) is inferred from NPP (net primary production) via the 367 

NPP/GPP ratio of 0.58 in this region deduced by Zhang et al.34; Re, CH4 and manure are the C 368 

exchange through ecosystem respiration, CH4 emission, and manure application, respectively; 369 

Harvest is the C of removed straw and grain, which was calculated based on biomass yields, and C 370 

and N contents in straw and grain (Supplementary Table 4). The NPP includes net primary 371 

productions of grain, straw, root, litter and rhizodeposit, according to Ma et al.27.  372 

The GWP (Mg CO2eq ha–1) in PF is calculated by the following equation35: 373 

GWP = 28×CH4+265×N2O–44/12×δSOC 374 

and for crab ponds: 375 

GWP = 28×CH4+265×N2O+1×CO2  376 

where CH4, N2O and CO2 denote annual emissions of CH4 (Mg CH4 ha–1), N2O (Mg N2O ha–1) and 377 

CO2 (Mg CO2 ha–1), respectively. 378 

 379 

Data collection and classification of global freshwater aquaculture As mentioned above, there 380 

are large uncertainties in previous model estimates of global aquaculture N2O emissions by using 381 

EFs of applied N and fish yields: First, the N2O EFs are highly dependent on management levels in 382 

the aquaculture system. For example, yield-scale N2O EF (EFY) of carp was 1.07 g N2O kg–1 yield 383 
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in an intensive rearing system16 but was only 0.28 g N2O kg–1 yield in a semi-intensive earthen 384 

pond17; Secondly, the EFY can be biased by the major yield difference between species. For instance, 385 

although the direct N2O emission rates in two adjacent semi-intensive aquaculture ponds were 386 

comparable, the EFY measured in crab ponds was 8.11-fold greater than that in carp ponds due to 387 

the magnitude difference in yields17,18.  388 

Here, we compiled a worldwide database of GHG emissions measured in the inland freshwater 389 

aquaculture systems (Supplementary Table 5). We identified potential published studies for 390 

inclusion in the database using Web of Science with the keywords ‘greenhouse gases or CH4 or N2O’ 391 

and ‘aquaculture or fish farming or rice fish or aquaponics’. Twenty-four studies fell within the 392 

inland freshwater aquaculture and met the following criteria: (i) field measurement of CH4 and/or 393 

N2O emissions was carried out on a per hectare or per fish yield basis; (ii) type of aquaculture 394 

system with or without aerator use was reported; (iii) the N input and yield in intensive systems 395 

were listed (see below). The dataset include 45 CH4 and/or N2O emission measurements across 19 396 

sites between 2003 and 2015. 397 

Generally, the aquaculture systems are classified based on production per unit volume or per 398 

unit area36; however, when estimating the regional or global GHG emissions, such classification 399 

might be unfit due to lack of the available production data counted by volume or area and 400 

deficiency of the cross-species classification criteria for big differences in production performance 401 

between culture species. Here, we classified four systems: rice-fish, extensive, semi-intensive and 402 

intensive based on the local conditions and aquaculture facilities especially aerator use or not. 403 

Actually, the stocking density and production are associated with investment on infrastructure 404 

especially aeration equipment36, because the dissolved oxygen in fish ponds should be 405 

maintained >5.0 mg L–1, theoretically37.  406 
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 Rice-fish systems include integrated rice field or rice field-pond complex and are used to 407 

produce fish and other aquatic animals.  408 

 Extensive aquaculture systems involve excavated earthen ponds, irrigation canals and ditches, 409 

small lakes and reservoirs used for fish farming. Extensive systems have low stocking density, with 410 

natural productivity or limited supplemental feeds and no aerator system. 411 

 Semi-intensive aquaculture systems include excavated earthen ponds, irrigation canals and 412 

ditches, small lakes and reservoirs, have higher stocking densities than extensive systems, and are 413 

equipped with aerators and managed with artificial feeds and intermittent aeration. 414 

 Intensive aquaculture systems, which utilize man-made rearing units such as concrete/canvas 415 

tanks, raceways recirculating systems, have high stocking rates and complete diet management, 416 

intensive and continuous aeration, and frequent or continuous water exchange. The cage and pen 417 

culture performed in open water bodies like rivers, lakes and reservoirs are also classified as 418 

intensive aquaculture because of the high stocking rates and sufficient dissolved oxygen supply 419 

from the constant water exchange. 420 

Global inventory of the land use and production statistics are also compiled in different 421 

aquaculture systems of the major freshwater aquaculture producers (Supplementary Table 6), 422 

however, data of extensive and semi-intensive systems were pooled because of lack of aerator use 423 

data to classify each other. Data were derived from the official fisheries statistics for 2014. In case 424 

2014 data were not available, the most recent data were used. If the national official statistical data 425 

were not available, the FAO estimate (National Aquaculture Sector Overview) or private survey 426 

data were used. Further details on the statistics used are provided in the Supplementary materials.  427 

 428 

Estimation of global CH4 and N2O budgets We estimated N2O emissions from intensive systems 429 
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by multiplying EFY by production. Methane emission from intensive systems was recognized as 430 

negligible because the aerobic condition limited CH4 production in such systems4. While CH4 and 431 

N2O emissions from rice-fish, extensive, and semi-intensive aquaculture systems were estimated by 432 

multiplying mean emission rates by area, because (i) the yield EF for CH4 was generally 433 

unavailable in literature; and (ii) the EFY would be biased by the huge yield difference between 434 

species in extensive and semi-intensive systems. Additionally, when estimating CH4 emission from 435 

rice-fish systems, the CH4 fluxes (32–37 mg CH4 m
–2 h–1) measured in Bangladesh30 were excluded 436 

from mean emission rates, because of the extremely high emission rates and relatively small area of 437 

rice-fish in Bangladesh (~3.97% of global rice-fish area).  438 

It should be noted that our preliminary estimates possess some uncertainties. First, field 439 

measurements of CH4 and N2O fluxes were mainly conducted during the feeding period, may result 440 

in overestimation of CH4 and N2O emissions; secondly, only averaged CH4 and N2O fluxes in 441 

extensive and semi-intensive systems were set up due to the absence of detailed aquaculture 442 

facilities data; thirdly, there was no detailed information relative to land use and production in 443 

aquaculture in many main producers (e.g. Brazil, Nigeria). More field measurements along with 444 

detailed national aquaculture information in those countries are required to obtain more reliable 445 

estimates. Moreover, our estimates only focused on the direct CH4 and N2O emissions, however, 446 

GHG emission from adjacent water bodies can also be enhanced by the nutrients loading caused by 447 

water exchange in some aquaculture systems (especially intensive systems). Hence, these potential 448 

indirect emissions should be considered in future estimates.  449 

 450 
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Figure legends: 466 

Figure 1. Annual CH4, N2O and CO2 emissions from the paddy field (PF) and crab ponds (CP) 467 

during 2013–2014. a, CH4, b, N2O, c, CO2. Vertical bars represent standard errors of the means (n 468 

= 4 for PF and n = 3 for crab ponds). Three crab ponds had different size and water depth 469 

(Supplementary Table 1). ‘A’, ‘B’, and ‘C’ denote significant differences between sites (P < 0.05, 470 

ANOVA, Tukey’s HSD test) during the entire year; ‘a’, ‘b’, and ‘c’ denote significant differences 471 

between crab ponds during the crab production period or during the period without crab production. 472 

CO2 release from PF was calculated from soil organic C change estimates using the net ecosystem 473 

C balance method.  474 

Figure 2. Literature-sourced greenhouse gas emission factors of different aquaculture. a, mean 475 

CH4 emission rate, b, mean N2O emission rate, c, N2O emission factor of applied N (EFN), d, yield 476 

based N2O emission (EFY). Boundaries of the boxes indicate the first and third quartiles, line within 477 

the box and the white square represent the median and average, respectively. Whiskers mark the 478 

10th and 90th percentiles, and the outliers are shown as dots. e, global warming potential (GWP), f, 479 

greenhouse gas intensity (GHGI, GWP/yield). Vertical bars represent standard errors of the means. 480 

Aquaculture systems are classified based on the local conditions and aquaculture facilities 481 

especially whether aerators were used or not. 482 



P F C P 1 C P 2 C P 3
0

4 0 0

8 0 0

1 2 0 0

d
b
cb a

a
D C

B

A
A

C

B B

c

b a

c
ba

aa

a
a

bb

C

BB

CH
4 em

iss
ion

 (k
g C

H 4 ha
−1

)

a
A

P F C P 1 C P 2 C P 3
0 . 0

0 . 2

0 . 4

4
6
8

cb
 
 

N 2O 
em

iss
ion

 (k
g N

2O 
ha

−1
) c r a b  p r o d u c t i o n  p e r i o d

( r i c e  s e a s o n )
p e r i o d  w i t h o u t  c r a b
( w h e a t  s e a s o n )

P F C P 1 C P 2 C P 3
- 1
0
1
2

4 0

6 0

 CO
2 em

iss
ion

 (M
g C

O 2 ha
−1

)



0

1 0

2 0

3 0

4 0a

 

 

CH
4 flu

x (
mg

 C
H 4 m

−2
 h−1

)

b

0

4 0

8 0

1 2 0

N 2O 
flu

x (
µg

 N
2O 

m−2
 h−1

)

0

1

2

3
c

EF
N (%

)

0

2

4

6

8
d

EF
Y (g

 N
2O 

kg
−1

 yi
eld

)

0

4 0

8 0

1 2 0

1 6 0
e

GW
P (

Tg
 C

O 2eq
)

 N 2 O
 C H 4

R i c e - f i s h E x t e n s i v e S e m i - i n t e n s i v e I n t e n s i v e

R i c e - f i s h E x t e n s i v e S e m i - i n t e n s i v e I n t e n s i v e

R i c e - f i s h E x t e n s i v e S e m i - i n t e n s i v e I n t e n s i v e

R i c e - f i s h E x t e n s i v e S e m i - i n t e n s i v e I n t e n s i v e

R i c e - f i s h E x t e n s i v e + s e m i - i n t e n s i c e I n t e n s i v e R i c e - f i s h E x t e n s i v e + s e m i - i n t e n s i v e I n t e n s i v e
0

5

1 0

1 5

2 0

2 5f

GH
GI

 (k
g C

O 2eq
 kg

−1
 yi

eld
)



Table 1 Annual GHG emissions, net GWP and emission factors of CH4 and N2O in paddy field and crab ponds 1 

Systems CH4 

(kg CH4 

 ha–1) 

N2O 

(kg N2O 

 ha–1) 

CO2* 

(Mg CO2 

 ha–1) 

C input†

(Mg C 

 ha–1) 

N input†

(kg N 

 ha–1) 

δSOC‡ 

(Mg C 

 ha–1) 

Net GWP§ 

(Mg CO2eq 

 ha–1) 

EFC†† 

(%) 

EFN¶ 

(%) 

EFY¶ 

(g N2O 

 kg–1 yield)

Paddy field 218 ± 7b 7.11 ± 0.23a 50.6 ± 0.9a – 430 –0.04 ± 0.05 8.15 ± 0.43b – 1.05 ± 0.03a 0.56 ± 0.02a

Crab ponds 962 ± 149a 0.33 ± 0.07b 0.93 ± 0.55b 1.20 244 – 28.0 ± 4.1a 60.0 ± 9.3 0.09 ± 0.02b 0.30 ± 0.07b

* The value is ecosystem respiration in paddy field and net ecosystem CO2 exchange for crab ponds. † Calculated by application rates and C and 2 

N contents of the fertilizers and feeds (see Supplementary Tables 2–4). ‡ Estimated from the net ecosystem carbon balance (NECB) using a 3 

coefficient of 0.213 for paddy soils29. § Net GWP = 28×CH4+265×N2O–44/12×δSOC for paddy field, and net GWP = 4 

28×CH4+265×N2O+1×CO2 for crab ponds. †† The direct emission factor of C for CH4 (EFC) is calculated by dividing annual CH4 emission by 5 

total C input21. ¶ The direct emission factor of N for N2O (EFN) and yield-scaled emission factor for N2O (EFY) are calculated by dividing 6 

annual N2O emission by total N input and grain/crab yield, respectively. Values are means ± standard errors. 7 



Table 2 Direct CH4 (Gg CH4 yr–1) and N2O (Mg N2O yr–1) emissions from 8 

different freshwater aquaculture systems in global top 21 producers in 2014 9 

 

Country/region 

Rice-fish 

systems* 

 Extensive plus 

semi-intensive 

systems* 

 Intensive 

systems† 

 Total‡  

 CH4 N2O  CH4 N2O  N2O  CH4 N2O 

China 696 5,988  3,408 11,653  5,152  3,524 22,793 

India 108 925  487 1,667  –  512 2,591 

Indonesia 66 571  91 313  1,955  142 2,839 

Vietnam 19 161  173 590  344  162 1,095 

Bangladesh – –  323 1,106  4  268 1,109 

Myanmar – –  50 172  0  42 172 

Brazil – –  45 153  430  37 584 

Thailand 2 15  71 244  91  61 350 

Nigeria‡ – –  – –  –  – – 

Philippines – –  8 28  373  7 401 

Iran 0 2  28 97  316  24 415 

USA 15 128  35 119  76  44 323 

Egypt 268 2,306  1 3  442  269 2,752 

Pakistan – –  8 28  0  7 28 

Taiwan Province 

of China 
0 0  34 116  0  28 116 

Russia – –  57 194  71  47 265 

Cambodia 0 2  1 3  208  1 213 



Uganda – –  6 19  67  5 86 

Lao PDR 2 20  21 71  55  20 146 

Turkey – –  0 0  268  0 268 

Malaysia 12 101  3 12  50  15 162 

Top 21 subtotal 1,188 10,219  4,851 16,586  9,903  6,039 36,709 

* Calculated by mean CH4 and N2O emission rates (Fig. 2) and the area for aquaculture 10 

(Supplementary Table 6) collected from the literature. Rates of CH4 emission from rice-fish 11 

system in Bangladesh were excluded when calculating30. † Calculated by averaged 12 

yield-scaled emission factor for N2O (EFY) (Fig. 2d) and volume of production from intensive 13 

aquaculture. The direct emission rate of CH4 from intensive system was estimated at 0 14 

according to Hu et al.4. ‡ No official or private statistics is available about area and 15 

production from different systems in Nigeria. 16 
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