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Rapid identification of 
staphylococci by Raman 
spectroscopy
Katarína Rebrošová1, Martin Šiler  2, Ota Samek2, Filip Růžička1, Silvie Bernatová2, Veronika 
Holá1, Jan Ježek2, Pavel Zemánek2, Jana Sokolová3 & Petr Petráš3

Clinical treatment of the infections caused by various staphylococcal species differ depending on 
the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for 
identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific 
fields. Recent studies showed that the method has a potential for use in microbiological research, 
too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present 
a method that enables almost 100% successful identification of 16 of the clinically most important 
staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We 
obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-
hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The 
results show that it is possible to distinguish among the tested species using Raman spectroscopy and 
therefore it has a great potential for use in routine clinical diagnostics.

Staphylococci are gram-positive bacteria inhabiting the skin and mucosal membranes of humans1,2. However, 
under certain circumstances (disruption of skin, diminution of immunity), they can cause infections of variable 
severity3. �e most commonly found staphylococcal species in clinical material is Staphylococcus aureus. �is 
pathogen can produce a broad range of virulence factors—haemolysins, proteases, leukocidins, toxic shock syn-
drome toxin, exfoliative toxins, enterotoxins plus immune-modulatory factors4—and can cause mild to severe 
infections including infections of skin and so� tissues, toxin-mediated food poisoning and toxic shock syndrome. 
A�er entering the bloodstream, S. aureus may become the cause of sepsis, endocarditis, osteomyelitis, meningitis 
or other life-threatening invasive diseases5. �ese infections are o�en hospital-acquired6 and caused by multire-
sistant strains6,7. Another coagulase-positive staphylococci that can rarely cause infections in humans (mening-
itidis, skin absceses) belong to the Staphylococcus intermedius group8,9.

Coagulase-negative staphylococci are, in contrast to S. aureus, saprophytic organisms living on human skin 
and are o�en found in clinical material as contaminants. However, in the recent years, they signi�cantly con-
tributed to the ever-increasing morbidity and mortality of nosocomial infections10. �e majority of infections 
caused by coagulase-negative staphylococci are associated with bio�lm formation that can occur on arti�cial 
materials and/or medical devices in the human body as well as on disrupted tissues of the patient2,11–16. �ese 
infections are di�cult to treat and can be fatal. �e most frequently isolated species from clinical specimens 
is Staphylococcus epidermidis2. Other clinically important species that can be found in human clinical material 
include Staphylococcus haemolyticus (bloodstream infections, endocarditis, peritonitis and foreign-body infec-
tions)17–20, Staphylococcus lugdunensis and Staphylococcus saprophyticus (arthritis, urinary tract infections)17,21,22, 
Staphylococcus hominis, Staphylococcus caprae, Staphylococcus warneri, Staphylococcus capitis, Staphylococcus 
schleiferi, Staphylococcus xylosus and Staphylococcus auricularis (various infections)17,23, Staphylococcus sciuri 
(wounds, endocarditis)17,24,25, Staphylococcus simulans (cutaneous infections, osteoarticular infections, endocar-
ditis)26 and Staphylococcus petrasii (ear infections)27.

As the character of infections caused by Staphylococcus aureus and coagulase-negative staphylococci di�er, 
it is important to distinguish between these two groups and subsequently adjust the treatment. �erefore we 
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tested the possibility to use a fast, relatively cheap, contactless, label-free spectroscopic method—Raman spec-
troscopy—for identi�cation of the clinically most relevant staphylococcal species. In our comprehensive study on 
bacteria we have included 16 clinically relevant strains, with 277 sub-strains in order to cover most of the family 
of staphylococci. �is could lead to the generation of a large reference database/library for Raman spectra of 
bacteria to unambiguously determine the identity of an unknown bacterial sample. Please note that our Raman 
spectral library presented here has been directed towards the clinical needs of the Department of Microbiology 
at St. Anne’s Faculty Hospital in Brno and can also be used as a starting point by other groups involved in clinical 
applications.

Raman spectroscopy is based on the shi� between the frequency of incident and scattered light that is called 
the Raman e�ect. �is shi� is induced by molecular vibrations in the sample28,29 and makes Raman spectroscopy 
an useful tool for identi�cation and characterization of biological systems30–50.

Materials and Methods
Microorganisms and sample preparation. �e experiments included 277 staphylococcal strains: 62 
Staphylococcus aureus strains, 8 Staphylococcus intermedius/pseudointermedius strains and 207 strains of coagu-
lase-negative staphylococci (63 strains of Staphylococcus epidermidis, 21 strains of Staphylococcus haemolyticus, 21 
strains of Staphylococcus hominis, 16 strains of Staphylococcus petrasii, 15 strains of Staphylococcus saprophyticus, 
11 strains of Staphylococcus lugdunensis, 11 strains of Staphylococcus warneri, 9 strains of Staphylococcus sciuri, 8 
strains of Staphylococcus schleiferi, 7 strains of Staphylococcus capitis, 7 strains of Staphylococcus xylosus, 6 strains 
of Staphylococcus auricularis, 6 strains of Staphylococcus caprae and 6 strains of Staphylococcus simulans). �e 
majority of strains, excluding S. aureus and S. epidermidis strains, were kindly provided by Petr Petráš from the 
National Reference Laboratory for Staphylococci in Prague, Czech Republic. Furthermore, the set of analysed 
strains included eighteen reference strains (S. aureus CCM 7111, CCM 3953, CCM 4750 and CCM 4223, S. epi-
dermidis CCM 7221 and CCM 2124, S. hominis CCM 2732, S. haemolyticus CCM 2729, S. capitis subsp. capitis 
CCM 2735, S. lugdunensis CCM 4068, S. caprae CCM 4546, S. schleiferi subsp. schleiferi CCM 4070, S. sciuri 
subsp. sciuri CCM 7040, S. saprophyticus subsp. saprophyticus CCM 2727, S. simulans CCM 2724, S. xylosus CCM 
2725, S. warneri CCM 2731, S. intermedius CCM 4710) from the Czech Collection of Microorganisms (CCM) 
and one reference strain from the Czech National Collection of Type Cultures (CNCTC) – S. aureus CNCTC 
7452. �e other strains were clinical isolates stored in the Culture Collection of the Department of Microbiology, 
St. Anne’s Faculty Hospital in Brno, Czech Republic. All of the strains were identi�ed using biochemical methods 
plus MALDI-TOF mass spectrometry and stored at −70 °C.

For the purpose of this experiment, the strains were thawed, inoculated onto Mueller-Hinton agar plates (MH, 
Oxoid, Basingstoke, United Kingdom) and cultivated for 24 hours at 37 °C. �ese conditions were selected in 
accordance with our previous work51.

Experimental setup. A�er cultivation, staphylococcal colonies were measured by a commercial Renishaw 
Raman spectrometer (Renishaw inVia Raman Spectrometer, Renishaw plc., Wotton-under-Edge, UK). 
Measurement settings were the same as described in our previous work51. Brie�y, laser: single-mode diode, wave-
length: 785 nm, microscope objective: Leica, Wetzlar, Germany, with numerical aperture 0.5, magni�cation: 500x, 
laser spot dimensions: approximately 2 µm × 10 µm, working distance: 0.5 mm, minimal number of measure-
ments/strain: 10 (from at least 3 di�erent bacterial colonies), spectral acquisition: 15 seconds. Each spectrum 
consists of 1015 points measured in the range 614–1724 cm−1.

�e geometry described above ensures that the Raman signal is collected over an axial range of about 8 µm 
and, therefore, a contribution from cultivation media to the Raman spectra can be neglected51. Before each spec-
tral acquisition, the laser was refocused onto a colony surface ensuring that the collected signal originates within 
the focal depth of the laser excitation and imaging optics.

On one day we acquired maximum of 200 Raman spectra. Measurements were performed in the same way on 
all measurement days. �is applies also for the sample preparation. Reproducibility of microbial Raman spectra 
acquired this way was validated in our previous work51.

Data analysis. Raman spectroscopy typically su�ers from a strong �uorescence background. Such back-
ground can be typically removed by various mathematical techniques52,53, such as polynomial baseline �tting, 
consequent numerical di�erentiation and integration, etc. It is even possible to suppress the �uorescence directly 
in the experiment using the frequency modulation of exciting laser54. Each method slightly disturbs the orig-
inal spectrum and, therefore, may in�uence the quality of bacterial strain identi�cation. We used two meth-
ods, namely Rolling-Circle Filter (RCF)55 (10 passes, 350 points circle radius) and iterative polynomial �tting 
(IPF)52 (maximum of 10 passes, 12th polynomial order). Subsequently, high-frequency noise was removed using 
Savistky-Golay �ltering (2nd order, width 7points) and the spectra are normalized to the area of phenylalanine 
peak in the wavenumber range of 996–1009 cm−1 39.

Prior the spectral based identi�cation we employed Principal Component Analysis (PCA) in order to extract 
the main features of the spectra and then use these features for bacterial strain identi�cation. �e whole ensemble 
of spectra is described by so-called loadings and principal component (PC) scores. �e loadings represent an 
orthonormal coordinate base having the same dimension as is the number of measured Raman shi�s and scores 
correspond to “coordinates” in this space. �e PCA selects the loadings in a way that maximal variance of the 
original data is described by the �rst several scores. �erefore, it is typically su�cient to take into account only 
�rst 10–20 PC scores that would almost completely characterise the whole spectrum instead of the 1015 values 
corresponding to the intensities of each Raman shi�.

In order to identify bacterial strains based on their Raman spectrum we used and compared 3 three methods 
typically used in computer science, namely Linear Discriminant Analysis (LDA)56, one nearest neighbor (1NN)57 
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and Support Vector Machine (SVM)58. �ese methods are o�en used in the �eld of computer vision or machine 
learning and were already used for Raman spectra identi�cation53,59–63, too. �ey belong to the large group of 
supervised learning models, where the methods are initially “trained” using already known results.

In order to evaluate the performance of identi�cation of staphylococci we used 5-fold cross-validation, i.e. the 
measured data set was randomly separated into 5 equally sized groups, the classi�cation methods were trained 
using 80% of data and then the remaining 20% of data was classi�ed using the trained model. For the identi�ca-
tion we used MATLAB (Mathworks Inc., Natick, MA, USA) functions �tcdiscr, �tcknn, and �tcecoc (part of the 
Statistics and Machine Learning Toolbox of MATLAB). Furthermore, we optimised the number of PC scores 
used for bacterial identi�cation in the range of 2–50.

Data Availability. �e datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Results and Discussion
We collected Raman fingerprints from 277 staphylococcal strains (70 of coagulase-positive and 207 of 
coagulase-negative).

�e averaged Raman spectra of each bacterial species (thick curves) are shown in Fig. 1. �e �uorescent back-
ground was removed by the IPF method. �e variance of spectra is marked by the gray area that borders 0,1st and 
99,9th percentile of spectral intensity variations for a given Raman shi�. Please note, that we used the percentiles 
instead of error bands based on stadard deviation of data since the measred spectral intensities are not normally 
distribured. �e selected percentiles would correspond to commonly used 3σ interval for normally distributed 
data.

�e comparison of background removal methods can be seen in the inset of Fig. 1. A single, randomly selected 
spectrum of a S. aureus species is shown a�er �ltering based on both IPF as well as RC background removal meth-
ods. Certain variations of less prominent spectral band might be seen but the positions and intensities of the most 
characteristic peaks are conserved.

�e narrow phenylalalnine peak (at 1005 cm−1) is clearly present in all spectra and thus it is reasonable to 
use it as an internal standard for normalization. Furthermore, we observe quite strong variation of spectra even 
within one staphycoccal species which is depicted the separation of gray curves. One of the distinctive features is 
the presence or absence of peaks connected to carotenoids vibration in the wavenumber ranges 1110, 1160 and 
1525 cm−1 corresponding to C-C-(CH3), =C-C=, and -C=C vibrations64. We see that certain species in our work 
do not exhibit those at all (such as Staphylococcus caprae, Staphylococcus (pseudo)intermedius, Staphylococcus 
schleiferi and Staphylococcus simulans) while the other strains exhibit medium or strong carotenoid signals. �is 
is especially the case for Staphylococcus aureus, even though the carotenoid of this species varies strongly. Another 
feature noticable by naked eye is that Staphylococcus sciuri is the only species exhibiting peaks at 977 cm−1.

For identi�cation of staphylococcal strains we used three methods: Linear Discriminant Analysis (LDA), one 
nearest neighbor (1NN) and Support Vector Machine (SVM). �e accuracy of identi�cation, i.e. relative count 
of correctly identi�ed samples, depends both on the �uorescence background subtraction method as well as on 
the number of PC scores N considered for identi�cation. Figure 2 shows the accuracy as a function of N used for 
identi�cation for both IPF and RC background removal methods. One can see that 1NN and SVM exceed 98% 
accuracy for 10 PC scores and stay above this value up to N~30. Slightly better results are obtained for the IPF 
background removal method. Table 1 summarizes the best achieved results for each identi�cation method as well 
as for both background removal methods.

We can see that the highest level of identi�cation is obtained using the 1NN algorithm that is applied on 14 
PC scores and with the �uorescence background removal using IPF. Both 1NN and SVM give total successful 
identi�cation around 99% with slightly better results for IPF background removal. LDA identi�cation gives an 
accuracy of only around 87%.

Figure 3 shows the results of individual staphycoccal species identi�cation in the form of the Confusion 
matrix65. We used the best approach shown in Table 1, i.e. the 1NN method, IPF background removal, and N = 14. 
Rows and columns of the Confusion matrix correspond to species identi�cation by MALDI-TOF MS accompa-
nied by biochemical testing (denoted as True Class) and species identi�cation using Raman spectra (Predicted 
Class), respectively. �e total number of correctly identi�ed spectra is shown on the diagonal while the number 
of incorrectly identi�ed strains is placed o�-diagonal in a grayed background. �ese o�-diagonal elements show 
how the spectra of a certain strains are mis-assigned to a di�erent species. Furthermore, the rightmost columns 
show the sensitivity (True Positive Rate) and False Negative Rate), i.e. the relative count of Raman spectra meas-
ured from the given strains that was correctly or incorrectly identi�ed using the 1NN method.

Similarly, the two bottom rows show the Positive Predictive Value and the False Discovery Rate, i.e. the relative 
count of properly identi�ed spectra and spectra corresponding to di�erent species that were identi�ed as the one 
in the given column. Ideally, both True Positive Rate as well as Positive Predictive Value should be 100%. �is was 
achieved for S. aureus, S. auricularis, S. (pseudo)intermedius, S.petrasii, S. sciuri, S. simulans and S. xylosus.

S. saprophyticus has a 100% Positive Predictive Value and a nearly non-zero False Negative Rate, i.e. no 
other spectra were identi�ed as S. saprophyticus but one spectrum of this species (out of 150) was identi�ed as  
S. epidermidis.

100% True Positive Rate and non-zero False Discovery Rate mean that all spectra of given species were iden-
ti�ed correctly, but that some spectra of other species were incorrectly identi�ed as the given species. �is hap-
pened for S. caprae and S. heamolyticus. Probably the worst identi�cation was obtained for S. capitis. However, 
both the False Negative Rate and the False Discovery Rate were still only 10 and 5 percent, respectively.

Even better results are achieved if we do not consider individual spectra but we look at the individual strains 
(10 spectra/strain). With this approach we get the overall success rate of 100%.
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Moreover, we tested the performance of spectral identification on a reduced sample set without 
cross-validaton. Firstly, we randomly excluded approximately 20% of staphylococcal strains from the total set of 
measured spectra. We excluded at least one strain per species for identi�cation of previously unknown strains. 
Consenquently, PCA was performed on the reduced spectral set and both the 1NN and SVN classi�cators were 
trained using 14 PC scores. In the next step, the excluded spectra were transformed into PC scores (using pre-
viously obtained loadings) that were identi�ed using both methods. Depending on the seclection of excluded 
strains we achieved sucessfull identi�cation of individual spectra in the range of 70–80%. However, if we consider 
only the strains that were completly mis-assigned to a single incorrect species by both methods we obtain that 
only up to 4% of excluded strains are completly mis-assigned. �us, in this case we achieved also a very high 
accuracy of about 96%.

Our results show that it is possible to e�ciently identify staphylococci using Raman spectroscopy. �is is in 
good agreement with previous studies �nding similar results for the identi�cation of di�erent species30,33,44,46,47. 

Figure 1. Averaged Raman spectra of all measured staphylococcal species (thick curves). �e grayed area 
depicts the variations of measured spectral intensities corresponding to a given wavenumber. Border curves of 
this interval correpond to 0.1st (dashed) and 99.9th percentiles, respectively. Fluorescence spectral background 
was removed by the IPF method. �e top-right inset compares both background removal methods (IPF and 
RC) on a single randomly selected spectrum of S. aureus.
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Recent studies also suggest that we can use Raman spectroscopy for the detection of antimicrobial resistance48,66 
and other virulence factors like the ability to form bio�lms37,41,43. �ese studies support the prospective use of 
Raman spectroscopy as a tool for microbial diagnostics. Moreover, the Raman �ngerprints are highly reproduc-
ible. �is was already proven for yeast spectra acquired in a time window of more than one year and the �ndings 
were supported by our recent work on S. aureus and S. epidermidis38,51.

�e high reproducibility coupled with the diagnostic potential presented here suggest the high potential of 
Raman spectroscopy for clinical diagnostics and that further research in this �eld is very promising. It is sup-
ported by the advantages of Raman spectroscopy including speed, low cost analyses and non-destructive nature. 
�e non-destructive nature of the method allows for use of the sample in subsequent analyses. Raman spectros-
copy does not require any time-consuming sample preparation nor the use of additional chemicals or materi-
als, which is common for other routinely used biochemical methods or the commonly used MALDI-TOF mass 
spectroscopy.

Current disadvantages of Raman spectroscopy as a diagnostic tool include the absence of commercial data-
bases for identi�cation of bacterial spectra. �is suggests the need for further investigations in this �eld that will 
help to build an automated diagnostic tool in the future. Also, in order to make a comparison of the spectra meas-
ured on our system with those measured on di�erent Raman instruments we should consider that the quantum 
e�ciency of the given detector and optical elements are wavelength dependent. �is suggests that the data should 
be corrected according to the instrument response pro�le. In an ideal case the spectral sensitivity curve should be 
used so that the raw data from di�erent systems can be transferred/evaluated. In many cases it is di�cult to obtain 
the instrument response from the transmission and/or re�ectivity of all optical elements in di�erent Raman 
systems. �us, we have corrected our data only for the quantum e�ciency of the detector which can be readily 
obtained from the manufacturer. In the next step we used this corrected data for the analysis describe above to 
see any in�uence on the �nal data – we obtained the same results with only minor redistribution of o�-diagonal 
elements in the confusion matrix. Also, the repeatability of our data collection has been proved by spectral iden-
ti�cation on a reduced sample set with/without cross-validaton detailed in this section. However, we would like 
to note that for our “library” (developed for the Department of Microbiology at St. Anne’s Faculty Hospital in 
Brno) to be compared with spectra measured on di�erent instruments the spectral sensitivity curves of given 
instruments should be provided. �is can be obtained from a manufacturer on request.

Since Raman spectroscopy can also be used for the identi�cation of certain virulence factors and antimicrobial 
resistance, it could make this method a very useful diagnostic tool providing a wide spectrum of characteristic 

Figure 2. Accuracy of staphycoccal strain identi�cation for all three used methods (1 nearest neighbor, 
support vector machines and linear discriminant analysis) as a function of the number of used PCA scores N. 
Fluorescence background was removed using iterative polynomial �tting (a) or rolling circle (b) methods. Insets 
show magni�ed regions, with accuracy above 96%.

Identi�cation 
Method

Background removal method

IPF RCF

accuracy [%] Nopt accuracy [%] Nopt

LDA 87.1 47 87.3 49

1NN 99.3 14 99.2− 24

SVM 98.8 14 98.9 27

Table 1. Performance of staphycoccal strain identi�cation using three algorithms (LDA, 1NN, and SVM) for 
=2  two methods of �uorescence background removal (IPF and RCF). Numbers in table cells correspond to the 

accuracy of identi�cation, i.e. percentage of successful identi�cation upon using 5-fold veri�cation scheme, and 
values of Nopt give the number of PC scores used for such a successful identi�cation. Abbreviations: 
LDA = Linear Discriminant Analysis, 1NN = One Nearest Neighbor, SVM = Support Vector Machine, 
IPF = Iterative Polynomial Fitting, RCF = Rolling-Circle Filter.
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information, in addition to strain identi�cation, in one single measurement. �at might signi�cantly accelerate 
the diagnostic process.

In conclusion, analyses of Raman spectra acquired from 277 staphylococcal strains belonging to 16 species 
suggest that Raman spectroscopy can be used as a reliable tool for identi�cation of staphylococci. We were able to 
achieve the total success rate of more than 99% for individual spectra and even 100% for a few individual strains.

Summary. �e goal of the article was to assess Raman spectroscopy as a potential method for identi�cation of 
16 clinically important staphylococcal species since this method could accelerate the diagnostic process and lower 
the costs both for diagnostics and consequently treatment of patients.
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