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Three rapid spectroscopic approaches for whole-organism fingerprinting -
pyrolysis mass spectrometry (PyMS), Fourier transform infra-red spectroscopy
(FT-IR) and dispersive Raman microscopy - were used to analyse a group of 59
clinical bacterial isolates associated with urinary tract infection. Direct visual
analysis of these spectra was not possible, highlighting the need to use
methods to reduce the dimensionality of these hyperspectral data. The

unsupervised methods of discriminant function and hierarchical cluster
analyses were employed to group these organisms based on their spectral
fingerprints, but none produced wholly satisfactory groupings which were
characteristic for each of the five bacterial types. In contrast, for PyMS and
FT-IR, the artificial neural network (ANN) approaches exploiting multi-layer
perceptrons or radial basis functions could be trained with representative
spectra of the five bacterial groups so that isolates from clinical bacteriuria in
an independent unseen test set could be correctly identified. Comparable
ANNs trained with Raman spectra correctly identified some 80% of the same
test set. PyMS and FT-IR have often been exploited within microbial
systematics, but these are believed to be the first published data showing the
ability of dispersive Raman microscopy to discriminate clinically significant
intact bacterial species. These results demonstrate that modern analytical
spectroscopies of high intrinsic dimensionality can provide rapid accurate
microbial characterization techniques, but only when combined with

appropriate chemometrics.

Keywords: artificial neural networks, Fourier-transform infrared spectroscopy,
pyrolysis mass spectrometry, Raman microscopy, urinary tract infection

INTRODUCTION

Urinary tract infections (UTIs) are a major clinical
problem, especially among adult women. The family
doctor consultation rate for this group for UTT is 63-5
consultations per 1000 women per year in the UK
(Wilkic et al., 1992).

Abbreviations: ANN, artificial neural network; DF, discriminant function;
DFA, discriminant function analysis; HCA, hierarchical cluster analysis; FT-
IR, Fourier-transform infrared spectroscopy; MLP, multilayer perceptron;
PC, principal component; PCA, principal-components analysis; PyMS,
pyrolysis mass spectrometry; RBF, radial basis function; RMSEF, root mean
squared error of formation.

The bacteria typically associated with UTT in hospitals
are Escherichia coli (causative organism of 50 % of the
cases), Klebsiella species (14 %), other coliforms (4 %),
staphylococci (6 %), Enterococcus faecalis (10%) and
Pseudomonas aeruginosa (3%) (Slack, 1995). Quan-
titative culture of urine is used to confirm the clinical
diagnosis, and the finding of 10° c.f.u. per ml of urine is
defined as ‘significant bacteriuria’ (Morgan &
McKenzie, 1993). The empirical choice of an effective
treatment is becoming more difficult as urinary
pathogens are increasingly resistant to commonly used
antibiotics (Gruneberg, 1994). Consequently it is necess-
ary to perform antibiotic-sensitivity testing on signifi-
cant isolates.
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The degree to which a causative organism requires
identification varies but identification is most useful in
complex clinical cases; for example to distinguish
relapse, to indicate failure of an antibiotic treatment,
and to detect reinfection with a different organism in
patients with recurrent infections (Lewis, 1989). Using
conventional methods, laboratory examination of urine
is expensive, time-consuming and labour-intensive:
approximately 24 h incubation is required to obtain an
accurate colony count. An additional 12-24 h is needed
for organism identification and susceptibility testing,
which may further delay administration of the most
appropriate narrow-spectrum antibiotic (Casadevall,
1996; Pappas, 1991).

For routine purposes the ideal method for microbial
characterization would require minimum sample prep-
aration, would analyse samples directly (i.e. would not
require reagents), would be rapid, automated and (at
least relatively) inexpensive. With recent developments
in analytical instrumentation, these requirements are
being fulfilled by physico-chemical spectroscopic
methods, often referred to as ‘whole-organism finger-
printing” (Magee, 1993). The most common such
methods are pyrolysis mass spectrometry (PyMS)
(Goodacre & Kell, 1996), Fourier-transform infrared
spectroscopy (FT-IR) (Helm et al., 1991; Naumann et
al., 1991a, 1991b) and UV resonance Raman spec-
troscopy (Nelson et al., 1992).

PyMS, FT-IR and dispersive Raman microscopy are
physico-chemical methods which measure pre-
dominantly the bond strengths of molecules (PyMS) and
the vibrations of bonds within functional groups (FT-IR
and Raman) (Colthup et al., 1990; Ferraro &
Nakamoto, 1994; Griffiths & de Haseth, 1986;
Meuzelaar et al., 1982; Schrader, 1995). Therefore they
give quantitative information about the total biochemi-
cal composition of a sample. However, the interpret-
ation of these multidimensional spectra, or what is
known as hyperspectral data (Abousleman et al., 1994;
Goetz et al., 1985; Wilson et al., 1995), has conven-
tionally been by the application of ‘unsupervised’
pattern recognition methods such as principal com-
ponents analysis (PCA), discriminant function analysis
(DFA) and hierarchical cluster analysis (HCA). With
‘unsupervised learning” methods of this sort the relevant
multivariate algorithms seek ‘clusters’ in the data,
thereby allowing the investigator to group objects on the
basis of their perceived closeness (Everitt, 1993); this
process is often subjective because it relies upon the
interpretation of complicated scatter plots and dendro-
grams. More recently, various related but much more
powerful methods, most often referred to within the
framework of chemometrics, have been applied to the
‘supervised’ analysis of these hyperspectral data (Chun
et al., 1993; Freeman et al., 1994; Goodacre et al.,
1994b; 19964, b; Sisson et al., 1995) ; arguably the most
significant of these is the application of ‘intelligent’
systems based on artificial neural networks (ANNs)
(Bishop, 1995; Wasserman, 1989).

We previously reported a study exploiting PyMS and

ANNs to discriminate between susceptible and
methicillin-resistant Staphylococcus aureus, illustrating
that it is possible to detect very subtle physiological
differences between strains of the same species of
bacteria using these techniques (Goodacre ef al., 1998).
In the present study a group of 59 clinically significant
urinary isolates of bacteria were collected from the local
hospital. All isolates were typed by conventional bio-
chemical tests to belong to Escherichia coli, Proteus
mirabilis, Klebsiella species, Pseudomonas aeruginosa,
and Enterococcus species. The aim of this study was to
compare the phenotypic differentiation of these 359
bacterial isolates by PyMS, FT-IR and Raman spectro-
scopies, and to use ANNS to identify the bacteria from
these hyperspectral measurements.

METHODS

Strains and cultivation. A group of 59 bacteria isolated from
the urine of patients with urinary tract infection (UTI) were
collected from Bronglais General Hospital, Aberystwyth. All
isolates were typed by conventional biochemical tests to
belong to E. coli (17, coded Ea-Eq), Pr. mirabilis (10, coded
Pa-Pj), Klebsiella spp. (10, coded Ka—Kj), Ps. aeruginosa (10,
coded Aa—Aj), and Enterococcus spp. (12, coded Ca—Cl). All
strains were cultivated axenically and aerobically on LabM
Malthus blood agar base (37 mg ml™) for 16 h at 37 °C. After
subculturing three times to ensure pure cultures, biomass was
carefully collected using sterile plastic loops and suspended in
1 ml aliquots of sterile physiological saline (0-9% NaCl) to
approximately 40 mg ml™. The samples were then analysed
by PyMS, FT-IR and dispersive Raman spectroscopies.

Pyrolysis mass spectrometry (PyMS). Five-microlitre volumes
of the bacterial samples (approx. 40 mg ml™") were evenly
applied to clean iron-nickel foils which had been partially
inserted into clean pyrolysis tubes. Samples were run in
triplicate. Prior to pyrolysis the samples were oven-dried at
50 °C for 30 min and the foils were then pushed into the tubes
using a stainless-steel depth gauge so as to lie 10 mm from the
mouth of the tube. Viton O-rings were next placed approxi-
mately 1 mm from the mouth of each tube.

PyMS was then performed on a PyMS-200X instrument
(Horizon Instruments). For full operational procedures see
Goodacre & Kell (1996) and Goodacre et al. (1993, 1994a).
Conditions used for each experiment involved heating the
sample to 100 °C for § s followed by Curie-point pyrolysis at
530 °C for 3 s with a temperature rise time of 0-5 s.

PyMS data may be displayed as quantitative pyrolysis mass
spectra (e.g. as in Fig. 1). The abscissa represents the 150 m/z
ratios, while the ordinate contains information on ion count
for any particular m/z value ranging from 51 to 200. To
remove the most straightforward influence of sample size per
se, data were normalized as a percentage of the total ion count.
Total ion counts were typically in the range 1 x 10°-3 x 106,

Diffuse reflectance-absorbance Fourier-transform infrared
(FT-IR) spectroscopy. Ten microlitres of each bacterial sample
was evenly applied onto a sand-blasted aluminium plate. Prior
to analysis the samples were oven-dried at 50 °C for 30 min.
Samples were run in triplicate. The instrument used was a
Bruker IFS28 FT-IR spectrometer (Bruker Spectrospin)
equipped with an MCT (mercury-cadmium-telluride) detector
cooled with liquid N,. The aluminium plate was then loaded
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onto the motorized stage of a reflectance TLC accessory
(Bouffard et al., 1994; Goodacre et al., 1996c; Winson et al.,
1997).

The IBM-compatible personal computer used to control the
IFS28 was also programmed (using orus version 2.1 software
running under IBM O/S2 Warp provided by the manu-
facturers) to collect spectra over the wavenumber range
4000 cm™ to 600 cm™. Spectra were acquired at a rate of
20 s *. The spectral resolution used was 4 cm™. To improve
the signal-to-noise ratio, 256 spectra were co-added and
averaged. Each sample was thus represented by a spectrum
containing 882 points, and spectra were displayed in terms of
absorbance as calculated from the reflectance-absorbance
spectra using the orus software. Typical FT-IR spectra are
shown in Fig. 2.

ASCII data were exported from the orus software used to
control the FT-IR instrument and imported into Matlab
version 4.2c.1 (The MathWorks, Inc., 24 Prime Par Way,
Natick, MA, USA), which runs under Microsoft Windows N'T
on an IBM-compatible personal computer. To minimize
problems arising from baseline shifts the following procedure
was implemented: (i) the spectra were first normalized so that
the smallest absorbance was set to 0 and the highest to + 1 for
each spectrum; (ii) next these normalized spectra were
detrended by subtracting a linearly increasing baseline from
4000 cm™ to 600 cm™; (iii) finally the smoothed first deriva-
tives of these normalized and detrended spectra were calcu-
lated using the Savitzky—Golay algorithm (Savitzky & Golay,
1964) with 5-point smoothing.

Dispersive Raman microscopy. Spectra were collected using
the Renishaw dispersive Raman spectroscope (Ramascope)
(Williams et al., 1994a, b) with a low power (30 mW) near-
infrared 780 nm diode laser with the power at the sampling
point typically at 3 mW. The instrument was wavelength
calibrated with a silicon wafer focused under the x 50 objective
and collected as a static spectrum centred at 520 cm™* for 10 s.

Samples were presented as 0-5 ml bacterial suspensions (40 mg
ml ™ or ~ 3 x10° cells ml™) in 2 ml Supelco clear glass vials,
covered with solid caps with aluminium liners. These glass
vials were placed sequentially into the sample holder of a
Renishaw Macropoint assembly. A 16 mm focal length
objective, fitted onto the objective system which fits into the
standard microscope objective aperture and turns the beam
through 90 °, was then focused into the sample vial and the
stage was locked. The spectrum was collected for 60 s. The
next sample was then placed into the sample holder and the
spectral collection procedure was repeated.

The GRAMS WiRE software package running under
Windows 95 was used for instrument control and data capture.
Stokes Raman spectra were collected over the wavenumber
range 200 cm™! to 2300 cm ™. The spectral resolution used was
~ 092 cm™*. Each sample was thus represented by a spectrum
containing 2283 points and spectra were displayed in terms of
the intensity of Raman scattering (counts).

ASCII data were exported from the GRAMS WiRE software
used to control the Raman instrument into Matlab version
4.2¢.1. To minimize problems arising from cosmic rays and
noise due to short sampling times the following procedure was
implemented: (i) any cosmic rays (which excite the CCD
detector) were removed using a median filter with a window of
9 data points; (ii) these spectra were then smoothed using a
fast Fourier-transform denoising routine (Alsberg et al., 1997)
which briefly removes the high-frequency bins (bins 1-110
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Fig. 1. Normalized Py-MS spectra of E. coli isolate Ea and Pr.
mirabilis isolate Pa.
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Fig. 2. FT-IR diffuse reflectance-absorbance spectra of E. coli
isolate Ea and Pr. mirabilis isolate Pa.

were kept) from the Fourier-domain spectra, since these
contain predominantly noise. These Fourier-domain spectra
were then inversely transformed back to the wavenumber
domain. Typical Stokes Raman spectra are shown in Fig. 3.
Note that although the fluorescence is relatively low when
cells are excited at 780 nm, the system can not discriminate
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whether individual photons arise by fluorescence or are
scattered via the Raman effect.

Cluster analysis. The typical procedure for multivariate
analysis is detailed in Fig. 4. The initial stage involved the
reduction of the dimensionality of the PyMS, FT-IR and
Raman data by principal-components analysis (PCA)
(Causton, 1987 ; Jolliffe, 1986). PCA is a well-known technique
for reducing the dimensionality of multivariate data whilst
preserving most of the variance, and Matlab was employed to
perform PCA according to the NIPALS algorithm (Wold,
1966). Discriminant function analysis (DFA) then dis-
criminated between groups on the basis of the retained
principal components (PCs) and the a priori knowledge of
which spectra were replicates (MacFie et al., 1978; Windig et
al., 1983); thus this process does not bias the analysis in any
way. DFA was programmed according to Manly’s principles
(Manly, 1994).

DFA was not performed on the original feature space (spectra)
because one can not feed collinear variables or too many
variables into DFA. The starting point for DFA is the inverse
of the pooled variance—covariance matrix within a priori
groups. This inverse can only exist when the matrix is non-
singular, i.e. its determinant is other than zero, which implies
that it is of full rank (Dixon, 1975; MacFie et al., 1978); i.e.
generally if

(N.—N,—1) > N, (1)

where N, is the number of samples, N, the number of groups,
and N, the number of inputs (variables; i.e. mass intensities,
absorbances at particular wavenumbers, or photon counts at
particular wavenumber shifts for PyMS, FT-IR and Raman
respectively). For PyMS, FT-IR and Raman, the number of
inputs is 150, 882 and 2283, respectively ; this is far in excess of
the number of samples (177) minus the number of groups (59),
which comes to only 118. In addition, singularity can be
caused by collinearity, and PCA removes collinearities whilst
also reducing the number of inputs (so as to obey the above) to
the DFA algorithm.

Finally, the Euclidean distance between a priori group centres
in DFA space was used to construct a similarity measure, with
the Gower similarity coefficient S, (Gower, 1966), and these
distance measures were then processed by an agglomerative
clustering algorithm to construct a dendrogram (Manly, 1994).

Multilayer perceptrons (MLP). All MLP analyses [also known
as back-propagation artificial neural networks (ANNs)] were
carried out with a user-friendly neural network simulation
program, NeuFrame version 3.0.0.0 (Neural Computer
Sciences, Lulworth Business Centre, Totton, Southampton,
UK), which runs under Microsoft Windows NT on an IBM-
compatible personal computer. In-depth descriptions of the
modus operandi of this type of MLP analysis are given
elsewhere (Goodacre et al., 1994a, 1995, 1996b).

The structure of the MLP used in this study to analyse the
hyperspectral data consisted of three layers. The first layer
contained either (a) the full spectra (made up of the 150 input
nodes for PyMS, 882 for FT-IR, and 2283 for Raman; see
Table 1 for details) or (b) the first few PC scores (see Table 1
for details), one ‘hidden’ layer, and five output nodes (encoded
in binary fashion for the bacterial identities). These were
binary encoded such that E. coli was coded as 10000, Pr.
mirabilis as 01000, Klebsiella spp. as 00100, Ps. aeruginosa as
00010, and Enterococcus spp. as 00001. Each of the input
nodes were connected to the nodes of the hidden layer using
abstract interconnections (connections or synapses) (see Fig. 5
for a diagrammatic representation). Connections each have an
associated real value, termed the weight (w,), that scales the
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Fig. 3. Dispersive Raman spectra of E. coli isolate Ea and Pr.
mirabilis isolate Pa.
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Fig. 4. Flowchart of unsupervised learning analysis used to
cluster the PyMS, FT-IR and Raman spectra.

input (7,) passing through them; this also includes the bias (9),

which also has a modifiable weight. Nodes sum the signals

feeding to them (Net):

Net = j,w, +iyw,+igw,+ . iw,+ ...iw, =Y jw +§ (2)
i=1

The sum of the scaled inputs and the node’s bias are then
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Table 1. Artificial neural network conditions used to identify the bacteriuria isolates

Conditions used MLPs* PC-MLPs* RBFst
PyMS Architecture 150-8-5 10-6-5 150-40-5
Explained variance (%) - 97-16 -
No. of epochs 3x10% 2% 108 -
Time (min) 4 05 02 (10's)
FT-IR Architecture 882-12-5 20-6-5 882-20-5
Explained variance (%) - 96-88 -
No. of epochs 5x10? 3x10? -
Time (min) 60 1 02 (10 s)
Raman Architecture 2283-12-5 5-3-5 2283-50-5
Explained variance (%) - 78:86
No. of epochs 2x10* 1x10* -
Time (min) 1800 (30 h) 10 2

*The number of epochs and time taken to reach an RMSEF of 0-01 (1 %) were calculated from the mean

of five re-trained models.

1 The optimum number of kernel functions was found by calculating the minimum RMSEF for the

training set.

Input layer Hidden layer Output layer
(linear) with summation and (linear or
(non-linear squashing) non-linear)

Fig. 5. An MLP neural network consisting of an input layer
connected to a single node in the output layer by one hidden
layer. In the architecture shown, adjacent layers of the network
are fully interconnected although other architectures are
possible. Nodes in the hidden and output layers consist of
processing elements which sum the input applied to the node
and scale the signal using a sigmoidal logistic squashing
function.

scaled to lie between 0 and + 1 by an activation function to
give the nodes output (Out); this scaling is typically achieved
using a logistic ‘squashing’ (or sigmoidal) function:

1

Out=——— 3
" (14+exp™%) )

These signals (Out) are then passed to the output node, which
sums them and the resulting values are squashed by the above
logistic sigmoidal activation function; the product of this node
was then fed to the ‘outside world’.

Before training commenced, the values applied to the input
nodes were normalized between 0-1 and 0-9, whilst the output
nodes were normalized between 0 and 1. The scaling regime
used for the input layer was to scale ‘nodally’, where the input
nodes were scaled for each input node such that the lowest
mass was set to 0'1 and the highest mass to 0-9 (Neal ef al.,
1994). Finally, the connection weights were set to small
random values (typically between —0-005 and + 0-005).

The algorithm used to train the neural network was the
standard back-propagation (Chauvin & Rumelhart, 1995;
Haykin, 1994; Rumelhart et al., 1986; Wasserman, 1989;
Werbos, 1994). For the training of the MLP each input (i.e.
spectrum) is paired with a desired output (i.e. the identity of
the bacteria); together these are called a training pair (or
training pattern). An MLP is trained over a number of training
pairs; this group is collectively called the training set; details
of the training set are given in Table 2. The input is applied to
the network, which is allowed to run until an output is
produced at each output node. The differences between the
actual and the desired output, taken over the entire training
set, are fed back through the network in the reverse direction
to signal flow (hence back-propagation), modifying the
weights as they go. This process is repeated until a suitable
level of error is achieved. In the present work, a learning rate
of 0-2 and a momentum of 0-8 were used.

Each epoch represented the connection weight updatings and
a recalculation of the root mean squared (RMS) error between
the true and desired outputs over the entire training set (RMS
error of formation; RMSEF). During training a plot of the
error versus the number of epochs represents the ‘learning
curve’, and may be used to estimate the extent of training.
Initially MLPs were trained until the RMSEF was 0-005
(0-5%), and their ability to generalize was assessed on the test
set. It was found that MLPs trained until the RMSEF was 0-01
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(1%) were still able to generalize well, and since these MLPs
obviously took less time to train and were less likely to overfit
the input data (i.e. fitting to noise or the fitting of a model to
outliers: Goodacre et al., 1996b; Kell & Sonnleitner, 1995), all
MLPs were trained until the RMSEF was 0-01 (1%).

The error function on the output layer of these MLPs uses
RMS error calculations, and cross-entropy may be a better
choice of error function for some studies, since it allows one to
assign Bayesian a posteriori probabilities (Richard &
Lippmann, 1991). However, because it relies on probability
density functions, it requires that the a priori population
distributions be known, which is rarely the case (Bishop,
1995). We would add that for quantitative studies global
functions such as RMSEF can be distorted by one error at the
large end of the range much more than by a big error at the
small end of the range. However, for qualitative identification
studies this is rarely a problem.

Finally, after training, all spectra collected from the bacterial
isolates were used as the ‘unknown’ inputs (test data); the
network then calculated its estimate and for each sample the
largest node in the output layer was taken as its identity.

Radial basis function (RBF) neural networks. All RBF analyses
were also carried out with NeuFrame version 3.0.0.0 as
detailed specifically by Saha & Keller (1990).

RBF networks are hybrid neural networks encompassing both
unsupervised and supervised learning (Beale & Jackson, 1990;
Bishop, 1995; Broomhead & Lowe, 1988; Hush & Horne,
1993; Moody & Darken, 1989; Park & Sandberg, 1991; Saha
& Keller, 1990; Walczak & Massart, 1996; Wilkins et al.,
1994). RBFs are typically three-layer neural networks and in
essence the sigmoidal squashing function is replaced by non-
linear (often Gaussian or ‘Mexican hat’) basis functions or
kernels (Fig. 6). The kernel is the function that determines the
output of each node in the hidden layer when an input pattern
is applied to it. This output is simply a function of the
Euclidean distance from the kernel centre to the presented
input pattern in the multi-dimensional space, and each node in
the hidden layer only produces an output when the input
applied is within its receptive field; if the input is beyond this
receptive field the output is 0. This receptive field can be
chosen and is radially symmetric around the kernel centre.
Between them the receptive fields cover the entire region of the
input space in which a multivariate input pattern may occur;
a diagrammatic representation of this is given in Fig. 7, where
a two-dimensional input is mapped by seven radially sym-
metric basis functions. This is a fundamentally different
approach from the MLP, in which each hidden node represents
a non-linear hyperplanar decision boundary bisecting the
input space (Fig. 7).

The outputs of the RBF nodes in the hidden layer are then fed
forward via weighted connections to the nodes in the output
layer in a similar fashion to the MLP, and each output node
calculates a weighted sum of the outputs from the non-linear
transfer from the kernels in the hidden layer. The only
difference is that the output nodes of an RBF network are
normally linear, whilst those of the MLP more typically
employ a logistic (non-linear) squashing function.

The implementation of these RBF neural networks is exactly
as described by Saha & Keller (1990). Briefly the training
proceeds in two stages:

Stage 1. This involves unsupervised clustering of the input data
(the input nodes were normalized between 0-1 and 0-9),
typically using the K-means clustering algorithm (Duda &
Hart, 1973 Everitt, 1993 ; Hush & Horne, 1993) to divide the

Hidden layer
of radial basis function nodes
(non-linear)

Output layer
(linear)

Input layer
(linear)

Fig. 6. RBF neural network consisting of an input layer
connected to a single node in the output layer by 1 hidden
layer. The hidden layer consists of radially symmetric Gaussian
functions, although others exist (e.g. Mexican hat and thin
plate splines).

high- dimensional input data into clusters. Next, kernel centres
are placed at the mean of each cluster of data points. The use
of K-means is particularly convenient because it positions the
kernels relative to the density of the input data points. Next
the receptive field is determined by the nearest-neighbour
heuristic where 7, (the radius of kernel /) is set to the Euclidean
distance between w;, (the vector determining the centre for the
jth RBF) and its nearest neighbour (k), and an overlap constant
(Overlap) is used:

r; = Overlap x min(||w, —w,||) (4)
where || ... || denotes a vector norm, or Euclidean distance.

The overlap that gave best results was found to be 2, which
means that the edge of the radius of one kernel is at the centre
of its nearest neighbour; this optimum was also in agreement
with the studies of Saha & Keller (1990).

The output from nodes in the hidden layer is dependent on the
shape of the basis function and the one used was a Gaussian.
Thus this value (R,) for node j when given the ith input vector
(i,) can be calculated by:

R(i) = exp @/ (5)

sAN

Stage 2. This involves supervised learning using simple linear
regression. The inputs are the output values for all # basis
functions (R, —R,) for all the training input patterns to that
layer (i,—1i,), and the outputs are the bacterial identities
binary encoded in five nodes as detailed above.

The output nodes are calibrated using simple linear regression.
The optimum number of kernel functions was found by
calculating the minimum error for the training set (see Table
1 for details). Finally, after training, all spectra collected from
the bacterial isolates were used as the ‘unknown’ inputs (test
data); the network then calculated its estimate, and for each
sample the winning node in the output layer was taken as its
identity.
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1 (hyperpianar) boundary
represented by Single
node in hidden layer B

(a)

(b)

Fig. 7. (a) Typical decision boundary for a classification problem
created between two data classes by an MLP with two nodes in
the hidden layer, for two input nodes. Each hidden node
represents a non-linear boundary and the nodes in the output
layer interpolate this to form a decision boundary. (b) The same
classification problem modelled by seven radially symmetric
basis functions. The width of each kernel function (referred to
as its receptive field) is determined by the local density
distribution of training examples.

RESULTS
The raw spectra

Typical normalized PyMS spectra for E. coli isolate Ea
and Pr. mirabilis isolate Pa are shown in Fig. 1. These,
and the spectra from all 59 bacteria, show an undulating,
decaying feature with a periodicity of 14 atomic mass
units, due to the loss of CH, units during pyrolysis
(Meuzelaar et al., 1982). The diffuse reflectance-
absorbance FT-IR and dispersive Raman spectra of the
same isolates are shown in Figs 2 and 3 respectively.
These vibrational spectra and those from the other 57
bacteria all showed broad and complex contours; indeed
for the Raman spectra it is difficult to distinguish the
Raman scattering from the background and/or any
small levels of fluorescence by excitation using the
780 nm laser (although the contribution due to
fluorescence should be greatly reduced by the use of the
near-infrared laser: Baraga et al., 1992; Davey & Kell,
1996 ; Graselli & Bulkin, 1991).

For all three spectral types there was very little quali-
tative difference between the spectra, although at least
some complex quantitative differences between them
were observed. Such spectra, essentially uninterpretable
by the naked eye, readily illustrate the need to employ

Percentage relative similarity
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Klebsiella spp.

Pseudomonas
aeruginosa

Proteus
mirabilis 7

Enterococcus
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Klebsiella spp. c p————

Fig. 8. Dendrogram based on PyMS data showing the
relationship between the 59 bacterial isolates.

multivariate statistical techniques for the analysis of
PyMS, FT-IR and Raman data.

Unsupervised cluster analysis

After collection of the three data types, each of the 59
strains, each represented by three replicate spectra, was
coded to give 59 individual groups, and analysed by
DFA and HCA as detailed above. The resulting dendro-
gram from the analysis of the PyMS data is shown in Fig.
8, where it can be seen that five clusters are recovered.
Although the Ps. aeruginosa, the Pr. mirabilis and the
enterococcal strains form three well-defined clusters, the
Klebsiella spp. do not form one group and some of them
cluster with the 17 E. coli strains analysed. When the
Klebsiella spp. were identified further by conventional
means it was found that there were six K. pneumoniae
and four K. oxytoca isolates. With respect to the
clustering of these isolates in Fig. 8 it was found
(identities not shown) that all six K. prneumoniae and
two K. oxytoca isolates grouped with the E. coli strains,
whilst the other two K. oxytoca isolates clustered
separately. Therefore, the existence of two groups of
Klebsiella spp. seen in the dendrogram (Fig. 8) was not
due to two different species being isolated from the
infected urine samples.

The analysis of the 59 bacterial isolates from their FT-IR
data by DFA is depicted in Fig. 9 as a pseudo-3D
ordination plot. In this figure (and in any view of this
three-dimensional cube) it is also clear that the Ps.
aeruginosa (A), the Pr. mirabilis (P) and the enterococcal
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Fig. 9. Pseudo-3D DFA plot based on FT-IR data showing the
relationship between the 59 bacterial isolates. The bacterial
isolates are coded as follows; E. coli (E), Pr. mirabilis (P),
Klebsiella spp. (K), Ps. aeruginosa (A), and Enterococcus spp. (C).

(C) strains form three distinct groups; however, the
fourth, larger, cluster is a mixture of all the E. coli (E)
and all the Klebsiella strains (K). This result again
indicates that this unsupervised learning approach could
not be used to give accurate identities of this group of
clinical bacterial specimens.

Finally, DFA was used to analyse the Raman spectra;
the results are shown in Fig. 10. Fig. 10(a) shows the
analysis of all the strains, and the first discriminant
function (DF 1) indicates that the majority of the
variation was between the Ps. aeruginosa (A) strains and
all the other isolates. This was possibly due to a small
amount of fluorescence, since Ps. aeruginosa naturally
fluoresces due to the production of pyocyanin (blue-
green) and fluorescein (yellow) pigments (Pitt, 1990),
and it is difficult to distinguish this electromagnetic
radiation from Raman scattering as both are measured
as a shift in wavelength from the 780 nm source laser.
Therefore, these isolates were removed and the analysis
rerun; the resultant DFA plot is shown in Fig. 10(b),
where it can be seen that the different isolates do not
group together and only with a priori knowledge of the
classes can any separation be inferred.

Supervised analysis using ANNs

Since none of the spectroscopic data when analysed by
the various cluster analyses produced wholly satis-
factory groupings which were characteristic for each of
the five bacterial types, the next stage was to supervise
the analysis using the ANN-based approaches of multi-
layer perceptrons (MLPs) and radial basis functions
(RBFs).

As detailed above, the first five organisms in each of the
five bacterial classes (a—e) were used to train the MLPs
and RBFs (see Table 2). The input layers for the MLPs
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Fig. 10. DFA biplots based on Raman data showing the
relationship between the 59 bacterial isolates (a) and the same
after removal of the Ps. aeruginosa isolates (b). The bacterial
isolates are coded as follows; E. coli (E), Pr. mirabilis (P),
Klebsiella spp. (K), Ps. aeruginosa (A), and Enterococcus spp.

Q.

and RBFs were the full spectral data; therefore for PyMS
these were 150 mass (m1/z) intensities, for FT-IR these
were normalized and detrended absorbances at 882
wavenumbers, and for Raman were the counts at 2283
wavenumber blocks. The outputs were always the same
for both MLPs and RBFs and were binary encoded such
that E. coli was coded as 10000, Pr. mirabilis as 01000,
Klebsiella spp. as 00100, Ps. aeruginosa as 00010, and
Enterococcus spp. as 00001.

The training set for the MLPs contained a relatively
small number of spectra (75; five of each of the five
bacterial classes in triplicate), and it is well known that
if the number of parameters, or weights, in the cali-
bration models is significantly higher than the number of
exemplars in the training set then overfitting can more
easily occur (Bishop, 1995 ; Chatfield, 1995; Seasholtz &
Kowalski, 1993). Therefore, to help to obey the par-
simony principle as described by Seasholtz & Kowalski
(1993) the next stage was to reduce the number of inputs
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Table 2. Identity of the bacteria used in the training set as judged by MLP analysis of their PyMS data

Bacterium Bronglais Estimates from MLP
identifier
E. coli Pr. mirabilis Klebsiella spp. Ps. aeruginosa Enterococcus spp.
E. coli Ea 09 0-0 0-1 0-0 —01
Eb 10 0-0 —01 0-0 0-0
Ec 1-0 0-0 —01 0-0 0-0
Ed 0-6 0-0 0-4 0-0 0-0
Ee 1-0 0-0 —01 0-0 0-0
Pr. mirabilis Pa 0-0 1-0 01 00 00
Pb 0-0 1-0 —01 0-0 0-0
Pc 0-0 09 0-0 0-0 0-1
Pd —01 1-0 0-0 0-1 0-0
Pe 0-0 1-0 0-0 —01 0-0
Klebsiella sp. Ka 0-3 0-0 0-7 0-1 —01
Kb 0-0 —01 1-0 0-0 0-0
Kc —01 01 10 0-0 0-0
Kd 0-0 0-0 10 —01 0-0
Ke 0-2 0-1 0-7 0-1 0-0
Ps. aeruginosa Aa 0-2 —01 0-1 0-8 0-0
Ab 0-0 —01 0-1 1-0 0-0
Ac —01 0-0 0-0 11 0-0
Ad 0-0 0-1 —01 1-0 0-0
Ae 0-0 0-0 0-0 1-0 0-0
Enterococcus sp. Ca 0-0 0-0 0-0 0-1 10
Cb 0-0 0-0 0-1 0-0 1-0
Cc 0-0 0-0 0-0 0-0 1-0
Cd 0-0 0-0 0-0 0-0 1-0
Ce 0-0 0-0 0-0 0-0 1-0

to the MLPs. PCA is an excellent dimensionality-
reduction technique, and the use of PC scores as inputs
to MLPs, without deterioration of the calibration model,
has previously been exploited in the analysis of UV-
visible spectroscopic data (Blanco et al., 1995;
Gemperline et al., 1991), for the identification of bacteria
from their FT-IR spectra (Goodacre et al., 1996c), and
for the quantification of biological systems from their
PyMS spectra (Goodacre et al., 1997; Timmins &
Goodacre, 1997). The optimal number of PCs as inputs
to the PC-MLPs studied here was chosen based on the
minimum needed whilst still being able to predict the
test set correctly (as judged by the winning node in the
output layer being taken as their identities); when too
few PCs are used not enough information is present, and
when more PCs are employed the later PCs contribute
only noise to the model, thus increasing the probability
of chance correlations between input and ouptut data.
For PyMS the number of PCs used was the first 10 PCs
(which accounted for 97:16 % of the total variance); for
FT-IR the first 20 PCs (96:88 % of total variance), and
for Raman the first 5 PCs (78:86 % of total variance)
were used. This PCA-based dimensionality-reduction
process is of course not needed for RBFs since the first
stage in this process involves the use of the unsupervised

K-means clustering algorithm, and so bears similarity to
the PC-MLP approach.

After training each of the three ANNs to an RMSEF of
0-01 in the training set, each calibrated system was
challenged with both the training and test sets. For the
PyMS data trained with a full spectral MLP the outputs
for the training set are shown in Table 2 and the unseen
test set in Table 3. Using the criterion that the identity of
an isolate from challenging a trained ANN is taken as
the winning node (that is to say the largest value) in the
output layer, this PyMS-MLP correctly identified all 25
bacteria in the training set and 33 of the 34 isolates in the
unknown (unseen) test set. The incorrectly assigned
isolate was Klebsiella Kg, which was identified as an E.
coli. Exactly the same result was seen for the PC-MLPs
(data not shown), but by contrast the full-spectral RBFs
correctly identified all isolates (including Klebsiella
strain Kg) in both the training and test sets.

All three ANN-based methods correctly identified all
isolates in the training and test sets from their FT-IR
data (data not shown). The most notable feature of the
various ANNS trained with the IR spectra was the time
taken to train to an RMSEF of 0-01 (1 %) (Table 1). Full-

1165



R. GOODACRE and OTHERS

Table 3. Identity of the bacteria used in the test set as judged by MLP analysis of their PyMS data

Bacterium Bronglais Estimates from MLP
identifier
E. coli Pr. mirabilis Klebsiella spp. Ps. aeruginosa Enterococcus spp.
E. coli Ef 0-7 0-0 0-3 0-0 0-0
Eg 10 0-0 0-0 0-0 0-1
Eh 111 01 —01 0-1 —01
Ei 111 01 —01 00 —02
Ej 1-0 01 0-0 0-1 —01
Ek 11 0-0 —01 0-0 —01
El 0-9 0-1 0-0 0-1 —01
Em 11 01 00 01 —02
En 09 00 02 0-0 0-0
Eo 10 0-0 —01 0-0 0-0
Ep 1-0 01 0-0 0-0 —01
Eq 12 0-1 —01 0-0 —02
Pr. mirabilis Pf —01 10 01 0-0 0-0
Pg 0-0 11 —01 0-0 0-1
Ph —01 11 —01 0-0 0-0
Pi 01 0-8 02 0-1 —01
Pj 01 1-0 00 0-0 —01
Klebsiella sp. Kf 02 —01 09 0-0 0-0
Kg 0-7 0-1 0-3 0-1 —-02
Kh —01 00 09 01 0-1
Ki 02 0-0 07 0-0 0-1
Kj 01 00 09 00 —01
Ps. aeruginosa Af —02 0-0 0-3 09 0-0
Ag 01 01 —03 1-1 0-0
Ah 00 01 —01 1-1 0-0
Ai 0-1 0-0 0-1 0-8 0-0
Aj 0-0 0-0 0-0 10 0-0
Enterococcus sp. Cf 0-0 0-0 0-0 0-0 10
Cg 0-0 0-0 —01 0-0 11
Ch 0-0 0-0 0-0 0-0 10
Ci 0-0 0-0 —01 00 1-0
Gj 0-0 0-1 0-1 0-0 0-9
Ck 01 00 —02 00 11
Cl 0-0 0-0 0-0 0-0 11

spectral MLPs trained with 882 IR absorbances as inputs
took 5 x 10% epochs to train, which in ‘real time’ took
60 min on an IBM-compatible personal computer (dual
P133 processor, 64 Mbytes RAM). The topology of
these MLPs included 12 hidden nodes and five outputs
nodes, and between the input and hidden layers and the
hidden (including the single bias node) and output
layers, these 882-2-5 MLPs contained 10649 weighted
connections. When the first 20 PC scores were used as
inputs, these 20-6-5 PC-MLPs took only 1 min (3 x 10?
epochs), on the same personal computer, to reach the
same RMSEF; this was hardly surprising since the
number of weighted connections in these MLPs was
only 155, i.e. was 68 times fewer parameters compared
to the 882-2-5 MLPs. However, the RBFs were much the
fastest to train and took just 10 s. The RBF is a hybrid
ANN and involves first the unsupervised clustering of

the IR spectra using K-means, followed by simple linear
regression of the output from the Gaussians in the
hidden layer on to the five output nodes. This means
that this method is not computationally intensive, since
unlike back-propagation-based MLPs they do not per-
form gradient descent (Walczak & Massart, 1996).

The results for the ANN analyses of the Raman spectra
were slightly less successful. Whilst each method got
100% of the training set correct, full-spectral MLPs
correctly identified 25 (74 %), RBFs 26 (76 %), and PC-
MLPs 28 (82 %) of the 34 isolates in the test set. Details
of the results of interrogating the three ANN methods
(test set only) are given in Table 4, where it can be seen
that the E. coli, Ps. aeruginosa and Enterococcus spp.
were nearly always identified but that the Pr. mirabilis
and Klebsiella spp. isolates were mostly incorrectly
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Table 4. Results from the analysis of Raman spectra in the test set using ANNs

Bacterium No. in test No. (and %) correctly identified
set

MLPs PC-MLPs RBFs
E. coli 12 11 (92) 12 (100) 10 (83)
Pr. mirabilis 5 1 (20) 4 (80) 2 (40)
Klebsiella spp. 5 1 (20) 1 (20) 2 (40)
Ps. aeruginosa S 5 (100) 5 (100) 5 (100)
Enterococcus spp. 7 7 (100) 6 (86) 7 (100)
Total 34 25 (74) 28 (82) 26 (76)

assigned by each of the methods. With one exception,
the Pr. mirabilis isolates that were incorrectly identified
were taken as belonging to the Klebsiella group (the
other was wrongly identified as an enterococcus). The
DFA of these and all the other isolates in Fig. 10(b) gives
us some insight into this result in that the Pr. mirabilis
isolates (P) grouped more closely with the Klebsiella
isolates (K) than any of the other isolates. The eleven
Klebsiella spp. which were wrongly identified were
classified as belonging to E. coli (1), Pr. mirabilis (3) or
enterococci (7) ; the DFA plot (Fig. 10a) suggests that the
Klebsiella isolates are at the centre of a triangle where
the three tips consisted of members of only E. coli, Pr.
mirabilis or enterococcal isolates; this could explain
why the Klebsiella strains were wrongly identified as
belonging to others of those groups.

The time taken to reach a similar RMSEF level using the
Raman data varies significantly (Table 1). The full-
spectral MLPs took 30 h to train, compared to using
PCA as a pre-processing stage to the MLPs, which
trained in only 10 min. Finally, the full-spectral RBFs
were fastest and took a mere 2 min to calibrate.

DISCUSSION

Three rapid spectroscopic approaches for ‘whole-
organism fingerprinting’ — Curie-point PyMS, diffuse
reflectance-absorbance FT-IR and dispersive Raman
microscopy — were used to analyse a group of 59 clinical
bacterial isolates associated with urinary tract infection.

Direct visual analysis of these spectra was not possible,
highlighting the need to use multivariate methods to
reduce the dimensionality of these hyperspectral data.
Unsupervised learning methods of DFA and HCA were
employed to group these organisms based on their
spectral fingerprints, and although some groups were
seen which were characteristic for each of the five
bacterial types, wholly satisfactory clustering was not
observed until a priori information was used in the
interpretation of the complicated dendrograms (Fig. 8)
and ordination plots (Figs 9 and 10).

By contrast, for PyMS and FT-IR, the ANN-based
approaches using MLPs or RBFs could be trained with
small numbers of representative spectra of the five

bacterial groups so that isolates from clinical bacteriuria
in an independent unseen test set could be correctly
identified. ANNSs trained with Raman spectra identified
80 % of the same test set. It is likely that this was due to
the sample presentation, in that the concentration of
cells in the aqueous slurries used for the Raman
measurements was low; future studies will therefore
concentrate on analysing the bacterial samples directly
from colonies on agar plates or by drying them onto a
metal surface and seeking to effect surface-enhanced
Raman spectroscopy (SERS; Cotton et al., 1991 ; Nabiev
et al., 1994; Nabiev & Manfait, 1993).

Whilst UV resonance Raman spectroscopy (Nelson &
Sperry, 1991; Nelson et al., 1992) and FT-Raman
microscopy (Puppels & Greve, 1993; Puppels et al.,
1995) have been exploited for the discrimination of
microbes, these are the first published data, as far as we
are aware, showing the ability of dispersive Raman
microscopy to discriminate clinically significant intact
bacterial cells. Raman microscopy has the advantage
over PyMS and FT-IR that it is possible to analyse single
cells (Puppels & Greve, 1993), although to get a
satisfactory signal-to-noise ratio this process is quite
lengthy (> 10 min) and the analysis of the hyperspectral
data complex. This and the other features of the three
spectroscopic methods are detailed in Table 5. The main
advantage that PyMS conveys is that the multivariate
analyses of these data are well developed and easily
implemented (Goodacre & Kell, 1996; Goodacre et al.,
1996b; Gutteridge, 1987; Magee, 1993), but this tech-
nique has the potential disadvantage that it destroys the
sample. FT-IR has the advantage of speed and, par-
ticularly with our diffuse reflectance-absorbance ap-
proach (Goodacre et al., 1996¢; Timmins et al., 1998;
Winson et al., 1997), easily allows the acquisition of 400
samples per hour on a single 10 x 10 cm aluminium
plate. Although the FT-IR spectra are of higher
dimensionality than PyMS spectra, and the data analysis
slightly more complex, it is fair to say that these slight
disadvantages will diminish with computational
advances (in both hardware and software).

The ANNS for the very high-dimensional Raman spectra
(2283 wavenumbers) took a long time to train, and for
the full spectral MLPs this was 30 h. However, we have
previously used PCA as a method for reducing the
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Table 5. Features of the whole-cell fingerprinting methods studied

Curie-point Diffuse reflectance- Dispersive Raman
PyMS absorbance FT-IR
Destructive Yes No (although sample No
is dried)
Sample size > 50 pg > 50 pg on plates Slurry in vials
5 um diam. for 1 pm diam. for microscope
microscope
Typical no. of cells 105-107 Plates: 10%-107 Vials: 10° mI™!
Microscope: aggregates ~ Microscope: single cells
Typical speed 1-5-2 min 5-30's 1-20 min
Automatable Yes Yes Yes
Complex data capture No No Fairly
Typical dimensionality 150 882 2283
Data analysis 1 2 4
(1 = easy to 5 = hard)

number of inputs to ANNs (Goodacre et al., 1996¢,
19975 Timmins & Goodacre, 1997) and in the present
study using PC scores as inputs to MLPs reduced the
training time to only 10 min, with a slight enhancement
in the predictive ability of the PC-MLP. Finally the
training time for the full spectral RBFs was very quick
—only 2 min — with equivalent performance compared
to the full-spectral MLPs.

At least for the present study the full-spectral RBF
networks have the advantage of speed over full-spectral
MLPs, and to a lesser degree over the PC-MLPs (Table
1). However, the results from the RBF’s outputs are less
quantized than those from the two MLP approaches;
that is to say the outputs were not always very close to
0 or 1. For the FT-IR analysis, when the criterion for the
identity of a bacterium was taken simply as the winning
node in the output layer, all three ANNSs predicted all 34
isolates in the test set correctly. However, if a more rigid
criterion was used which stipulated that a correct
identification was taken to be that the winning node
must be > 075 and all other losing nodes < 0-25, then
the full-spectral MLP incorrectly identified seven
isolates, compared with the full-spectral RBF which
now misidentified 13 of the 34 isolates. By contrast, the
PC-MLP approach was best and only two isolates were
wrongly assigned. When the speed of training and the
more quantized predictions are considered, the PC-
MLPs would appear to be the best ANN-based ap-
proach; moreover, this method was also best for
predicting the identities of these bacteria from their
Raman spectra (Table 4).

In conclusion, these results demonstrate that modern
analytical spectroscopies can provide rapid accurate
microbial characterization, but only when combined
with intelligent chemometric systems.
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