
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2006, Article ID 14952, Pages 1–25
DOI 10.1155/ES/2006/14952

Rapid Industrial Prototyping and SoC Design of 3G/4G
Wireless Systems Using an HLS Methodology

Yuanbin Guo,1 Dennis McCain,1 Joseph R. Cavallaro,2 and Andres Takach3

1 Nokia Networks Strategy and Technology, Irving, TX 75039, USA
2 Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
3 Mentor Graphics, Portland, OR 97223, USA

Received 4 November 2005; Revised 10 May 2006; Accepted 22 May 2006

Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to
real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using
advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and
advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection.
We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms
with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hard-
ware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology.
Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame
using HLS methodology, which significantly shortens the time to market for wireless systems.

Copyright © 2006 Yuanbin Guo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The radical growth in wireless communication is pushing
both advanced algorithms and hardware technologies for
much higher data rates than what current systems can pro-
vide. Recently, extensions of the third generation (3G) cel-
lular systems such as universal mobile telecommunications
system (UMTS) lead to the high-speed downlink packet ac-
cess (HSDPA) [1] standard for data services. On the other
hand, multiple-input multiple-output (MIMO) technology
[2, 3] using multiple antennas at both the transmitter and
the receiver has been considered as one of the most signif-
icant technical breakthroughs in modern communications
because of its capability to significantly increase the data
throughput. Code-division multiple access (CDMA) [4] and
orthogonal frequency-division multiplexing (OFDM) [5] are
two major radio access technologies for the 3G cellular sys-
tems and wireless local area network (WLAN). The MIMO
extensions for both CDMA and OFDM systems are consid-
ered as enabling techniques for future 3G/4G systems.

Designing efficient VLSI architectures for the wireless
communication systems is of essential academical and in-
dustrial importance. Recent works on the VLSI architectures
for the CDMA [6] and MIMO receivers [7] using the origi-
nal vertical Bell Labs layered space-time (V-BLAST) scheme

have been reported. The conventional bank of matched fil-
ters or Rake receiver for the MIMO extensions was imple-
mented with a target at the OneBTSTM base station in [8]
for the flat-fading channels [2, 3]. However, in a realistic
environment, the wireless channel is mostly frequency se-
lective because of the multipath propagation [9]. Interfer-
ences from various sources become the major limiting fac-
tor for the MIMO system capacity. Much more complicated
signal processing algorithms are required for desirable per-
formance.

For the MIMO-CDMA systems, the linear minimum
mean-squared error (LMMSE) chip equalizer [10] improves
the performance by recovering the orthogonality of the
spreading codes, which is destroyed by the multipath chan-
nel, to some extent. However, this in general sets up a prob-
lem of matrix inversion, which is very expensive for hardware
implementation. Although the MIMO-OFDM systems elim-
inate the need for complex equalizations because of the use
of cyclic prefix, the data throughput offered by the conven-
tional V-BLAST [2, 7, 8] detector is far from the theoretic
bound. Maximum-likelihood (ML) detection is theoretically
optimal, however, the prohibitively high complexity makes it
not implementable for realistic systems. A suboptimal QRD-
M symbol detection algorithm was proposed in [5] which
approaches the ML performance using limited-tree search.

2 EURASIP Journal on Embedded Systems

However, its complexity is still too high for real-time imple-
mentation.

These high-complexity signal processing algorithms give
tremendous challenges for real-time hardware implementa-
tion, especially when the gap between algorithm complex-
ity and the silicon capacity keeps increasing for 3G and be-
yond wireless systems [11]. Much more processing power
and/or more logic gates are required to implement the ad-
vanced signal processing algorithms because of the signif-
icantly increased computation complexity. System-on-chip
(SoC) architectures offer more parallelism than DSP proces-
sors. Rapid prototyping of these algorithms can verify the
algorithms in a real environment and identify potential im-
plementation bottlenecks, which could not be easily identi-
fied in the algorithmic research. A working prototype can
demonstrate to service providers the feasibility and show
possible technology evolutions [8], thus significantly short-
ening the time to market.

In this paper, we present our industrial experience in
rapidly prototyping these high-complexity signal process-
ing algorithms. We first analyze the key system design is-
sues and identify the core components of the 3G/4G receivers
using multiple-antenna technologies, that is, the MIMO-
CDMA and MIMO-OFDM, respectively. Advanced receiver
algorithms suitable for implementation are proposed for
synchronization, equalization, and MIMO detection, which
form the dominant part of receiver design and reflect dif-
ferent classes of computationally intensive algorithms typ-
ical in future wireless systems. We propose VLSI-oriented
complexity reduction schemes for both the chip equalizers
and the QRD-M algorithm and make them more suitable
for real-time SoC implementation. SoC architectures for an
FFT-based MIMO-CDMA equalizer [4] and a reduced com-
plexity QRD-M MIMO detector are presented.

On the other hand, there are many area/time tradeoffs in
the VLSI architectures. Extensive study of the different archi-
tecture tradeoffs provides critical insights into implementa-
tion issues that may arise during the product development
process. However, this type of SoC design space exploration
is extremely time consuming because of the current trial-
and-optimize approaches using hand-coded VHDL/Verilog
or graphical schematic design tools [12, 13].

Research in high-level synthesis (HLS) [14–16] aimed at
automatically generating a design from a control data flow
graph (CDFG) representation of the algorithm to be syn-
thesized into hardware. The specification style of the first
commercial realization of HLS is a mixture of functionality
and I/O timing expressed in languages such as VHDL, Ver-
ilog, SystemC [17], Handel-C [18], or System Verilog. While
the behavioral coding style appears more algorithmic (use of
loops for instance), the mixture of such behavior with I/O cy-
cle timing specification provides an awkward way to specify
cycle timing that often overconstrains the design. This spec-
ification style was introduced by Knapp et al. [19] and was
the basis for behavioral tools such as Behavioral Compiler in-
troduced in 1994 by Synopsys, Monet introduced by Mentor
Graphics in 1997, Volare from Get2Chip (acquired in 2003 by
Cadence), CoCentric SystemC Compiler introduced in 2000

by Synopsys, and Cynthesizer from Forte (based on SystemC
[17]). The first three tools were based on VHDL/Verilog. All
but Cynthesizer are no longer in the market. C-Level’s HLS
tool (no longer in the market) used specifications in a sub-
set of C where pipelining had to be explicitly coded. Celox-
ica’s HLS tool was initially based on cycle-accurate Handel-C
[18] with explicit specification of parallelism. Their tool is
now called Agility Compiler and it supports SystemC. Blue-
Spec Compiler targets mainly control-dominated designs and
uses System Verilog with Bluespec’s proprietary assertions
as the language for specification. Reference [20] presented a
Matlab-to-hardware methodology which still requires signif-
icant manual design work. To meet the fast changing market
requirements in wireless industry, a design methodology that
can efficiently study different architecture tradeoffs for high-
complexity signal processing algorithms in wireless systems
is highly desirable.

In the second part, we present our experience of using an
algorithmic sequential ANSI C/C++ level design and verifi-
cation methodology that integrates key technologies for truly
high-level VLSI modeling of these core algorithms. A Cata-
pult C-based architecture scheduler [21] is applied to explore
the VLSI design space extensively for these different types of
computationally intensive algorithms. We first use two sim-
ple examples to demonstrate the concept of the methodol-
ogy and how to make these high-complexity algorithms in-
teract with the HLS methodology. Different design modes
are proposed for different types of signal processing algo-
rithms in the 3G/4G systems, namely, throughput mode for
the front-end streaming data and block mode for the post-
processing algorithms. The key factors for optimization of
the area/speed in loop unrolling, pipelining, and the resource
sharing are identified. Extensive time/area tradeoff study is
enabled with different architectures and resource constraints
in a short design cycle by abstracting the main effort from
hardware iterations to the algorithmic C/C++ fixed-point
design. We also analyze the strengths and limitations of the
methodology.

We also propose different hardware platforms to ac-
complish different prototyping requirements. The real-time
architectures of the CDMA systems are implemented in
a multiple-FPGA-based Nallatech [22] real-time demon-
stration platform, which was successfully demonstrated in
the Cellular Telecommunications and Internet Association
(CTIA) trade show. A compact hardware accelerator for both
precommercial functional verification and simulation accel-
eration of the QRD-M MIMO detector is also implemented
in a Wildcard PCMCIA card [23]. Our industrial design ex-
perience demonstrates that it is possible to enable an exten-
sive architectural analysis in a short-time frame using HLS
methodology, which leads to significant improvements in
rapid prototyping of 3G/4G systems.

The rest of the paper is organized as follows. We first de-
scribe the model of 3G/4G wireless systems using MIMO
technologies and identify the prototyping and methodol-
ogy requirements. We then present our prototyping expe-
rience for advanced 3G MIMO-CDMA receivers and 4G
MIMO-OFDM systems in Sections 3 and 4, respectively.

Yuanbin Guo et al. 3

P
ro

to
co

l
st

ac
k

Digital

BB
DSP,

FPGA,
MCU

(TI, Xilinx,

Altera)

DDS
(analog

device)

DAC
(analog
device)

IF/RF
upconverter

PA

DAC
IF/RF

upconverter

PA

.

.

.
.
.
.

f 1 f 0

NCO

Vehicular

Pedestrian

Wireless
channel

Figure 1: A realistic MIMO-CDMA transmitter block diagram with digital baseband and analog RF modules.

R
F

/I
F

d
o

w
n

co
n

ve
rt

er
A

D
C

Covariance
estimator

PN generator

I

Q

I

Q

.

.

.

R
ai

se
d

-c
o

si
n

e
m

at
ch

ed
fi

lt
er

E
q

u
al

iz
er

so
lv

er
+

F
IR

fi
lt

er

D
es

cr
am

b
in

g

D
es

p
re

ad
er

M
u

lt
is

ta
ge

IC

D
ec

o
d

er

Sync.

Pilot

Channel estimator

Figure 2: Advanced receiver system model for the MIMO-CDMA
downlink.

The Catapult C HLS design methodology is presented in
Section 5. We then demonstrate how to apply the Catapult C
HLS methodology for these complexity algorithms and some
experimental results in Section 6. The conclusion is given in
Section 7.

2. SYSTEM MODEL AND PROTOTYPING
REQUIREMENTS

2.1. CDMA downlink system model and design issues

The system model of the MIMO-CDMA downlink with M
Tx antennas and N Rx antennas is described here, where
usually M ≤ N . First, the high-data-rate symbols are de-
multiplexed into KM lower-rate substreams using the spa-
tial multiplexing technology [2], where K is the number of
spreading codes used for data transmission. The substreams
are broken into M groups, where each substream in the
group is spread with a spreading code of spreading gain G.
The groups of substreams are then combined and scram-
bled with long scrambling codes and transmitted through
the mth Tx antenna. The baseband functions are usually im-
plemented in either DSP or FPGA technologies as shown in
the physical design block diagram in Figure 1. In a realistic

physical implementation, the transmitter has other major
modules besides the digital baseband. The protocol stack
starts from the media-access-control (MAC) layer up to the
network layer, application layer, and so forth. A modern im-
plementation for a wideband system usually applies a di-
rect digital synthesizer (DDS), for example, a component
from analog devices or a digital front-end module in FPGA
design. A numerically controlled oscillator (NCO) modu-
lates the digital baseband to a digital intermediate frequency
(IF). This digital IF waveform is then converted to an ana-
log waveform using a high-speed digital-analog converter
(DAC). An analog intermediate frequency (IF) and radio fre-
quency (RF) up-converters modulate the signal to the final
radio frequency. The signal passes through a power ampli-
fier (PA) and then is transmitted through the specific an-
tenna.

A system model for the advanced MIMO-CDMA down-
link receiver is shown in Figure 2. At the receiver side, corre-
sponding RF/IF down-converters and analog-to-digital con-
verter (ADC) recover the analog signals from the carrier fre-
quency and sample them to digital signals. In an outdoor en-
vironment, the signal passing the wireless channel can expe-
rience reflections from buildings, trees, or even pedestrians,
and so forth. If the delay spread is longer than the coher-
ence time, this will lead to the multipath frequency-selective
channel. Significantly, more advanced receiver algorithms are
required in these environments besides simple raised-cosine
pulse shaping [9] because the simple pulse shaping is not
enough for various channel environments. Synchronization
is usually the first core design block in a CDMA receiver be-
cause it recovers the signal timing with the spreading codes
from clock shift and frequency offsets.

For a CDMA downlink system in a multipath fad-
ing channel, the orthogonality of the spreading codes is
destroyed, introducing both multiple-access interference
(MAI) and intersymbol interference (ISI). HSDPA is the evo-
lutionary mode of WCDMA [1], with a target to support
wireless multimedia services. The conventional Rake receiver
[8] could not provide acceptable performance because of the
very short spreading gain to support high-rate data services.
LMMSE chip equalizer is a promising algorithm to restore

4 EURASIP Journal on Embedded Systems

High-rate

bit stream

Mapper

(BPSK,

QPSK,
16-QAM,

64-QAM)

MIMO-
IFFT
bank

IF/RF
front end

MIMO
channel model

Bit stream
demultiplex

QRD-M

matrix
demapper

MIMO-
FFT
bank

IF/RF
front end

Channel
estimation

Figure 3: System model of the MIMO-OFDM using spatial multiplexing.

the orthogonality of the spreading code and suppress both
the ISI and MAI [10]. However, this involves the inverse
of a large correlation matrix with O((NF)3) complexity for
MIMO systems, where N is the number of Rx antennas and
F is the channel length. Traditionally, the implementation of
an equalizer in hardware has been one of the most complex
tasks for receiver designs.

In a complete receiver design, some channel estimation
and covariance estimation modules are required. The equal-
ized signals are descrambled and despread and sent to the
multistage interference cancellation (IC) module. Finally, the
output of the IC module will be the input to some channel
decoder, such as turbo decoder or low-density parity check
(LDPC) decoders. The advanced receiver algorithms includ-
ing synchronization, MIMO equalization, interference can-
cellation, and channel decoder dominate the receiver com-
plexity. In this paper, we will focus on the VLSI architec-
ture designs of the synchronization and channel equaliza-
tion because they represent different types of complex al-
gorithms. Although there are tremendous separate archi-
tectural research activities for interference cancellation and
channel coding in the literature, they are beyond the scope
of this paper and are considered as intellectual property (IP)
cores for system-level integration.

2.2. System model and design issues for MIMO-OFDM

MIMO-OFDM is considered as an enabling technology for
the 4G standards. The OFDM technology converts the multi-
path frequency-selective fading channel into flat fading chan-
nel and simplifies the channel equalization by inserting cyclic
prefix to eliminate the intersymbol interference. The MIMO-
OFDM system model with NT transmit and NR receive an-
tennas is shown in Figure 3. At the pth transmit antenna, the

multiple bit substreams are modulated by constellation map-
pers to some QPSK or QAM symbols. After the insertion of
the cyclic prefix and multipath fading channel propagation,
an NF-point FFT is operated on the received signal at each
of the qth receive antennas to demodulate the frequency-
domain symbols.

It is known that the optimal maximum-likelihood detec-
tor [24] leads to much better performance than the origi-
nal V-BLAST symbol detection. However, the complexity in-
creases exponentially with the number of antennas and sym-
bol alphabet, which is prohibitively high for practical imple-
mentation. To achieve a good tradeoff between performance
and complexity, a suboptimal QRD-M algorithm was pro-
posed in [5] to approximate the maximum-likelihood de-
tector. The QR-decomposition [25] reduces the K effective
channel matrices for NT transmit and NR receive antennas
to upper-triangular matrices. The M-search algorithm limits
the tree search to the M smallest branches in the metric com-
putation. The complexity is significantly reduced compared
with the full-tree search of the maximum-likelihood detec-
tor. However, the QRD-M algorithm is still the bottleneck
in the receiver design, especially for the high-order modula-
tion, high MIMO antenna configuration, and large M. It is
shown by a Matlab profile that the M-algorithm can occupy
more than 99% of the computation in a MIMO-OFDM 4G
simulation chain. It can take days or even weeks to gener-
ate one performance point. This not only slows the research
activity significantly, but also limits the practicability of the
QRD-M algorithm in real-time implementation. However,
the tree search structure is not quite suitable for VLSI im-
plementation because of intensive memory operations with
variable latency, especially for a long sequence. Extensive al-
gorithmic optimizations are required for efficient hardware
architecture.

Yuanbin Guo et al. 5

Application flexibility

Chip packaging boundary

RTOS
Low-power
DSP core

Global
MEM

Symbol data,

configuration

High-

speed I/O

Chip engine Global bus

SoC
core

Dist.
MEM

SoC
core

Dist.
MEM

SoC
core

Dist. MEM
reduces data

transfer

MIPS intensive,

high throughput,

low power

Figure 4: SoC partitioning for computational efficiency, configurability, MOPS/µW, and flexibility/scalability.

On the other hand, since there is still no standardization
of 4G systems, the tremendous efforts to build a prestandard
real-time end-to-end complete system still do not give much
commercial motivation to the wireless industries. However,
there is a strong motivation to demonstrate the feasibility
of implementing high-performance algorithms such as the
QRD-M detector in a low-cost real-time platform to the
business units. There is also a strong motivation to shorten
the simulation time significantly to support the 4G research
activities. Implementation of the high-complexity MIMO
detection algorithms in a hardware accelerator platform with
compact form factor will significantly facilitate the commer-
cialization of such superior technologies. The limited hard-
ware resource in a compact form factor and much lower
clock rate than PC demands very efficient VLSI architecture
to meet the real-time goal. The efficient VLSI hardware map-
ping to the QRD-M algorithm requires wide-range config-
urability and scalability to meet the simulation and emula-
tion requirements in Matlab. This also requires an efficient
design methodology that can explore the design space effi-
ciently.

2.3. Architecture partitioning requirement

“System-on-a-chip with intellectual property” (SoC/IP) is a
concept that a chip can be constructed rapidly using third-
party and internal IP, where IP refers to a predesigned behav-
ioral or physical description of a standard component. The
ASIC block has the advantage of high throughput speed, and
low power consumption and can act as the core for the SoC
architecture. It contains custom user-defined interface and
includes variable word length in the fixed-point hardware
datapath. field-programmable gate array (FPGA) is a vir-
tual circuit that can behave like a number of different ASICs
which provide hardware programmability and the flexibil-
ity to study several area/time tradeoffs in hardware architec-
tures. This makes it possible to build, verify, and correctly
prototype designs quickly.

The SoC realization of a complicated end-to-end com-
munication system, such as the MIMO-CDMA and MIMO-
OFDM, highly depends on the task partitioning based on

the real-time requirement and system’s resource usage, which
roots from the complexity and computational architecture
of the algorithms. The system partitioning is essential to
solve the conflicting requirements in performance, complex-
ity, and flexibility. Even in the latest DSP processors, compu-
tational intensive blocks such as Viterbi and turbo decoders
have been implemented as ASIC coprocessors. The architec-
tures should be efficiently parallelized and/or pipelined and
functionally synthesizable in hardware. A general architec-
ture partitioning strategy is shown in Figure 4. The SoC ar-
chitecture will finally integrate both the analog interface and
digital baseband together with a DSP core and be packed in
a single chip. The VLSI design of the physical layer, one of
the most challenging parts, will act as an engine instead of
a coprocessor for the wireless link. Unlike a processor type
of architecture, high efficiency and performance will be the
major target specifications of the SoC design.

2.4. Rapid prototyping methodology requirements

The hardware design challenges for the advanced signal pro-
cessing algorithms in 3G/4G systems lead to a demand for
new methodologies and tools to address design, verification,
and test problems in this rapidly evolving area. In [26], the
authors discussed the five-ones approach for rapid prototyp-
ing of wireless systems, that is, one environment, one auto-
matic documentation, one code revision tool, one code, and
one team. This approach also applies to our general require-
ments of prototyping. Moreover, a good development envi-
ronment for high-complexity wireless systems should be able
to model various DSP algorithms and architectures at the
right level of abstraction, that is, hierarchical block diagrams
that accurately model time and mathematical operations,
clearly describe the real-time architecture, and map natu-
rally to real hardware and software components and algo-
rithms. The designer should also be able to model other ele-
ments that affect baseband performance, channel effects, and
timing recovery. Moreover, the abstraction should facilitate
the modeling of sample sequences, the grouping of the sam-
ple sequences into frames, and the concurrent operation of
multiple rates inherent in modern communication systems.

6 EURASIP Journal on Embedded Systems

Host PC

TI DSP

HARQ CRC DSP intf. core

Turbo
encoder

Rate
matching

Turbo
interleaver

QAM/QPSK
mapper

Code
generatorHSDPA transmitter

Xilinx Virtex-II V6000

Scrambling

CPICH + SCH
power scale DAC/

RF

TI DSP PC: video

DSP intf. core

DCRC

HARQ

HSDPA receiver
3 Xilinx Virtex-II V6000

Turbo
deinterleaver

Rate
dematching

Turbo
docoder

QAM/QPSK
demapper

Multistage
IC

Channel estimation

Searcher

Equalizer/
Rake

Code
generator

DDC
downsample
frequency
compensation

DAC/
RF

CLK tracking AFC

Figure 5: System blocks for the HSDPA demonstrator.

The design environment must also allow the developer to add
implementation details when, and only when, it is appropri-
ate. This provides the flexibility to explore design tradeoffs,
optimize system partitioning, and adapt to new technologies
as they become available.

The environment should also provide a design and veri-
fication flow for the programmable devices that exist in most
wireless systems including general-purpose microprocessors,
DSPs, and FPGAs. The key elements of this flow are au-
tomatic code generation from the graphical system model
and verification interfaces to lower-level hardware and soft-
ware development tools. It also should integrate some down-
stream implementation tools for the synthesis, placement,
and routing of the actual silicon gates.

3. ADVANCED 3G RECEIVER REAL-TIME
PROTOTYPING

The advanced HSDPA receiver for rapid prototyping is the
evolutionary mode of WCDMA [1] to support wireless mul-
timedia services in the cellular devices. MIMO extensions are
proposed for increased data throughput. In this section, we
present our real-time industrial prototyping designs for the
advanced receiver using high-complexity signal processing
algorithms.

3.1. System partitioning

Because of the real-time demonstration requirement, the
complete system design needs a lot of processing power. For
example, the turbo decoder for the downlink receiver alone
occupies 80% of the area of a Virtex II V6000. We apply the
Nallatech BenNUEY multiple-FPGA computing platform for
the baseband architecture design. Each motherboard can

hold up to seven BenBlue II user FPGAs in a single PCI
motherboard. These FPGAs include Xilinx Virtex II V6000
to V8000. Multiple I/O and analog interface cards can also be
attached to the PCI card. This provides a powerful platform
for high-performance 3G demonstration. We also apply TI’s
C6000 serial DSP to support high-speed MAC layer design.

In the transmitter, the host computer runs the network
layer protocols and applications. It has interfaces with the
DSP, which hosts the media-access-control (MAC) layer pro-
tocol stack and handles the high-speed communication with
FPGAs. A DSP interface core in the transmitter reads the
data from the DSP and adds cyclic redundancy check (CRC)
code. After the turbo encoder, rate matching, and interleaver,
a QPSK/QAM mapper modulates the data according to the
hybrid automatic request (HARQ) control signals. With the
common pilot channel (CPICH) and synchronization chan-
nel (SCH) information inserted, the data symbols are spread
and scrambled with pseudonoise (PN) long code and then
ported to the RF transmitter. At the receiver, the searcher
finds the synchronization point. Clock tracking and auto-
matic frequency control (AFC) are applied for fine synchro-
nization. After the matched filter receiver, received symbols
are demodulated and deinterleaved before the rate dematch-
ing. Then after a turbo decoder decodes the soft decisions to a
bit stream, a HARQ block is followed to form the bit stream
for the upper-layer applications. In Figure 5, we also depict
other key advanced algorithms including channel estimation,
chip-level equalizer, and multistage interference cancellation
to eliminate the distortions caused by the wireless multipath
and fading channels. The clock tracking and AFC which are
slightly shaded will be used as the simple cases to demon-
strate the concept of using Catapult C HLS design method-
ology. The darkly shaded blocks in the MIMO scenario will
be the focus for high-complexity architecture design.

Yuanbin Guo et al. 7

0 1 2 3/ 1 0 1 2 3/ 1

Rake in

Long codeEarly

Late

DDC

A/D

LPF

LPF

I

Q

Down
sample

Phase0
Phase90
Phase180
Phase270

Rake receiver

Fchip = 3.84 MHz

Phase0

Phase90
Phase180
Phase270

Phase0
Phase90
Phase180
Phase270

Early Rake

Late Rake
Clock tracking Counter

Long code ROM

Threshold

Phase index
00
01
10
11

Figure 6: Clock tracking based on late-early correlation estimation in CDMA systems.

3.2. CDMA receiver synchronization

3.2.1. Clock-tracking algorithm

The mismatch of the transmitter and receiver crystals will
cause a phase shift between the received signal and the long
scrambling code. The “clock-tracking” algorithm [27] will
track the code sampling point. The IF signal is sampled at
the receiver and then down-converted with a digital demod-
ulation at local frequency. The separated I/Q channel is then
downsampled to four phases’ signals at the chip rate, which
is 3.84 MHz. By assuming one phase as the in-phase, we
compute the correlation of both the earlier phase and the
later phases with the descrambling long code according to
the frame structure of HSDPA. When the correlation of one
phase is much larger than another phase (compared with a
threshold), it will then be judged that the sample should be
moved ahead or delayed by one-quarter chip. Thus the reso-
lution of the code tracking can be one quarter of a chip. This
principle is shown in Figure 6.

The system interface for clock tracking is also depicted
in Figure 6. At the downsampling block after the DDC (dig-
ital down-converter) Xilinx core, the in-phase, early, late
phases are sent to both the Rake receiver and clock track-
ing. The long code will be loaded from ROM block. The
clock-tracking algorithm computes both early/late correla-
tion powers after descrambling, chip-matched filter, and ac-
cumulation stages. A flag is generated to indicate early, in-
phase or late as output. This flag is used to control the ad-
justment signal of a configurable counter. The adjusted in-
phase samples are then sent to the Rake receiver for detec-
tion. Thus the clock tracker is integrated with IP cores and
the other HDL designer blocks (downsampling, MUX, etc.).

3.2.2. Automatic frequency control

The frequency offset is caused by the Doppler shift and
frequency offset between the transmitter and the receiver

oscillators. This makes the received constellations rotate in
addition to the fixed channel phases, and thus dramatically
degrades performance. AFC is a function to compensate for
the frequency offset in the system. For a software definable
radio (SDR) type of architecture, the frequency offset is com-
puted with a DSP algorithm and controlled by a numerical
control oscillator (NCO).

We apply a spectrum-analysis-based AFC algorithm. The
principle is explained with the frame structure of HSDPA in
Figure 7. There are 15 slots in each frame. In each slot, the
first 5 bits are pilot symbols and the second 5 bits are control
signals. Each symbol is spread by a 256-chip long code. So
in the algorithm, we first use a long code to descramble the
received signal at the chip rate. We then do the matched fil-
tering by accumulating 256 chips. By using the local pilot’s
conjugate, we get the dynamic phase of the signal with the
frequency offset embedded. To increase the resolution, we fi-
nally accumulate each of the 5 pilot bits as one sample. The
5-bit control bits are skipped. Thus the sampling rate for the
accumulated phase signals is reduced to be 1500 Hz. These
samples are stored in a dual-port RAM for the spectrum
analysis using FFT. After the descrambling and matched fil-
ter, as well as accumulation, we achieve a very stable sinusoid
waveform for the frequency offset signal as shown in the fig-
ure.

3.3. VLSI system architecture for FFT-based equalizer

LMMSE chip equalizer is promising to suppress both the in-
tersymbol interference and multiple-access interference [4]
for a MIMO-CDMA downlink in the multipath fading chan-
nel. Traditionally, the implementation of equalizer in hard-
ware has been one of the most complex tasks for receiver de-
signs because it involves a matrix inverse problem of some
large covariance matrix. The MIMO extension gives even
more challenges for real-time hardware implementation.

In our previous paper [4], we proposed an efficient algo-
rithm to avoid the direct matrix inverse in the chip equalizer

8 EURASIP Journal on Embedded Systems

5 bits 5 bits 5 bits 5 bits 5 bits 5 bits
Frame

Pilot Pilot Pilot Pilot

Slot 1 1 slot Slot 15

256 chips

10 symbols

LongCode �(I � jQ) Local pilot�
256 DPRAM

Rake in

1. Descrambling 2. Symbol MF 3. Phase 4. ACC &
downsampling

D D∑ ∑

256 5/10

FFT

�300

�200
�100

0
100
200
300

0 5 10 15
�3000
�2000
�1000

0
1000
2000
3000
4000

0 50 100 150 200 250 300

Figure 7: Spectrum-analysis-based automatic frequency control.

Streaming

data r[i]
N �N MIMO

correlation
E[0], . . . , E[L]

S/P
&

form
R D

P
R

A
M N �N

MIMO-
FFT D

P
R

A
M

N �N
submatrix

inverse
&

multiply

DPRAM

M �N
MIMO-

FFT

DPRAM
Pilot

symbols

d[i]

M �N MIMO
channel

estimation
h[0], . . . , h[L]

Form
H

D
P

R
A

M M �N
MIMO-

IFFT D
P

R
A

M

S/P & load FIR coefficients
w[0], . . . , w[LF � 1]

M �N MIMO FIR

Figure 8: VLSI architecture blocks of the FFT-based MIMO equalizer.

by approximating the block Toeplitz structure of the correla-
tion matrix with a block circulant matrix. With a timing and
data-dependency analysis, the top-level VLSI design blocks
for the MIMO equalizer are shown in Figure 8. In the front
end, a correlation estimation block takes the multiple input
samples for each chip to compute the correlation coefficients
of the first column of Rrr . Another parallel data path is for the
channel estimation and the (M×N) dimensionwise FFTs on
the channel coefficient vectors. A submatrix inverse and mul-
tiplication block take the FFT coefficients of both channels
and correlations from DPRAMs and carry out the computa-
tion. Finally an (M × N) dimensionwise IFFT module gen-

erates the results for the equalizer taps ŵ
opt
m and sends them

to the (M × N) MIMO FIR block for filtering. To reflect the
correct timing, the correlation and channel estimation mod-
ules and MIMO FIR filtering at the front end will work in a

throughput mode on the streaming input samples. The FFT-
inverse-IFFT modules in the dotted-line block construct the
postprocessing of the tap solver. They are suitable to work in
a block mode using dual-port RAM blocks to communicate
the data.

4. ADVANCED RECEIVER FOR 4G MIMO-OFDM

4.1. Reduced-complexity QRD-M detection

The complexity of the optimal maximum-likelihood detec-
tor in MIMO-OFDM systems increases exponentially with
the number of antennas and symbol alphabet. This com-
plexity is prohibitively high for practical implementation.
In this section, we explore the real-time hardware archi-
tecture of a suboptimal QRD-M algorithm proposed in

Yuanbin Guo et al. 9

Root node

Stage 1:

antenna Tx NT

Survivor

Survivor Eliminated
candidate

Stage NT :

antenna Tx1

Figure 9: The limited-tree search in QRD-M algorithm.

[5] to approximate the maximum-likelihood detector. It
is shown that the symbol detection is separable accord-
ing to the subcarriers, that is, the components of the
NF subcarriers are independent. Thus, this leads to the
subcarrier-independent maximum-likelihood symbol detec-

tion as dk
ML = arg mindk∈{S}

NT ‖yk − Ĥkdk‖2, where yk =

[yk1 , yk2 , . . . , ykNR
]T is the kth subcarrier of all the receive an-

tennas, Hk is the channel matrix of the kth subcarrier, dk =

[dk1 ,dk2 , . . . ,dkNT
]T is the transmitted symbol of the kth sub-

carrier for all the transmit antennas. The QR-decomposition
[25] reduces the K effective channel matrices for NT transmit
and NR receive antennas to upper-triangular matrices. The
M-search algorithm limits the tree search to the M small-
est branches in the metric computation. The complexity is
significantly reduced compared with the full-tree search of
the maximum-likelihood detector. The procedure is depicted
in Figure 9 for an example with QPSK modulation and NT

transmit antennas where only the survival branches are kept
in the tree search.

4.2. System-level hardware/software partitioning

As explained earlier, there is a new requirement for a pre-
commercial functional verification and demonstration of the
high-complexity 4G receiver algorithms. To reduce the high
industrial investment of complete system prototyping before
the standard is available, it makes more sense to focus on
the core algorithms and demonstrate them by the hardware-
in-the-loop (HITL) testing. Although the Nallatech system
could also be applied for this purpose, we prefer an even
more compact form factor. Thus, we propose to use Annapo-
lis WildCard to meet both the HITL and simulation acceler-
ation requirements. The WildCard is a single PCMCIA card

which contains a Virtex II V4000 FPGA for laptops. The de-
tails of the hardware platform are found in [23].

To achieve simulation-emulation codesign, an efficient
system-level partitioning of the MIMO-OFDM Matlab chain
is very important. The simulation chain is depicted in
Figure 10. In the simplified simulation model, the MIMO
transmitter first generates random bits and maps them to
constellation symbols. Then the symbols are modulated by
IFFTs. A multipath channel model distorts the signal and
adds AWGN noises. The receiver part is contained in the
function Hard qrdm fpga, which consists of the major sub-
functions such as demodulator using FFT, sorting, QR de-
composition, the M-search algorithm in a C-MEX file, the
demapping, and the BER calculator.

In the implementation of the QRD-M algorithm, the
channel estimates from all the transmit antennas are first
sorted using the estimated powers to make P̂

(n1)
2 ≤ P̂

(n2)
2 ≤

· · · ≤ P̂
(nT)
2 . The data vector dk is also reordered accordingly.

Then the QR decomposition algorithm is applied to the es-

timated channel matrix for each subcarrier as QH
k Ĥk = Rk,

where Qk is the unitary matrix and Rk is an upper-triangular
matrix. The FFT output yk is premultiplied by QH

k to form
a new receive signal as Υk = QH

k yk = Rkdk + wk, where
wk = QH

k zk is the new noise vector. The ML detector is equiv-
alent to a tree search beginning at level (1) and ending at level
(NT), which has a prohibitive complexity at the final stage as
O(|S|NT). The M-algorithm only retains the paths through
the tree with the M smallest aggregate metrics. This forms a
limited tree search which consists of both the metric update
and the sorting procedure. The readers are referred to [5] for
details of the operations.

The top five most time-consuming functions in the sim-
ulation chain are shown in Figure 11 for the original C-MEX
design for 64-QAM. The run time is obtained by the Mat-
lab “profile” function. Function “fhardqrdm ” is the receiver
function including all “m mex orig,” “channel,” “qr,” and
“mapping” subfunctions, where the QR-decomposition calls
the Matlab built-in function. It is shown that for the origi-
nal floating-point C-MEX implementation, the C-MEX im-
plementation of the M-search function “m mex orig” dom-
inates more than 90% of the simulation time. Moreover, all
the other functions consume negligible time compared with
the M-search function.

The M-search algorithm in the C-MEX file is thus im-
plemented in the FPGA hardware accelerator. APIs talk with
the CardBus controller in the card board. The controller
then communicates with the processing element (PE) FPGA
through the local address data (LAD) bus standard interface,
which is part of the PE design. The data is stored in the in-
put buffer and a hardware “start” signal is asserted by writ-
ing to the in-chip register. The actual PE component contains
the core FPGA design to utilize both the multistage pipelin-
ing in the MIMO antenna processing and the parallelism in
the subcarrier. After the output buffer is filled with detected
symbols, the interrupt generator asserts a hardware inter-
rupt signal, which is captured by the interrupt wait API in
the C-MEX file. Then the data is read out from either DMA
channel or status register files by the LAD output multiplexer.

10 EURASIP Journal on Embedded Systems

MIMO
Tx

Channel
model

Demod.
QR +

sorting

m
lo

op
fp

ga
-m

ex

D
em

ap
p

in
g

B
E

R
m

ea
su

re

Hard qrdm fpga

C-MEX API

C
ar

d
B

u
s

co
n

tr
o

ll
er

L
A

D
b

u
s

st
d

.i
n

tf
.

Interrupt
generator

LAD
outMUX

In
b

u
ff

er

Tx4 Tx3 Tx1

O
u

t
b

u
ff

er

PE N

Status
register

DMA dest. DMA
SRC

Figure 10: The system partitioning of the MIMO-OFDM simu/emulation codesign and PE architecture of the M-algorithm.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
u

n
ti

m
e

(s
)

1
.0

0
E

+
0

0

2
.0

0
E

+
0

0

4
.0

0
E

+
0

0

8
.0

0
E

+
0

0

1
.6

0
E

+
0

0

3
.2

0
E

+
0

0

6
.4

0
E

+
0

0

M

Overall
fhard-qrdm
m mex orig
Channel

qr

Mapping
Squeeze

Figure 11: Measured run-time profile original C-MEX: 4 × 4, 64-
QAM.

To achieve the bidirectional data transfer, both the source
and destination DMA buffers are needed.

The architecture is designed in multistage processing el-
ements with shared DPRAM for communication between
stages. Each stage processes the detection of one Tx antenna.
The symbol detection of each antenna includes three major
tasks: the metric computation, sorting, and symbol detection
as shown in Figure 12. An example for the antenna nT4 is
shown in Figure 13. All the central antennas have the same
operations with much higher complexity than the first and
last antennas.

4.3. Partial limited tree search

Although the number of complex multiplications is an
important complexity indicator because it determines the

number of multipliers in a VLSI design, the real-time latency
bottleneck is the sorting function. This is because the metric
computation can be pipelined in the VLSI architecture with
a regular structure, but the sorting function involves exten-
sive memory access, conditional branching, element swap-
ping, and so forth depending on the ordering feature of the
input sequence.

Theoretically, the fastest sort function has the complex-
ity at the order of O(MC ∗ log2(MC)). However, the com-
plexity of the full sorting is too high. For example, for 64-
QAM with M = 64, the sequence length is 4096. Then
there are at least 40152 operations. If the sequence needs to
be stored in block memory, this means at least these many
cycles in hardware latency without counting the swapping,
branching overheads. This results in 500 microseconds for a
single subcarrier and one antenna assuming 100 MHz clock
rate, which is very challenging to meet the real-time require-
ment.

However, we note that because we only retain the M
smallest survivor branches, we do not care about the order
of the other sequences above the M smallest metric. So only
the M smallest metrics from the MC metric sequence need to
be sorted. Using this observation, we modified the standard
“quick-sort” procedure to the so-called “partial quick-sort”
architecture.

For the partial quick-sort architecture, the metric se-
quence is computed separately and stored in the tmpMetric
shared DPRAM blocks. Moreover, the Qsort index DPRAM
contains the initial value of the sequence indices. A “istack”
RAM block acts as the stack to store the temporary bound-
ary of the partitioned potential subsequences il, ir. A par-
tial Qsort Core loads/writes data from and to the DPRAM
blocks according to a finite-state machine (FSM) accord-
ing to the logic flow of the partial quick-sort procedure. If
the partitioned and exchanged subsequence reaches a short
length, the short subsequence is sorted using the insert
sort.

Yuanbin Guo et al. 11

nT4

Shared
tmpMetric

DPRAM

RefSym

shared
ROM

CompMetric Partial
quick sort

DetSyms

DetSym

DPRAM

Metric
survivor
DPRAM

Qsort

index
DPRAM

Figure 12: The block diagram of one antenna processing with quick sort.

Shared
tmpMetric

DPRAM

Qsort

index
DPRAM

istack RAM

Partial
Qsort
core

FSM

jstack

istack

il

ir

il ir

il ir

il ir

Bubble sort

il > M: drop il > M: drop

Figure 13: The block diagram of the stack-based partial quick sort.

5. CATAPULT C HLS DESIGN METHODOLOGY

5.1. Classical hardware implementation technologies

The most fundamental method of creating hardware design
for an FPGA or ASIC is by using industry-standard hardware
description language (HDL), such as VHDL or Verilog [13],
based on data flow, structural or behavioral models. The
design is specified in a register-transfer level (RTL) where
the cycle-by-cycle behavior is fully specified. The details of
the microarchitecture are explicitly coded. When writing the
RTL description, the designer has to specify what operations
are executed in what cycles, what registers are going to store
the results of the operations, how and when memories are
going to be accessed, and so forth. The RTL design process
is manual and the intrinsic architecture tradeoffs need to be
studied offline. After the architecture is crafted, the RTL code
is written and validated using simulation by comparing the
behavior of the RTL against the behavior of the original al-
gorithm. After a few iterations of simulating, debugging, and

code fixing, the RTL design is ready to be synthesized into the
target technology (ASIC or FPGA). The results of synthesis
may reveal that the design will not run at the specified fre-
quency due to delays that were not fully accounted for when
crafting the architecture such as delays from routing, mul-
tiplexing, or control logic. The results of synthesis may also
reveal that the design exceeds the allocated budget for either
area or power. However, it is not easy to change a design dra-
matically once the hardware architecture is laid out.

5.2. Raising the level of abstraction

The fundamental weakness of the RTL design methodology
is that it forces designers to mix both algorithmic functional-
ity (what the design computes) with detailed cycle timing of
how that functionality is implemented. This means that the
RTL code is committed to a given performance and inter-
face requirements in conjunction to the target ASIC/FPGA
technology. The low level of abstraction makes the RTL code
complex and highly dependent on the crafted architecture.

12 EURASIP Journal on Embedded Systems

Raising the level of the abstraction was recognized by
researchers as a necessary step to address the issues with
RTL outlined above. The most important tasks in HLS
are scheduling and allocation tasks that determine the la-
tency/throughput as well as the area of the design. Schedul-
ing involves assigning every operation (node in the CDFG)
into control steps (c-steps). Resource allocation is the pro-
cess of assigning operations to hardware with the goal of
minimizing the amount of hardware required to implement
the desired behavior. The hardware resources consist primar-
ily of functional units, storage elements (registers/memory),
and multiplexes. Once the operations in a CDFG have been
scheduled into c-steps, an implementation consisting of an
FSM and a data path can be derived. Depending on the
delay of the operations (dependent on target technology),
the clock frequency constraint, and performance or resource
constraints, a variety of designs can be produced from the
same specification. Parallelism between operations in the
same basic block (data-flow graph) is analyzed and exploited
according to what hardware resource is allocated. Parallelism
across control boundaries is exploited using loop unrolling,
loop pipelining, and by analyzing data dependencies across
conditionals. The research studied ways to optimize the hard-
ware by means of how functional resources are allocated,
how operations are scheduled and mapped to the available
resources, and how variables are mapped to registers or to
memory.

The first commercial encarnalizations of HLS took an in-
cremental approach to HLS and most HLS synthesis tools
have, to this date, followed that trend. The goal was to im-
prove productivity by partially raising the abstraction of RTL
and applying HLS techniques to synthesize such specifica-
tions. The specification style is a mixture of functionality and
I/O timing expressed in languages such as VHDL, Verilog,
SystemC [17], Handel-C [18], or System Verilog. One of the
main reasons for the desire of keeping I/O timing in the spec-
ification is to explicitly code interface timing into the specifi-
cation. Interface exploration and synthesis are not built in as
an intrinsic part of such methodologies. While the behavioral
coding style appears more algorithmic (e.g., use of loops), the
mixture of such behavior with I/O cycle timing specification
provides an awkward way to specify cycle timing that often
overconstrains the design.

5.3. Catapult C-based high-level
synthesis methodology

Catapult C synthesis is the first HLS approach that raises the
level of abstraction by clearly separating algorithmic func-
tion from the actual architecture to implement it in hardware
(interface cycle timing, etc.). The inputs to the Catapult C
are (a) the algorithmic specification expressed in sequential,
ANSI-standard C/C++ and (b) a set of directives which de-
fine the hardware architecture. The clear separation of func-
tion and architecture allows the input source to remain in-
dependent of interface and performance requirements and
independent of the ASIC/FPGA target technology. This sep-
aration provides important benefits.

#pragma design top
void fir (int 8 x, int 8 ∗y) {

static int 8 taps [12];
...

}

Algorithm 1

(i) The source is concise, the easiest to write, maintain,
and debug. Because of its high-level of abstraction,
its behavior can be simulated at much higher speeds
(×10 000 faster) than RTL, cycle accurate, or tradi-
tional behavioral-level specifications.

(ii) The source can be leveraged as algorithmic intellectual
property (IP) that may be targeted for various applica-
tions and ASIC/FPGA technologies.

(iii) Obtaining a new architecture is a matter of chang-
ing architectural constraints during synthesis. This re-
duces the risk of prolonged manual recoding of the
RTL to address last-minute changes in requirements or
to address timing closure or to satisfy power and area
budgets.

(iv) By avoiding manual coding of the architecture in the
source, functional bugs that are common when cod-
ing RTL are also avoided. It is estimated that 60% of
all bugs are introduced when writing RTL. The impor-
tance of avoiding such bugs cannot be overstated.

5.3.1. Algorithmic specification

The algorithmic specification is expressed in ANSI C/C++
where the function to be synthesized is specified either at the
source (with a #pragma design top) or during synthesis. The
interface of the function determines what data goes in and
out of the function, though it does not specify how the data is
transferred over time (that is determined during synthesis).
For instance, the specification for an FIR filter may look as in
Algorithm 1.

In this case, the FIR function is called with an input x and
returns the output value y. Past values of x are stored in the
local array taps. The array is declared static so that it preserves
its value across invokations of the function. There are virtu-
ally no restrictions on the type of arguments: arrays, structs,
classes are all supported. Currently, the only unsupported
types (at any point in the source) are unions and wchar. The
size of the array needs to be known at compile time, so it is
important to specify its size when arrays are used at the in-
terface: int x[800] rather than just int ∗x.

It is important to use bit-accurate data types at the inter-
face as the generated RTL will be dependent on the their bit
widths. For instance in the case of the FIR filter, both x and
y were specified to be 8-bit signed integers. Variables that are
not at the interface may often be left unconstrained (using
a type with more than the required numerical word length).
Numerical analysis that is done during synthesis will mini-
mize bit widths in a way that still preserves the bit-accurate

Yuanbin Guo et al. 13

class Cplx {

public: int r, i;

Cplx (int r, int i) : r(r), i(i) {}

Cplx operator + (const Cplx & other){

return Cplx (r + other · r, i+ other · i);};

Cplx operator∗(const Cplx & other){

return Cplx (r∗ other · r − i∗ other · i,

r∗ other · i+ i∗ other · r);};

Cplx conj(){return Cplx (r, −i); };

int pow(){ return r∗r + i∗i;}

}

Algorithm 2: Catapult C code for complex class definition.

behavior at the interface. Catapult C provides feedback to
determine if a variable was optimized and it is possible to
further numerically refine the algorithm to improve perfor-
mance, area, and power. All numerical refinement should
be done at the source level as the generated RTL by Cata-
pult C should faithfully reflect the bit-accurate behavior of
the source. Floating-point arithmetics at the precision of the
C floating-point types are not practical for hardware imple-
mentation so they are not fully supported for synthesis. They
can be mapped to fixed-point types, but that flow is mainly
used for estimation as the bit accuracy of the source is in gen-
eral not preserved in the generated RTL.

While it is possible to use the native C integers in con-
junction with shifts and bit masking to model bit-accurate
fixed-point and integer arithmetics, it makes the source less
readable and makes coding of the algorithm more error
prone. By using bit-accurate fixed-point and integer data
types, it is possible to cleanly numerically refine an algo-
rithm that originally used floating-point types. The data
types are simply classes that encapsulate the data and pro-
vide the relevant operators to perform arithmetic, access bits
or bit ranges, rounding and saturation, and so forth. Cata-
pult C supports the integer and fixed-point data-type library
provided by SystemC as well as the Algorithmic C data-type
library. The Algorithmic C library provides arbitrary-length
bit-accurate fixed-point and integer types that offer fast sim-
ulation speed with uniform and well-defined synthesis se-
mantics. For either data-type libraries, the precision, quan-
tization, and overflow modes are specified as template pa-
rameters. For example, the int 8 used in the FIR example is a
typedef to the Algorithmic C type ac int <8, true>, where the
first parameter specifies its bit width and the second param-
eter specifies whether it is unsigned or signed. Moreover, it is
possible to define new data types by using the class or struc-
ture to simplify the C level code. Such an example shown in
Algorithm 2 will be used later in this paper to show the code
style.

There are no restrictions on what functions are called
with the only exception that recursive functions are not sup-
ported (though recursion based on template parameters is
supported). Functions that are not marked as designs are in-
lined during synthesis. Memory allocation and deallocation

are not supported. Pointers are supported provided that the
object that they point to is statically determinable. This con-
dition is not overly restrictive as function inlining helps to
resolve pointers.

5.3.2. Architectural synthesis

The design is crafted during synthesis by interactively apply-
ing architectural constraints, analyzing the results, and fur-
ther refining the architectural constraints if necessary. There
are two constraints that the user must provide: the target
technology and the clock frequency. If no other constraint
is specified, default constraints are used to define the inter-
face and required performance. A number of analysis tools
provide feedback about the schedule, allocation, variable-to-
register mappings, latency/throughput, area, timing reports,
schematics with cross-probing links among them, and to the
input source.

Architectural constraints define the interface, how inter-
nal arrays are mapped to storage (memory, registers, register
file), and the level of interloop or intraloop paralellism that is
exposed to synthesis. Interface synthesis provides a way to in-
struct synthesis to transfer data with a specific protocol. The
generation of all the appropriate signals and their scheduling
constraints are automatically captured by synthesis. For ex-
ample, the interface could be a register/register file, memory,
a FIFO, a bus, and so forth. The granularity of the data trans-
fer is also defined during interface synthesis. For example in
many cases, the even and odd array elements are transferred
concurrently to increase the transfer bandwidth. Internal ar-
rays may be mapped to any defined storage elements includ-
ing memories or register files supporting different numbers
of concurrent reads and writes.

Parallelism between operations across iterations of a loop
(intraloop parallelism) can be exploited using either loop un-
rolling or loop pipelining. Loop unrolling (whether full or
partial) unfolds one or more iterations of the loop by creat-
ing one or more copies of the body. For instance, unrolling
a loop by 2 reduces the iteration count in half. If there is
intraloop parallelism (and resource constrains do not inter-
fere), the new loop body will have less than twice the latency
of the original loop body. The net effect is that the latency
of the loop is reduced. Loop pipelining on the other hand is
a structural approach that overlaps execution of subsequent
loop iterations. If there is intraloop parallelism (and resource
constraints do not interfere), then the interval between itera-
tions of a loop will be shorter than the latency of the loop
body. The net effect is that the overall latency of the loop
is reduced or that the throughput of the loop is increased.
Interloop parallelism is mainly accomplished by loop merg-
ing. Loop merging cannot only improve the latency of the de-
sign by merging two or more loops in one, but often reduces
storage requirements as data, that otherwise would need to
be saved, is immediately consumed in the merged loop.

5.3.3. Integrated Catapult C verification methodology

Catapult C provides a flow to verify that the functionality of
the generated RTL is consistent with the original C source.

14 EURASIP Journal on Embedded Systems

Algorithm Architecture

Ideas

Equations

Floating point

Fixed point

Architecture
constraint

Resource
constraint

Catapult C

HLS scheduler

Hand code
schematic

IP cores

Behavior model

RTL model

Cylce accurate
simulation

Synthesis

Place &
route

FPGA
validation

Matlab
C/C++

HDL/
Verilog

Mentor graphics

advantage

ModelSim

Xilinx ISE
Nallatech

gate/netlist

Figure 14: Catapult C-based high-level-synthesis design methodology.

This verification flow consists of building all the necessary
SystemC wrappers and transactors to use the original C test-
bench to test the generated RTL. This is an important piece
of the C-based methodology as manual generation of test-
benches is time consuming, error prone, and architecture
dependent. The verification flow also provides a convenient
way to gather toggle information that is useful for power es-
timation.

6. APPLYING CATAPULT C METHODOLOGY FOR
3G/4G: DESIGN FLOW AND EXPERIMENTAL
RESULTS

In this section, we describe how we apply Catapult C [21]
in an integrated design flow for our high-complexity 3G/4G
core algorithms design. We also show our experimental re-
sults and demonstrate how to achieve both architectural effi-
ciency and productivity for modeling, partitioning, and syn-
thesis of the complete system.

The first author at Nokia Research Center became a Beta
user of Mentor’s HLS technology in 2002 in order to de-
velop a complete rapid prototyping methodology for ad-
vanced wireless communication systems. The computation-
ally intensive nature of wireless algorithms made it a perfect
match for HLS synthesis. Catapult C was officially released in
the ACM Design Automation Conference (DAC) 2004 in San
Diego, Calif, where the first author was one of the speakers in
an expert panel.

To explore the VLSI design space, the system-level VLSI
design is partitioned into several subsystem blocks (SBs) ac-
cording to the functionality and timing relationship. The
intermediate tasks will include high-level optimizations,
scheduling and resource allocation, module binding, and
control circuit generation. The proposed procedure for im-
plementing an algorithm to the SoC hardware includes the
following stages as shown in Figure 14 and is described as
follows.

(1) Algorithm verification in Matlab and ANSI C/C++:
in the algorithmic-level design, we first use Matlab to
verify the floating-point algorithm based on commu-
nication theory. The matrix-level computations must
be converted to plain C/C++ code. All internal Mat-
lab functions such as FFT, SVD, eigenvalue calculation,
complex operations, and so forth need to be translated
with efficient arithmetic algorithms to C/C++.

(2) Catapult C HLS: RTL output can be generated from
C/C++ level algorithm by following some C/C++ de-
sign styles. Many FUs can be reused in the computa-
tional cycles by studying the parallelism in the algo-
rithm. We specify both timing and area constraints
in the tool and let Catapult C schedule efficient ar-
chitecture solutions according to the scheduling direc-
tives. The number of FUs is assigned according to the
time/area constraints. Software resources such as reg-
isters and arrays are mapped to hardware components,
and FSMs for accessing these resources are generated.
In this way, we can study several architecture solutions
efficiently and achieve the flexibility in architectural
exploration.

(3) RTL integration and module binding: in the next step
of the design flow, we use HDL designer to import the
RTL output generated by Catapult C. A test bench is
built in HDL designer corresponding to the C++ test
bench and simulated using ModelSim. At this point,
several IP cores might be integrated, such as the effi-
cient cores from Xilinx CoreGen library (RAM/ROM
blocks, CORDIC, FIFO, pipelined divider, etc.) and
HDL ModuleWare components for the test bench.

(4) Gate-level hardware validation: Leonardo spectrum or
precision-RTL is invoked for gate-level synthesis. Place
and route tools such as Xilinx ISE are used to gen-
erate gate-level bit-stream file. For hardware verifica-
tion and validation, a configurable Nallatech hardware
platform is used. The hardware is tested and verified

Yuanbin Guo et al. 15

Design style

C/C++
floating point

C/C++ fixed
point/integer

CLK, I/O,

handshaking

Technique

library

Architecture
constraints

Resource
constraints

FU# Size Max cycle

Schedule

Report

OK ?

RTL Gen

No

Yes

⎧⎪⎪⎨
⎪⎪⎩

1.Throughput/block

2.System partitioning

3.Word length

⎧⎪⎪⎨
⎪⎪⎩

1.Core GenLib

2.RAM Lib

3.FPGA parts

⎧⎪⎪⎨
⎪⎪⎩

1.Loop unrolling

2.Loop pipelining

3.MEM/REG mapping

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Area;

Cycle #/clock rate

Bill of material

Schematic view

⎧⎪⎪⎨
⎪⎪⎩

1.�.vhd

2.�.rpt

3.ModelSim model

Figure 15: Procedure for Catapult C architecture scheduling.

by comparing the logic analyzer or ChipScope probes
with the ModelSim simulation.

6.1. Architecture scheduling and resource allocation

In general, more parallel hardware FUs mean faster design at
the cost of area, while resource sharing means smaller area
by trading off execution speed. Even for the same algorithm,
different applications may have different real-time require-
ments. For example, FFT needs to be very fast for OFDM
modulation to achieve high data throughput, while it can
be much slower for other applications such as in a spec-
trum analyzer. The best solution would be the smallest de-
sign meeting the real-time requirements, in terms of clock
rate, throughput rate, latency, and so forth. The hardware ar-
chitecture scheduling is to generate efficient architectures for
different resource/timing requirements.

In Catapult C, first we specify the general requirements
on the CLK rate, standard I/O, and handshaking signals such
as RESET, START/READY, DONE signals for a system. The
detailed procedure within Catapult C is shown in Figure 15.
Then we can specify the building blocks in the design by
choosing different technique libraries, for example, RAM li-
brary and CoreGen library. This will map the basic com-
ponents to efficient library components such as divider or
pipelined divider from the C/C++ language operator “/.”

In a C-level design, the arrays are usually mapped to
memory blocks. In some cycles, some FUs might be in IDLE
state. These FUs could be reused by other similar computa-
tions that occur later in the algorithm. Thus, there will be

many possible resource multiplexings in an algorithm. Mul-
tiplexing FUs manually is extremely difficult when the al-
gorithm is complicated, especially when hundreds or even
thousands of operations use the same FUs. Therefore, mul-
tiple FUs must be applied even for those independent com-
putations in many cases. The size can be several times larger
with the same throughput as in Catapult C solution. In Cata-
pult C, we specify the maximum number of cycles in resource
constraints. We can analyze the bill of material (BOM) used
in the design and identify the large-size FUs. We can limit
the number of these FUs and achieve a very efficient multi-
plexing. With the detailed reports on many statistics such as
the cycle constraints and timing analysis, we can easily study
the alternative high-level architectures for the algorithm and
rapidly get the smallest design by meeting the timing as much
as possible.

The programming style is essential to specify the hard-
ware architectures in the C/C++ program. Several high-level
conventions are defined to specify different architectures to
be used. We use Catapult C to design architectures in two ba-
sic modes according to the behavior of the real-time system:
the throughput mode for front-end processing and the block
mode for postprocessing modules.

6.2. Throughput-mode front-end
processing architectures

Throughput mode assumes that there is a top-level main
loop. In each computation period, the data is inputted into
the function sample by sample. The function will process for

16 EURASIP Journal on Embedded Systems

LongCode� Descrambling Chip-MF Power FrmAcc

I
I

Q

Q

Early Rake

D

D

D

D

D

D

D

D

I out

Q out

∑

∑

256

256

D D

D D

∑ D

150

El flag= ��1, 0, 1�

>
T
?

�

I

I

Q

Q

Late Rake

D D D
D

D D
D D

I out

Q out

� � �

∑ D

150

Figure 16: A typical manual layout architecture for clock tracking.

each sample input. Usually, no handshaking signals are re-
quired. The temporary values are kept by using static vari-
ables. The throughput is determined by the latency of the
processing for each sample. Therefore, it is more suitable for
the sample-based signal processing algorithms. Typical com-
putations for this mode are filtering and accumulation-type
computations in wireless systems.

6.2.1. Clock tracking

The clock-tracking algorithm could be designed with a con-
ventional manual layout architecture in HDL designer. We
would most likely build a parallel architecture with dupli-
cate FUs as in Figure 16. First, we will have a descrambling
procedure that is a complex multiplication with the long
code. Then we will have a chip-matched filter that is basi-
cally mapped to an accumulator. Then after each symbol, we
need to compute power and accumulate for each frame. We
finally have a comparator to make a decision. Altogether, we
will have copies for both early and late paths. This requires
16 multipliers and 12 adders. This architecture is optimal
for fully pipelined computation where a sample will be in-
putted in each cycle. However, in our system, since we use a
38.4 MHz clock rate, only one sample will be inputted at the
chip rate for each 10 cycles. The pipeline is idle for the other
9 cycles and the resources are wasted.

We now use Catapult C flow to design and schedule the
architecture of this algorithm. The throughput-mode code is
shown in Algorithm 3. We use the complex class to declare
the interface variables “eRake,” “LRake,” which denote early-
and late-phase Rake outputs, respectively. We also obtain the
“LongCode” for each chip to do the descrambling. Note that
we use static to declare the accumulation variables “aEarly”
and “aLate” as well as the chip counter “i” and frame counter
“ j.” All the I/O variables are not arrays. Thus, this module is
called for each chip duration based on the streaming input
chip samples. With Catapult C, we scheduled several solu-
tions for the same source code by setting different constraint
directives as in Table 1. In these designs, FUs are multiplexed
within the timing constraints. Because of the computation

dependency, there will be a necessary latency for the first
computation result to come out even if we use many FUs.
For example, in solution 1, although we use 8 multipliers
and 6 adders, the best we can achieve is 7-cycle latency. The
size is huge with 5600 FPGA lookup tables (LUTs). By set-
ting the number of constraints and the maximal acceptable
number of cycles (10 cycles), we will have different solutions
with sizes ranging from 2000 to 1300 LUTs. We can choose
the smallest design, that is, solution 4, for implementation
while still meeting the timing constraint.

Figures 17 and 18 show the computation procedures of
two typical solutions of clock tracking in Gantt graphs. The
horizontal axis is the cycle for one period, and the vertical
axis shows the mapped FUs for each computation. The long
bars denote multiplications and short bars denote either “+”
or “−” operations. The connections lines show the data de-
pendency between operations. Figure 17 shows the fully par-
allel speed-constrained solution 1 with 8 multipliers. All 8
multipliers are used in parallel in cycle 1. Then 4 MULTs are
used again in cycle 3. But in several other cycles, they are not
used any more for the rest of the computation period. How-
ever, as shown in solution 4 in Figure 18, one single multi-
plier is reused in each cycle, by avoiding the dependency. Af-
ter each multiplication, an addition follows and for the cy-
cles 2–9, multiplications and additions are done in parallel.
Moreover, we still meet the 10-cycle timing constraint easily.
In solution 4, the hardware is used most efficiently. This is
almost the minimal possible size that could be achieved the-
oretically for this particular algorithm. The savings in hard-
ware can also reduce the power consumption that is a critical
specification for mobile systems.

6.2.2. MIMO covariance estimation
design space exploration

There are two major front-end modules for covariance esti-
mation and channel estimation for the MIMO chip equal-
izer in Figure 8. These modules essentially are similar to
the clock-tracking algorithm. While the clock-tracking al-
gorithm computes the cross-correlation between the chip

Yuanbin Guo et al. 17

#include “mc bitvector.h”
#pragma design top
uint2 ctrk (Cplx eRake, Cplx LRake, Cplx LongCode, short threshold)
{

static Cplx aEarly(0,0), Cplx aLate(0,0);
static unsigned pAE = 0, pAL = 0; static uint9 i = 0, j = 0;
int 2 flag = 0; Cplx tEarly, tLate;
//descramble
tEarly = eRake∗LongCode. conj(); tLate = LRake∗LongCode.conj();
//accumulate through symbol
aEarly = aEarly + tEarly; aLate = aLate + tLate;
+ + i;
if (i = 256) {//accumulate through frame

pAE+ = aEarly · Pow(); pAL+ = aLate · Pow();
aEarly = Cplx(0, 0); aLate = Cplx(0, 0); i = 0; + + j;
if (j = 150) { j = 0; //compare early/late gate with threshold

if ((pAE− threshold) > pAL) flag = −1;
else if ((pAL− threshold) > pAE) flag = 1;
else flag = 0;
pAE = 0; pAL = 0;

}
}
return(flag);

}

Algorithm 3: Catapult C code for throughput-mode-based clock tracking.

Table 1: Catapult C-scheduled architectures for clock tracking.

Solution LUTs Cycle MULT # ADD # MUX (LUT)

1 5628 7 8 6 1221

2 2004 10 2 2 1152

3 1426 16 1 1 623

4 1361 10 1 2 616

samples and the long scrambling codes, the covariance es-
timation computes the autocorrelation of the chip samples
and the channel estimation computes the cross-correlation
between the pilot symbols and the chip samples. Thus, these
two modules are also suitable for the similar throughput
mode Catapult C modeling, which will also generate simi-
lar architectures except that the number of functional units
will be much higher than the clock tracking because the com-
putation complexities of these two modules are much higher
than the clock tracking. For example, both estimation mod-
ules need to compute the correlation with window length L,
where L is corresponding to the channel length and could be
up to 10 for an outdoor environment.

However, using the Catapult C HLS design methodol-
ogy, we easily explored the design space for different speci-
fications either by simply changing the synthesis directives in
Catapult C or quickly making a change to the C-level code.
This is demonstrated by the CLB consumption exploration
for different architectures and different number of input bits
in Figure 19. For designs with a different number of input
bits, we only need to change the word length in C level for

variables at the interface. Catapult C will automatically figure
out the optimal word length for the internal variables. For the
same C source, we can generate dramatically different RTLs
with different latencies and resource utilizations by changing
the architectural/resource constraints within the Catapult C
environment. If we are not satisfied with some of the design
specifications, we can easily change the source code to re-
flect a different partitioning for the purpose of scalability. For
the MIMO scenario, we can scale the covariance estimation
module for a different number of antennas. Thus, the same
design is configurable to different numbers of antennas in
the system. This scalability provides an approach for shutting
down some idle modules so as to save the power consump-
tion in the design, which is essential to mobile devices. An
experiment shows that more than 60 dedicated ASIC multi-
pliers are needed in a 4 × 4 MIMO system with L = 10. To
achieve such an extensive study for such big designs and ver-
ify in the real-time environment in a short time is virtually
impossible with the conventional design methodology. How-
ever, we demonstrated that we can explore the design spec-
ifications with much less effort using the Catapult C-based
methodology.

6.3. Block-mode postprocessing
architectures and integration

6.3.1. AFC

Corresponding to the AFC algorithm shown in Figure 7, we
designed the hardware architecture as shown in Figure 20. IP
cores from different sources are integrated in HDL designer.

18 EURASIP Journal on Embedded Systems

Figure 17: Gantt graph for speed-constrained architecture for clock
tracking from Catapult C scheduling: 8 multipliers, 6 adders, 4 sub-
tractors, 7-cycle latency.

Figure 18: Gantt graph for area-constrained architecture for clock
tracking: 1 adder, 1 subtractor, 10-cycle latency.

0

0.5

1

1.5

2

2.5

3

3.5
�104

N
u

m
b

er
o

f
C

L
B

s

4 6 8 10 12 14 16

Number of input bits

38.4 MHz
76.8 MHz

N = 4,L = 10, scalable

N = 4,L = 10, merged

N = 2,L = 10, scalable

N = 1,L = 5

Figure 19: CLB versus number of input bits for the covariance es-
timation block (MIMO correlation block) with different architec-
tures.

A Xilinx core direct digital synthesis (DDS) block controlled
by the AFC module generates the local frequency to demod-
ulate the RF front-end received signal. Some ROM cores are
used to store the long codes and pilot symbols as well as
the phase coefficients for the FFT. Three separate Catapult C
blocks are pipelined: the AFC accumulation block, the 256-
point FFT block, and a SearchMax block. The accumulator
and descrambler need to process for each input sample and
will work in a throughput mode. The search is invoked by the
FFT once the FFT is finished. The processes will use dual-
port RAMs for communication. All the IP cores are inte-
grated in HDL designer with additional glue logic.

Although the Xilinx core library also provides a variety
of FFT IP cores, they are usually for high-throughput appli-
cations, and they usually have considerably large sizes. But
in our algorithm, the FFT only processes once for each com-
plete frame block, so we can relax the timing constraint to
get a very compact design with minimum resource usage.
In block mode, the function processes once after a block of
data is ready. Example Catapult C code style is shown in
Algorithm 4 for a 32-point radix-2 FFT/IFFT module. The
minimum resource code for 256-point FFT is essentially the
same as that of a 32-point FFT except for the cosine/sine
coefficients and the number of loops. First, we need to in-
clude the mc bitvector.h to declare some Catapult C-specific
bit vector types such as the int16, uint2, and so forth. We first
convert the cosine/sine phase coefficients to integer numbers
and store them in two vectors that will be mapped to ROM
hardware as cos v and sin v. If we consider the FFT module as
the top level of the partitioned Catapult C module, we need
to declare the #pragma design top. The input and output ar-
rays ar0[], ai0[] could be mapped to dual-port RAM blocks
in hardware. The flag is a signal to configure whether it is an
FFT or IFFT module. It can be seen that the Catapult C style
is almost the same as the ANSI-C style. There is no need to
specify the timing information in the source code.

In the core algorithm, there are different levels of loop
structures, that is, the stage level, the butterfly-unit level,
and the implementation of the butterfly units. Based on the
loop structure and the storage hardware mapping, we can
specify the different architecture constraints within the Cat-
apult C GUI interface to generate the desired RTL archi-
tecture. The hardware interface used RAM blocks to pass
the data. Catapult C will generate FSMs for the write en-
abling, MEM address/data bus, and control logic. The com-
plete AFC algorithm only needs to be updated once in each
frame length, which is 10 milliseconds. We designed sev-
eral solutions with only 1 multiplier and 1 adder reused for
each MULT and ADD operation. The latency is larger than
the Xilinx core, but the area is smaller. Finally, for all three
blocks and different-point FFT, we achieve the same mini-
mal size around 1000 LUTs, saving about ×3 in the num-
ber of LUTs over the Xilinx Core as shown in Table 2. Al-
though in general a design with more functional units could
work faster than a design with less functional units, it still
depends on the design of parallelism and pipelining. This
extreme example that using more functional units does not
necessarily promise a fast design is also demonstrated in the

Yuanbin Guo et al. 19

RF/
ADC

LPF

LPF

DDS

sin

cos

DPRAM DPRAM

Phase
accumulator

I

Q

256
FFT

I

Q

Search
max

Mapper

Long code cos ROM sin ROM

Figure 20: HDL designer integration of the Catapult C-based AFC: solid line: Catapult C module; dotted line: HDL designer module; dashed
line: Xilinx core.

“256 Catapult C (2)” row in the table. The scheduling of an
architecture with resource constraints in Catapult C is not al-
ways straightforward but needs some insightful architectural
constraints. In the architecture with only one multiplier, the
butterfly unit is utilized sequentially and only one multiplier
is multiplexed for the butterfly unit.

For comparison purpose, we also show an example code
of the high-throughput streaming style FFT in part two of
Algorithm 4. In this eight-point FFT, we designed a tem-
plate for one-stage butterfly unit. We also designed a FIFO
for streaming data in one-stage butterfly unit. All the stages
are laid out in a pipelined mode, by using output of stage 5
as the input of stage 4. Thus, very high throughput can be
achieved which will be suitable for the OFDM modulation
application.

6.3.2. Design space exploration of MIMO-FFT

The MIMO-FFT/IFFT design in the MIMO chip equal-
izer architecture shown in Figure 8 is another example of
using Catapult C to search for efficient architecture with
minimum-resource block mode design. For the multiple
FFTs in the tap solver, the keys for optimization of the
area/speed are loop unrolling, pipelining, and resource mul-
tiplexing. It is not easy to apply the commonality by us-
ing the Xilinx IP core for the MIMO-FFTs. To achieve the
best area/time tradeoff in different situations, we apply Cat-
apult C to design customized FFT/IFFT modules. We design
the merged MIMO-FFT modules to utilize the commonal-
ity in control logic and phase coefficient loading. By using
merged butterfly unit for MIMO-FFT, we utilize the com-
monality and achieve much more efficient resource utiliza-
tion while still meeting the speed requirement. The Catapult
C-scheduled RTLs for 32-point FFTs with 16 bits are com-
pared with Xilinx v32FFT Core in Table 3 for a single FFT.
Catapult C design demonstrates much smaller size for differ-
ent solutions, for example, from solution 1 with 8 multipliers
and 535 slices to solution 3 with only one multiplier and 551
slices. Overall, solution 3 represents the smallest design with
slower but acceptable speed for a single FFT.

For the MIMO-FFT/IFFT modules, we can design a fully
parallel and pipelined architecture with parallel butterfly
units and complex multipliers laid out in a fully pipelined

butterfly tree at one extreme; or we can just reuse one FFT
module in serial computation at another extreme. In a par-
allel layout for an example of 4 FFTs, all the computations
are localized and the latency is the same as one single FFT.
However, the resource is ×4 of a single FFT module. For
a reused module, extra control logic needs to be designed
for the multiplexing. The time is equal to or larger than
that ×4 of the single FFT computation. However, we can
reuse the control logic inside the FFT module and sched-
ule the number of FUs more efficiently in the merged mode.
The specifications for 4 merged FFTs are listed in Table 4
with different numbers of multipliers. Compared to 4 par-
allel FFT blocks (each with 1 MULT) at 2204 slices and 810
cycles or 4 serial FFT at 3240 cycles, the resource utilization
is much more efficient, where FU utilization is defined as
Multipliers/(# Cycles ∗ # Multiplications).

The design space for different numbers of merged FFT
modules is shown in Figure 21. Figure 21 shows the CLB
consumption for different architectures versus the different
number of multipliers. For the input and output arrays, two
different types of memory mapping schemes are explored.
One scheme applies split subblock memories for each input
array labelled as SM. This option requires more memory I/O
ports but increases the data bandwidth. Another option is
a merged memory bank to reduce the data bus. However,
the data access bandwidth is limited because of the merged
memory block. This demonstrates the design space explo-
ration capability enabled by the Catapult C methodology.

6.4. Scheduling control-dominated architectures

The QRD-M algorithm is a control-dominated architecture
because it contains many conditional branches which are ex-
tremely difficult with the conventional manual design. The
sorting procedure also leads to unpredictable latency de-
pending on the input sequence. Catapult C can synthesize the
complex FSM automatically for these types of complex log-
ics. Moreover, it is easy to verify different pipelining tradeoffs.
We studied three major different algorithms for the sorting
function, each with many partitioning and storage mapping
options. The partial sorting C design is described by a flow
diagram as shown in Figure 22. To support the high modu-
lation order and large M, the updated metrics are first stored

20 EURASIP Journal on Embedded Systems

(1) Minimum resource code style for radix-2 FFT
#include <mc bitvector.h>
#define NFFT 32
#define LogN 5
const int 16 cos v[LogN] = {−1024, 0, 724, 946, 1004};
const int 16 sin v[LogN] = {0,−1024,−724,−392,−200};
#pragma design top
void fft32 int 16 (int 16 ar0[NFFT], int 16 ai0[NFFT],

const int 16 cos v[LogN], const int 16 sin v[LogN], uint1 flag)
{ short i, j, k, l, le, le1;

int 16 rt0, it0, ru, iu, r, rw, iw; le = 1;
for (l = 1; l ≤ LogN ; l + +) { //stage level
le1 = le; le = le∗2; ru = 1024; iu = 0; rw = cos v[l − 1]; //rw = cos(PI/le1);
if (flag = 0){ iw = sin v[l − 1]; } //forward fft, iw = − sin(PI/le1);
else { iw = − sin v[l − 1]; } //backward ifft
for (j = 0; j < le1; j + +) {

for (i = j; i < NFFT; i+ = le){// BFU level
k = i + le1;
rt0 = (ar0[k]∗ru− ai0[k]∗iu) ≫ 10; it0 = (ai0[k]∗ru + ar0[k]∗iu) ≫ 10;
ar0[k] = ar0[i]− rt0; ai0[k] = ai0[i]− it0;
ar0[i]+ = rt0; ai0[i]+ = it0; }

r = (ru∗rw − iu∗iw) ≫ 10; iu = (ru∗iw + iu∗rw) ≫ 10; ru = r;
}

}
}

(2) High throughput streaming code style for FFT
void Bfly HT(Cplx a, Cplx b, Cplx ∗x, Cplx ∗y, Cplx W)
{ ∗x = a + b; ∗y = (a− b)∗W ; }
//One FFT stage: Template N represents the stage number
template< intN> struct stages
{

unsigned int cnt; bool doit; uint10 Indx = 1 ≫ N ;
Cplx FIFOx[Indx], FIFOy[Indx], W ;
stages (){ cnt = 0; doit = false; };
void newStage(cplx ∗x, cplx ∗y)
{ cplx xt = ∗x, yt;
if (! doit) {FIFOx[cnt] = xt; yt = FIFOy[cnt];}
else {W = Cplx(cos[Indx],sin[Indx]);

Bfly HT(FIFOx[cnt], xt, &yt, &FIFOy[cnt], W); }
∗y = yt; cnt + +; if (cnt ≧ (Indx)) {cnt = 0; doit = !doit;}
};

};
#pragma design top
void fft HT(cplx ∗x, cplx ∗y) {

static stages<5> s5; static stages<4> s4; static stages<3> s3;
static stages<2> s2; static stages<1> s1; static stages<0> s0;
Cplx t5, t4, t3, t2, t1;
s5.newStage (x, &t5); s4.newStage (&t5, &t4); // Stage 5, 4;
s3.newStage (&t4, &t3); s2.newStage (&t3, &t2); // Stage 3, 2;
s1.newStage (&t2, &t1); s0.newStage (&t1, y); // Stage 1,0;

}

Algorithm 4: Catapult C code for FFT architectures: minimum resource versus high throughput.

in an input buffer memory block. The following inputs and
parameters are defined: S[N] is the input sequence stored in
memory blocks; I[N] is the index sequence initialized to be
I(i) = i; M is the partial factor; N = MC is the sequence
length; istack [NSTACK] is the stack to store the left and right
pointers.

Once the metric update process is ready, it sends a “start”
signal to the PQSort procedure. The partial quick sort has
the same concept as the conventional quick sort based on
“partition-exchange” method. First, a “partitioning element”
a is selected from the subsequence. A pair of pointers il
and ir are defined to set the boundary in terms of “left”

Yuanbin Guo et al. 21

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

er
o

f
C

L
B

sl
ic

es

0 10 20 30

Number of ASIC multipliers

16 FFTs
8 FFTs
4 FFTs

(a)

400

500

600

700

800

900

1000

1100

N
u

m
b

er
o

f
C

L
B

sl
ic

es

0 2 4 6 8

Number of ASIC multipliers

4 FFTs
8 FFTs

16 FFTs
Splitted mem 4 FFT

(b)

Figure 21: CLB versus number of multipliers for the different architectures of merged MIMO-FFT module: (a) splitted MEM vector pro-
cessor MIMO-FFT; (b) MEM bank vector proceesor.

Table 2: Specifications comparison for different solutions of FFT.

Solution BOM Area (LUT) Latency (cycles)

256 Core 12 mult 3286 768

1024 Core 12 mult 3858 4096

256 Catapult (1) 1 m + 1 a + 1 s 827 2076

256 Catapult (2) 4 m + 2 a + 2 s 1940 2387

1024 Catapult 1 m + 1 a + 1 s 1135 9381

Table 3: Architecture efficiency comparison.

Architecture MULT Latency (cycles) Slices

Xilinx Core 12 128 2066

Catapult C Sol1 8 570 535

Catapult C Sol2 2 625 543

Catapult C Sol3 1 810 551

and “right” sides of the subsequence. A stack istack with the
length of MSTACK is allocated to store the intermediate il
and ir pointers of the pending subsequences. For the first
stage, the subsequence is only the full sequence. So il = 0,
ir = N − 1, and the top pointer of the stack jstack = 0.
For a subsequence, when the length is shorter than some
size LQS, it is faster to use the straight insert sort. To avoid
the “worst-case” running time in the quick sort, which usu-
ally happens when the input sequence is already in order, the

Table 4: Design space exploration for 4 merged 32-point FFTs.

MULT Cycles Slices Util. fclk (MHz)

16 970 570 1/7 60

4 820 810 16/40 60

2 720 1135 16/28 60

1 680 1785 16/22 60

median of the first, middle, and last elements of the current
subsequence is used as the “partitioning element.” The par-
titioning process is carried out in the “do-while” loops for
indices i and j. For the selected partitioning element a, we
first scan the i pointer up until we find an element > a. Since
we do not care about the order of the subsequences larger
than M, we only need to push the “left” and “right” pointers
lower than M to the stack. These pointers popped out from
the stack only when the subsequence is short enough for the
final “insert-sort” procedure. This not only reduces the size
of the stack, but also reduces the latency in processing the
subsequences higher than M.

For the QRD-M in the MIMO-OFDM system, the run-
time comparison of the original and FPGA implementation
for the 4× 4 MIMO configuration and 64-QAM modulation
is shown in Figure 23. We implemented 2 PEs in the V3000
FPGA in this case. For 64-QAM and M = 64, speedup of
×100 is observed with 33 MHz FPGA clock rate competing

22 EURASIP Journal on Embedded Systems

Insert-sort

jstack = 0 ?

Yes

Yes

No

ir = istack[�� jstack]

il = istack[�� jstack]

Return

Input & start

Init:
il = 0; ir = N � 1;

jstack= 0;

Len = ir � il

Len < LQS ?

No

k = (il + ir) >> 1;

swap �S(k), S(il + 1)�

swap �I(k), I(il + 1)�

Sort& swap

�S(il), S(il + 1), S(ir)�

�I(il), I(il + 1), I(ir)�

i = il + 1; j = ir

a = S(il + 1);

Ia = I(il + 1)

i + +

Yes
S(i) < a ?

No

j ��

S(j) > a ?
Yes

No
Yes

j < i ?

No

Swap �S(i), S(j)�

Swap �I(i), I(j)�

S(il + 1) = S(j)

I(il + 1) = I(j)

S(j) = a; I(j) = Ia

No

Yes

i < M ?

istack(jstack++)= i;

istack(jstack++)= ir;

ir = j � 1

Figure 22: The logic flow of the partial quick-sort procedure.

with the 1.5 GHz Pentium 4 clock rate. Faster acceleration is
achievable using more processing elements with the scalable
VLSI architecture and clock rate from P and R result can be
up to 90 MHz.

6.5. Strength and limitations

As we have shown, the Catapult C HLS methodology demon-
strates significant advantages in rapid architecture schedul-
ing and capability to allow extensive design space exploration
for customized IP core designs of high-complexity signal
processing algorithms. Table 5 compares the productivity of
the conventional HDL-based manual design method and the
Catapult C-based design space exploration methodology. For
the manual design method, we assume that the algorithmic
specification is ready and there is some reference design ei-
ther in Matlab or C code as a baseline source code. The work-
loads are estimated based on the authors’ extensive experi-
ence in using the conventional HDL design. Such estimate
is commonly used for project planning by assuming average
proficiency in the programming languages. For the Catapult
C design, we assume that the fixed-point C/C++ code has
been tested in a C test bench using test vectors. The work load
does not include the integration stage either within HDL de-
signer or writing some high-level wrapper in VHDL. For the

Catapult C design flow, there are possibly many rounds of
edit in the C source code to reflect different architecture spec-
ifications. It is shown that with the manual VHDL design,
it may take much longer design cycle to generate one work-
ing architecture than the extensive tradeoff exploration using
Catapult C. The improvement in productivity for our proto-
typing experience of 3G and beyond systems is obvious com-
pared with the conventional HDL-based design methodol-
ogy.

However, we also notice that there are still some aspects
that the Catapult C methodology can improve. Firstly, in
terms of the architecture scheduling capability, the efficiency
for reusing multiplexers for a large design can be improved
from our experience. Moreover, it is still difficult to predict
the hardware architectures for control-dominated signal pro-
cessing algorithms. Of course, this is also partly due to the
fact that the control-dominated algorithms usually do not
have structures which facilitate architecture pipelining. Sec-
ondly, Catapult C still has limitations in system-level simu-
lation with fixed-point analysis. The fixed-point conversion
still requires much manual work. Some Matlab-level synthe-
sis tools such as the AccelChip might offer better integrated
environment for extensive fixed-point analysis. Thirdly, there
are many standard well-defined modules such as the FIR,
FFT, besides the many advanced proprietary algorithms for

Yuanbin Guo et al. 23

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
u

n
ti

m
e

(s
)

0.00E + 00 2.00E + 01 4.00E + 01 6.00E + 01 8.00E + 01

M

mloopfpga mex
m mex orig

Figure 23: Measured simulation speedup (simu/emulation time) for the M-algorithm: 4× 4, 64-QAM.

Table 5: Productivity improvement from the untimed C-based de-
sign space exploration.

Task VHDL Catapult C

Clock tracking 3 weeks 1 week

FFT 5 weeks 2 weeks

AFC 6 weeks 2 weeks

Turbo interleaver 2.5 months 3 weeks

Covariance estimation 3 weeks/sol 1-week tradeoff study

Channel estimation 3 weeks/sol 1-week tradeoff study

MIMO-FFT 5 weeks/sol 2-week tradeoff study

FIR filtering 3 weeks/sol 1-week tradeoff study

an prototyping project. It would be helpful if Catapult C
could provide an extensive library for these standard DSP
modules. System generator and AccelChip have stronger po-
sitions in this IP library feature. However, this IP integration
feature should be considered independently with the HLS
scheduling capability and the discussion is out of the scope
of this paper.

7. CONCLUSION

In this paper, we present our industrial experiences for the
3G/4G wireless systems using a Catapult C HLS rapid pro-
totyping methodology. We discuss core system design issues
and propose reduced-complexity algorithms and architec-
tures for the high-complexity receiver algorithms in 3G/4G
wireless systems, namely MIMO-CDMA and MIMO-OFDM
systems. We also demonstrate how Catapult C enables archi-
tecture scheduling and SoC design space exploration of these
different classes of receiver algorithms. Different code design
styles are demonstrated for different application scenarios.
By efficiently studying FPGA architecture tradeoffs, extensive

architectural research for high-complexity signal processing
algorithms of 3G/4G wireless systems is enabled with signifi-
cantly improved productivity.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Behnaam Aazhang
and Gang Xu for their support in this work. J. R. Cav-
allaro was supported in part by NSF under Grants ANI-
9979465, EIA-0224458, and EIA-0321266. Part of the pa-
per was presented in IEEE RSP’03 and Asilomar’04 confer-
ences.

REFERENCES

[1] A. Wiesel, L. Garcı́a, J. Vidal, A. Pagès, and J. R. Fonollosa,
“Turbo linear dispersion space time coding for MIMO HS-
DPA systems,” in Proceedings of 12th IST Summit on Mobile
and Wireless Communications, Aveiro, Portugal, June 2003.

[2] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolni-
ansky, “Detection algorithm and initial laboratory results us-
ing V-BLAST space-time communication architecture,” Elec-
tronics Letters, vol. 35, no. 1, pp. 14–16, 1999.

[3] G. J. Foschini, “Layered space-time architecture for wireless
communication in a fading environment when using multi-
element antennas,” Bell Labs Technical Journal, vol. 1, no. 2,
pp. 41–59, 1996.

[4] Y. Guo, J. Zhang, D. McCain, and J. R. Cavallaro, “Efficient
MIMO equalization for downlink multi-code CDMA: com-
plexity optimization and comparative study,” in Proceedings
of IEEE Global Telecommunications Conference (GLOBECOM
’04), vol. 4, pp. 2513–2519, Dallas, Tex, USA, November-
December 2004.

[5] J. Yue, K. J. Kim, J. D. Gibson, and R. A. Iltis, “Channel
estimation and data detection for MIMO-OFDM systems,”
in Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM ’03), vol. 2, pp. 581–585, San Francisco, Calif,
USA, December 2003.

24 EURASIP Journal on Embedded Systems

[6] Y. Lee and V. K. Jain, “VLSI architecture for an advance
DS/CDMA wireless communication receiver,” in Proceedings
of the Annual IEEE International Conference on Innovative Sys-
tems in Silicon, pp. 237–247, Austin, Tex, USA, October 1997.

[7] Z. Guo and P. Nilsson, “An ASIC implementation for V-
BLAST detection in 0.35 µm CMOS,” in Proceedings of the 4th
IEEE International Symposium on Signal Processing and Infor-
mation Technology (ISSPIT ’04), pp. 95–98, Rome, Italy, De-
cember 2004.

[8] A. Adjoudani, E. C. Beck, A. P. Burg, et al., “Prototype ex-
perience for MIMO BLAST over third-generation wireless
system,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 3, pp. 440–451, 2003.

[9] B. Razavi, RF Microelectronics, Prentice Hall Communications
Engineering and Emerging Technologies Series, Prentice-Hall,
Upper Saddle River, NJ, USA, 1998.

[10] K. Hooli, M. Juntti, M. J. Heikkilä, P. Komulainen, M. Latva-
Aho, and J. Lilleberg, “Chip-level channel equalization in
WCDMA downlink,” EURASIP Journal on Applied Signal Pro-
cessing, vol. 2002, no. 8, pp. 757–770, 2002.

[11] J. M. Rabaey, “Low-power silicon architecture for wireless
communications: embedded tutorial,” in Proceedings of ASP-
DAC 2000, Asia and South Pacific Design Automation Confer-
ence, pp. 377–380, Yokohama, Japan, January 2000.

[12] A. Evans, A. Silburt, G. Vrckovnik, et al., “Functional verifica-
tion of large ASICs,” in Proceedings of 35th ACM/IEEE Design
Automation Conference (DAC ’98), pp. 650–655, San Francisco,
Calif, USA, June 1998.

[13] J. Bhasker, A VHDL Primer, Prentice-Hall, Upper Saddle River,
NJ, USA, 3rd edition, 1999.

[14] R. Camposano and W. Wolf, Trends in High-Level Synthesis,
Kluwer, Boston, Mass, USA, 1991.

[15] G. De Micheli and D. C. Ku, “HERCULES - a system for high-
level synthesis,” in Proceedings of the 25th ACM/IEEE Confer-
ence on Design Automation (DAC ’88), pp. 483–488, Anaheim,
Calif, USA, June 1988.

[16] C.-Y. Wang and K. K. Parhi, “High-level DSP synthesis using
concurrent transformations, scheduling, and allocation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 14, no. 3, pp. 274–295, 1995.

[17] http://www.systemc.org/.
[18] http://www..doc.ic.ac.uk/∼akf/handel-c/cgi-bin/forum.cgi.
[19] D. Knapp, T. Ly, D. MacMillen, and R. Miller, “Behavioral syn-

thesis methodology for HDL-based specification and valida-
tion,” in Proceedings of 32nd ACM Design Automation Confer-
ence (DAC ’95), pp. 286–291, San Francisco, Calif, USA, June
1995.

[20] J.-W. Weijers, V. Derudder, S. Janssens, F. Petré, and A. Bour-
doux, “From MIMO-OFDM algorithms to a real-time wire-
less prototype: a systematic matlab-to-hardware design flow,”
EURASIP Journal on Applied Signal Processing, vol. 2006, Arti-
cle ID 39297, 12 pages, 2006.

[21] Catapult C Manual and C/C++ style guide, Mentor Graphics,
2004.

[22] U. Knippin, “Early design evaluation in hardware and sys-
tem prototyping for concurrent hardware/software validation
in one environment,” in Proceedings of 13th IEEE Interna-
tional Workshop on Rapid System Prototyping (RSP ’02), Aptix,
Darmstadt, Germany, July 2002.

[23] Y. Guo and D. McCain, “Compact hardware accelerator for
functional verification and rapid prototyping of 4G wireless
communication systems,” in Proceedings of 38th IEEE Asilomar
Conference on Signals, Systems and Computers, vol. 1, pp. 767–
771, Pacific Grove, Calif, USA, November 2004.

[24] T. M. Aulin, “Breadth-first maximum likelihood sequence de-
tection: basics,” IEEE Transactions on Communications, vol. 47,
no. 2, pp. 208–216, 1999.

[25] G. H. Golub and C. F. V. Loan, Matrix Computations, The
Jones Hopkins University Press, Baltimore, Md, USA, 1996.

[26] M. Rupp, A. Burg, and E. Beck, “Rapid prototyping for wire-
less designs: the five-ones approach,” Signal Processing, vol. 83,
no. 7, pp. 1427–1444, 2003.

[27] H. Steendam and M. Moeneclaey, “The effect of clock fre-
quency offsets on downlink MC-DS-CDMA,” in Proceedings of
IEEE International Symposium on Spread Spectrum Techniques
and Applications (ISSSTA ’02), vol. 1, pp. 113–117, Prague,
Czech Republic, September 2002.

Yuanbin Guo received the B.S. degree (E.E.)
from Peking University, and the M.S. (E.E.)
degree from Beijing University of Posts
and Telecommunications, Beijing, China, in
1996 and 1999, respectively, and the Ph.D.
degree from Rice University, Houston, Tex,
in May 2005, in electrical and computer en-
gineering. He was a winner of the Presiden-
tial Fellowship in Rice University in 2000.
From 1999 to 2000, he was with Lucent Bell
Laboratories, Beijing, where he conducted R&D in the Intelligent
Network Department. He joined Nokia Research Center, Irving,
Tex, in 2002. He is now a Senior Research Engineer and Research
Specialist in the Signal Processing Architecture Group of Nokia
Networks Strategy and Technology. His current research interests
include equalization and detection for multiple-antenna systems,
VLSI design and prototyping, and DSP and VLSI architectures
for wireless systems, 3GPP long-term evolution (LTE), OFDM,
WiMax. He is a Member of IEEE. He has 6 patents pending in wire-
less communications field.

Dennis McCain received his B.S. degree in
electrical engineering from Lousiana State
University in 1990 and his M.S. degree
in electrical engineering from Texas A&M
University in 1992. From 1992 to 1996, he
served in the US Army as a Signal Officer
responsible for deploying communication
networks in tactical environments. From
1996 to 1998, he worked at Texas Instru-
ments and Raytheon Systems as a Digital
Design Engineer. In 1999, he joined Nokia Research Center in
Dallas, Tex, where he developed prototype wireless communica-
tion systems. He is currently a Technology Manager in Nokia Net-
works Strategy and Technology leading a team responsible for im-
plementing novel physical layer algorithms for next-generation cel-
lular wireless systems. His interests are in the areas of hardware ar-
chitecture research, digital baseband design, and rapid prototype
design flows.

Joseph R. Cavallaro received the B.S. de-
gree from the University of Pennsylvania,
Philadelphia, Pa, in 1981, the M.S. degree
from Princeton University, Princeton, NJ, in
1982, and the Ph.D. degree from Cornell
University, Ithaca, NY, in 1988, all in elec-
trical engineering. From 1981 to 1983, he
was with AT&T Bell Laboratories, Holmdel,
NJ. In 1988, he joined the faculty of Rice

http://www.systemc.org/
http://www.doc.ic.ac.uk/~akf/handel-c/cgi-bin/forum.cgi

Yuanbin Guo et al. 25

University, Houston, Tex, where he is currently a Professor of elec-
trical and computer engineering. His research interests include
computer arithmetic, VLSI design and microlithography, and DSP
and VLSI architectures for applications in wireless communica-
tions. During the 1996–1997 academic year, he served at the US
National Science Foundation as Director of the Prototyping Tools
and Methodology Program. During 2005, he was a Nokia Founda-
tion Fellow and a Visiting Professor at the University of Oulu, Fin-
land. He is currently the Associate Director of the Center for Mul-
timedia Communication at Rice University. He is a Senior Member
of the IEEE. He was the Cochair of the 2004 Signal Processing for
Communications Symposium at the IEEE Global Communications
Conference and general Cochair of the 2004 IEEE 15th Interna-
tional Conference on Application-Specific Systems, Architectures,
and Processors (ASAP).

Andres Takach is a Chief Scientist, C-Based
Design at Mentor Graphics. He joined Men-
tor Graphics in 1997, where he has worked
on all aspects of high-level synthesis. His
fields of interest are in high-level synthe-
sis, synthesis for low-power, embedded sys-
tem design, and hardware/software code-
sign. From 1993 to 1997, he was a faculty
member at Illinois Institute of Technology,
where he conducted research in high-level
synthesis and hardware/software codesign. Andres Takach received
his Ph.D. degree from Princeton University in 1993 and his B.S.
and M.S. degrees in electrical and computer engineering from the
University of Wisconsin-Madison in 1986 and 1988, respectively.

	Introduction
	System Model and PrototypingRequirements
	CDMA downlink system model and design issues
	System model and design issues for MIMO-OFDM
	Architecture partitioning requirement
	Rapid prototyping methodology requirements

	Advanced 3G Receiver Real-time Prototyping
	System partitioning
	CDMA receiver synchronization
	Clock-tracking algorithm
	Automatic frequency control

	VLSI system architecture for FFT-based equalizer

	Advanced Receiver for 4G MIMO-OFDM
	Reduced-complexity QRD-M detection
	System-level hardware/software partitioning
	Partial limited tree search

	Catapult C HLS Design Methodology
	Classical hardware implementation technologies
	Raising the level of abstraction
	Catapult C-based high-level synthesis methodology
	Algorithmic specification
	Architectural synthesis
	Integrated Catapult C verification methodology

	Applying Catapult C Methodology for3G/4G: Design Flow and ExperimentalResults
	Architecture scheduling and resource allocation
	Throughput-mode front-end processing architectures
	Clock tracking
	MIMO covariance estimation design space exploration

	Block-mode postprocessingarchitectures and integration
	AFC
	Design space exploration of MIMO-FFT

	Scheduling control-dominated architectures
	Strength and limitations

	Conclusion
	Acknowledgments
	REFERENCES

