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Rapid, label-free histopathological diagnosis
of liver cancer basedonRaman spectroscopy
and deep learning

Liping Huang 1,2, Hongwei Sun3, Liangbin Sun1, Keqing Shi3, Yuzhe Chen1,
Xueqian Ren1, Yuancai Ge1, Danfeng Jiang2, Xiaohu Liu1, Wolfgang Knoll4,
Qingwen Zhang 2 & Yi Wang 1,2

Biopsy is the recommended standard for pathological diagnosis of liver car-
cinoma. However, this method usually requires sectioning and staining, and
well-trained pathologists to interpret tissue images. Here, we utilize Raman
spectroscopy to study human hepatic tissue samples, developing and vali-
dating aworkflow for in vitro and intraoperative pathological diagnosis of liver
cancer. We distinguish carcinoma tissues from adjacent non-tumour tissues in
a rapid, non-disruptive, and label-free manner by using Raman spectroscopy
combined with deep learning, which is validated by tissue metabolomics. This
technique allows for detailed pathological identification of the cancer tissues,
including subtype, differentiation grade, and tumour stage. 2D/3D Raman
images of unprocessed human tissue slices with submicrometric resolution
are also acquired based on visualization of molecular composition, which
could assist in tumour boundary recognition and clinicopathologic diagnosis.
Lastly, the potential for a portable handheldRaman system is illustratedduring
surgery for real-time intraoperative human liver cancer diagnosis.

Liver cancer was the seventh most frequent cancer and the third
leading cause of cancer-related death worldwide in 20201. The inci-
dence of newly diagnosed cases and age-standardized incidence rates
of liver cancer have continued to increase globally in the past few
decades, despite significant advances in diagnosis and therapy2,3.

Therefore, accurate and timely diagnosis is crucial for the treat-
ment of liver cancer and the improvement of the survival rate. Ser-
ological testing combinedwith imaging is the standardmethod for the
diagnosis of hepatic carcinoma4. However, the diagnostic sensitivity of
the most commonly used serological test, which assays for alpha-
fetoprotein (AFP), is ~60%5. Imaging tests such as magnetic resonance
imaging (MRI), computed tomography (CT), and ultrasonography (US)
have high sensitivity and specificity for liver cancer detection, espe-
cially in patients with liver cirrhosis6. Such imaging tests, however,

suffer from limited spatial resolution, complexity on intraoperative
diagnosis and/or carry a risk of exposure to ionizing radiation7.
Therefore, the biopsy is still recommended as a gold standard for
pathological diagnosis, which is important for prognosis and guiding
treatment4.

Clinically, histopathological observations are usually carried out
with haematoxylin & eosin (H&E) or immunohistochemical staining.
The staining procedure is time-consuming and is only suitable for
diagnosis using isolated tissues. Additionally, the limited number of
pathology specialistsmay restrict the use of histopathology6. Recently,
digital pathology using high-throughput image analysis has greatly
assisted pathologists in tissue sample identification and
classification8,9. However, sample preparation for digital pathology
suffers from the same limitations as traditional methods. Therefore,
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techniques are needed for faster and non-disruptive in vitro and even
in vivo investigation of liver cancer.

Spectral histopathology based on Raman spectroscopy provides
an alternative approach to cancer diagnosis10. Raman spectroscopy is
an optical technique based on the inelastic scattering of light by
vibrating molecules that provides chemical fingerprints of complex
biological samples, and most biomolecular information is available
with just a simple snapshot with the Raman measurement. Impor-
tantly, the chemical structure and composition of biological samples
can be obtained by Raman spectroscopy in a stain-free and non-
destructive manner with minimal sample preparation11–14. Spectral
information can also be combined with artificial intelligence algo-
rithms to establish a diagnostic classificationmodel to allow automatic
diagnosis15–18. Furthermore, Raman spectroscopy imaging allows for
the delineation of tumour margins and visualization of lesion regions
of interest that are invisible to the naked eye19. These features make
Raman spectroscopy feasible for the examination of isolated tissue
specimens and the assistance of surgeons to identify the margins of
tumours, facilitating more complete removal with minimal damage to
normal tissue.

Thus far, there have been investigations of the use of Raman
spectroscopy for pathological diagnosis of several biological tissues,
including brain20, breast21, skin22,23, colon24, and bladder25. For liver
cancer, studies based on Raman spectroscopy have primarily focused
on the analysis of blood samples, with only a few studies aimed at
human tissue.

In addition, it is known that the heterogeneity of tumour tissues
and possible carcinoma infiltration increase the variability of spectral
data collected from tissues. Therefore, it is necessary to collect a large
number of spectra from each tissue sample to better represent the
data, but this may increase the complexity of data analysis and pose a
challenge for traditional chemometric methods. The data-driven nat-
ure of deep learning is well suited to solve this problem17. Deep
learning can extract and learn hidden features directly from massive
data and has been successfully applied in the field of image recogni-
tion, including biological and medical image analysis26–28. Thanks to
the flexibility of its architecture, deep learning has also been extended
to analyse one-dimensional sequential data, such as spectral data29,30. A
few reports described deep learning for medical diagnosis using 1-D
Raman spectral data18,31.

In this study, we reported exploration of human hepatopathy
tissue using Raman spectroscopy. We first successfully distinguished
hepatic carcinoma tissues from adjacent non-tumour tissues using
Raman spectroscopy combined with a VGG-16-based convolutional
neural network (CNN), in a rapid, non-disruptive, and label-free man-
ner. Amore detailed pathological identification was thenmade of liver
cancer tissues, including subtype, differentiation grade, and tumour
stage. Tissuemetabolomics analysis confirmed the reliability of Raman
spectroscopy in the identification ofmetabolites. Furthermore, Raman
images of unprocessed human tissue blocks and tissue slices at sub-
micrometric resolution allowed visualization of their molecular com-
position, facilitating the identification of tumour boundaries and
clinicopathologic diagnosis. Finally, a handheld Raman spectroscopy
system was employed during surgery to explore the feasibility of real-
time intraoperative liver cancer diagnosis. A graphical workflow of the
liver tissue histopathological diagnosis and intraoperative diagnosis
based on Raman spectroscopy and an intelligent algorithm is shown
in Fig. 1.

Results
Raman analysis of liver tissues
An excitation wavelength of 532 nm was used for the Raman mea-
surements reported here, whereas longer wavelengths are usually
recommended for biological sample analysis to avoid fluorescence
background signals and obtain deeper light penetration. However,

compared with longer wavelengths (such as 633 or 785 nm, respec-
tively), the shorter wavelengths provided higher data quality and
signal-to-noise ratio for Raman spectra (Supplementary Fig. 1), which
partly resulted from resonant amplification of specific protein and
carotenoid-associated bands32.

Raman spectra of matched hepatic carcinoma tissues and adja-
cent non-tumour tissues were acquired from 120 liver cancer patients.
Detailed patient information is listed in Supplementary Table 1. Due to
the heterogeneity and complexity of cancer tissues (Supplementary
Fig. 2), at least 50 spectra were collected from randomly selected
points on the surface of each tissue sample. A comparison of average
Raman spectra obtained from carcinoma and paracarcinoma tissue
samples is shown in Fig. 2a. Nineteen characteristic Raman peaks were
observed from most tissue samples. The Raman peaks of the two
groups largely overlapped, but the intensity of each peak in the para-
carcinoma tissue group is significantly higher than that in the cancer
tissue group (Student’s t-test, P < 0.05). Hierarchically clustered heat-
maps of characteristic Raman peaks were plotted to pre-discriminate
the closely related Raman peaks (Supplementary Fig. 3). Supplemen-
tary Table 2 gives the peak position and corresponding representative
compounds of the major Raman vibrational modes reported in the
literature33.

Most of the peaks could be ascribed to aromatic amino acids,
proteins, and carotenoids. Specifically, the peaks at around 749, 1212,
1393, 1547, 1586, and 1602 cm−1 are related to tryptophan, tyrosine, or
phenylalanine, respectively. The band at 1637 cm−1 corresponds to
the C =O stretching of the amide I band. The Raman lines at 1003,
1156, and 1519 cm−1 represent the C–C and C–N stretch of car-
otenoids. The peak at 1003 cm−1 has also been reported to be asso-
ciated with AFP, a biomarker for hepatocellular carcinoma (HCC)34.
Furthermore, the Raman features appearing at 1081, 1130, and
1304 cm−1 aremainly related to lipids or fatty acids. The bands at 674,
974, 1336, and 1356 cm−1 can be assigned to nucleic acids. Addition-
ally, the Raman signature around 835 cm−1 is related to saccharides.
Such differences in Raman spectra between paracancer and cancer-
ous tissue reflect variations in biochemical components of liver tissue
caused by carcinogenesis, which provides a basis for differentiating
cancerous from normal tissues.

Next, fine histopathological differentiation of liver cancer based
on Raman spectroscopy was further explored. Primary liver cancer is
one of the most common cancers worldwide, of which 75–85% and
10–15% are hepatocellular carcinoma (HCC) and intrahepatic cho-
langiocarcinoma (ICC), respectively35. As shown in Fig. 2b, the major
differences in Raman signal intensity between theHCC and ICCgroups
were at carotenoid-related Raman peaks (1003, 1156, and 1519 cm−1),
which were significantly higher in the ICC group. In contrast, most
amino acid, lipid, and nucleic acid-related peaks, such as 749, 974,
1304, 1356, 1393, and 1586 cm−1, respectively, were higher in the HCC
group. In addition, an accurate judgment of tumour stage and differ-
entiation grade may assist in the choice of treatment strategy and
prognosis assessment. As shown in Fig. 2c, the primary spectral dif-
ferences between early and advanced stages were found at 1003, 1156,
1519 cm−1 (carotenoids), 1130 cm−1 (fatty acids), 749 and 1547 cm−1

(tryptophan), which had higher intensity in the early-stage group,
while the peaks related to nucleic acids at 674 and 974 cm−1, and sac-
charide at 835 cm−1 were higher in the advanced stage group. Fur-
thermore, Supplementary Fig. 4 shows the Raman spectra of different
categories of cancer differentiation. The overall spectral difference
between moderately and poorly differentiated groups was more sig-
nificant than that of well- and moderately differentiated groups.
Similar to the differences between cancer and paracancer groups,well-
and moderately differentiated groups also exhibited a higher overall
spectral intensity, especially in the carotenoid-related peaks (Fig. 2d).
The pathologic type of each tissue block was reconfirmed by the
pathologist based on H&E staining after the Raman testing (Fig. 2e–g).
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Histopathological diagnosis of liver tissues based on deep
learning
To classify different types of liver tissues using Raman spectra, a
VGG-16 network-based CNN model was employed. The model
architecture consisted of 13 one-dimensional convolutional layers, 5
pooling layers, and 3 fully connected layers (as shown in Fig. 2h),
utilizing small-scale convolution kernel stacking rather than large-
scale convolution kernels to reduce the parameters required for
calculations36. A liver tissue Raman database was established with
50 spectra per tissue sample, and a total of 12,000 spectra were
obtained from 120 pairs of liver tissue samples. The spectral data
ranged from 500 to 2000 cm−1 with 889 one-dimensional float data.
A binary classification model was built to classify liver cancer tissue
and paracancer tissue, which were designated 1 and 0, respectively.
The spectral data were pre-processed with baseline subtraction and
smoothing and then fed into the CNN model with a random shuffle.
The softmax function was used as the activation function in the
output layer, which output probabilities of two classes with the
higher value considered to be the predicted class.

Accuracy and cross-entropy loss are two indicators that are often
used to assess the performance and reliability of CNN models. With
learning iterations, the accuracy and cross-entropy loss curves of the
validation set gradually tend to converge, indicating that the model is
not over-fitting (Fig. 2i, j). As a result, an accuracy of 92.6% was
obtained for estimating carcinoma tissue area, accompanied by a
sensitivity and specificity of 90.8% and 94.6%, respectively.

In addition, three other CNN models were established to dis-
tinguish HCC from ICC tissues, and among tissues with different
cancer stages and differentiation grades. The performance of four
binary models is shown in the confusion matrices of Fig. 2k.
Tumour heterogeneity posed a challenge in the discrimination of
different stages and differentiation grades of tumour tissues, with
accuracies of 78.3% and 72.3%, respectively. But a better result was
acquired for the classification of the liver cancer subtypes HCC and
ICC, yielding an identification accuracy of 82.4%. Four receiver
operating characteristic (ROC) curves were plotted to quantita-
tively verify the performance of classifiers (Fig. 2l), with the area
under the curve (AUC) values between 0.783 and 0.965. Further-
more, compared with other commonmachine learning algorithms,
including PLS-DA, random forest, and XGBoost, the deep learning
approach shows superior computational performance with higher
accuracy in tissue identification of different pathological types,
especially in dealing with imbalanced data (Supplementary
Table 3).

It is worth noting that conventional diagnosis of HCC based on a
single serological biomarker (such as AFP) achieved poor sensitivity
in this study. At an AFP threshold of 200 ng/ml, 25 of 92 HCC patients
were positive, with a sensitivity of only 27.2% (Supplementary Fig. 5),
much lower than our method based on Raman measurements.
Besides, imagingmodalities such as CT andMRI are recommended as
the firstline diagnostic methods to identify or predict different
pathological states of HCC37,38. For example, clinical staging of HCC is
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Fig. 1 |Workflowofhistopathological diagnosis of liver cancer basedonRaman
spectroscopy and an intelligent algorithm. Large Raman datasets acquired from
liver tissue were collected and fed into a CNN-based deep learningmodel to train it
to distinguish spectral data of different tissue types. The model was then used to
differentiate different pathological types of liver cancer tissues. In addition, the

Raman results were validated by tissue metabolomics based on liquid
chromatography–mass spectrometry (LC–MS). Furthermore, Raman images were
used to visualize the molecular composition of unprocessed human tissue blocks
and tissue slices. Finally, a handheld Raman system was employed during surgery
for real-time intraoperative liver cancer diagnosis.
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mainly diagnosed based on imaging characteristics, including the
number and size of HCC nodules, and the presence of vascular
invasion. Here, Raman spectra have also shown feasibility for the
determination ofmicrovascular invasion with an accuracy of 67% and
an AUC value of 0.694 based on 84 patients (Supplementary Fig. 6).
The results may be improved with a further increase in sample

numbers and spectral collections. In sum, in terms of accuracy,
Raman spectroscopy is comparable to or better than traditional
imaging modalities (such as CT, MRI, and US) in identifying different
pathology types in the current study (Supplementary Table 4), pro-
viding a powerful complement to existing pathology diagnostic
techniques.
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Tissue metabolomics and serological analyses
In order to further confirm changes in the biochemical composition of
liver cancer tissues, a non-targeted metabolomics strategy was
employed based on liquid chromatography–mass spectrometry
(LC–MS). Tissue metabolomics is widely used in the study of disease
pathogenesis based on metabolic characteristics39,40, which can pro-
vide direct information about metabolic alterations at targeted sites
and reveal relevant tumour biomarkers. A total of 25 pairs of matched
HCC tissues and adjacent non-tumour tissues were assessed in this
study. 1995 and 2228 ions were retained in positive and negative
electrospray ionization source (ESI+ and ESI−) modes, respectively
(Supplementary Data 1), after removing deviation and missing values.
In total, 57metabolites in ESI+modeand 51 in ESI−modewere identified
and selected as candidate differential metabolites (Supplementary
Data 2). The differences between nine types of primary metabolites
and the hierarchically clustered heatmap of 108 specific metabolic
biomarkers between HCC tissues and adjacent non-tumour tissues
were plotted in Fig. 3a and b. Most of the metabolites exhibited a
downward trend in HCC tissues, which is consistent with the lower
Raman intensity in HCC tissues.

For instance, a significant down-regulation of tyrosine was
observed in HCC tissues, while the other two aromatic amino acids
(ArAAs), phenylalanine and tryptophan, did not have significant
changes (Fig. 3a(i) and Fig. 3c). However, we found decreases of other
aromatic compounds in HCC tissues, including dopa,
3-hydroxyanthranilic acid, and aniline, suggesting that variations in
benzene-ring related Raman bands from liver tissuesmight also derive
fromArAAderivatives or other aromaticmetabolites. In addition,most
non-aromatic AAs, such as β-alanine, glycine, asparagine, glutathione,
and threonine, were also found to decrease in HCC tissues (Fig. 3a(ii)).
However, arginine increased in the HCC group, which might be
attributed to the suppression of the arginine-degrading enzyme argi-
nase I (ARG1), and arginine was also reported to promote tumour
growth41.

The liver is the primary site for the synthesis of lipids and fatty
acids. Hepatocyte injury can impair liver function and may result in
lipidmetabolism dysfunction42. For example, except for eicosadienoic
acid and nervonic acid, most fatty acids, especially polyunsaturated
fatty acids (PUFAs) are down-regulated in HCC tissues (Fig. 3a(iii)).
Besides, phosphatidylcholine (PC) is a significant component of cell
membranes and may be oxidized by reactive oxygen species43. In this
study, the levels of PCs tagged with PUFAs were significantly reduced
in the HCC group (Fig. 3a(iv)), which might be ascribed to the oxida-
tion of PUFAs in the presence of high oxidative stress in cancer tissue,
resulting in a further increase of PCs tagged with saturated fatty acids
(SFAs) or monounsaturated fatty acids (MUFAs) (Fig. 3a(v) and
Fig. 3d(i)). Furthermore, increases in long-chain acylcarnitines and
decreases in short or middle-chain acylcarnitines, such as propio-
nylcarnitine and hexanoylcarnitine, were observed (Fig. 3a(vi)).

Hepatocytes play an essential role were typically involved in
nucleotide metabolism. Disorder of some nucleosides, bases and
related metabolites was also observed (Fig. 3a(vii–viii)), which were
mainly related to purine metabolism. Purine metabolites participating
in DNA and RNA syntheses are critical in promoting cell survival and

proliferation44. Except for inosine, most purine metabolites showed
down-regulation in the HCC group, including xanthine, hypoxanthine,
xanthosine, deoxyinosine, uridine, uric acid, and adenine (Fig. 3d(ii)),
which may be ascribed to decreased activity of related metabolic
enzymes45.

Most saccharides and related metabolites, such as D-ribose, D-
sedoheptulose, D-glucuronic acid, D-tagatose, and sucrose, were sig-
nificantly down-regulated in HCC tissues (Fig. 3a(ix) and d(ii)). How-
ever, a high level of the glycolysismetabolite glucose 6-phosphate was
observed in the HCC group, while tricarboxylic acid cycle (TCA)
metabolites, including fumaric acid and succinic acid, were down-
regulated, as previously reported46. The changes in these energy-
related metabolites suggest rapid glucose expenditure through
increased aerobic glycolysis in cancer cells, which could be due to the
Warburg effect47.

In addition, it was observed that several metabolites increased
significantly in HCC tissues, including glutathione, 5’-methylthioade-
nosine, 3,4,5-trimethoxycinnamic acid, oxoadipic acid, and 2-oxoar-
ginine, which have the potential to be biomarkers for liver cancer
screening (Fig. 3b and Supplementary Data 2). To compare the above
metabolite differences more intuitively, relative changes representa-
tion of HCC samples over respective adjacent tissues are shown in
Supplementary Fig. 7. Furthermore, the predictive power of the
metabolomics was also investigated by the CNN model used for
spectral analysis to distinguish HCC tissues from adjacent non-tumour
tissues. The accuracy is between 70% and 80%, which is lower than the
spectral analysis results, but the accuracy may be improved by
increasing the number of samples.

Raman imaging of tumour margins in liver tissues
Becauseof the heterogeneity of tumour tissues and differences among
patients, variances in Raman data among tissue samples are inevitable
(Supplementary Fig. 2), which is challenging for the overall dis-
crimination of different tissues. However, for paired liver cancer and
adjacent non-tumour tissues from the same patient, differences in
Raman intensity were easily observed in most samples. Therefore, we
suggest that the label-free spectrum technology described here can
incorporate appropriate image analysis algorithms to visualize cancer
margins and facilitate intraoperative tumour delineation.

In order to test this, two liver cancer tissue blocks were selected
for Raman scanning. As shown in Fig. 4a and b, the two liver cancer
blocks and the corresponding H&E-stained images validated the exis-
tence of hepatocyte cancerization in which the hepatic cord had a
disordered arrangement with increased cell density and nuclear/
cytoplasmic ratio. Bright-field images for the mapping test region of
the liver cancer tissues are shown in Fig. 4c. LiveTrack technology was
used to continuously adjust the sample height to keep the sample in
focus. Surface height data were recorded during the Raman mea-
surements, and three-dimensional (3D) surface profile images of the
two tissue samples are shown in Fig. 4c, with maximal height differ-
ences of 38.2 and 27.4 µm, respectively. The Raman images were ana-
lysed with self-modelling curve resolution (SMCR) and hierarchical
cluster analysis (HCA) algorithms.The SMCRmethod could resolve the
unknown Raman mapping dataset into the spectra of pure

Fig. 2 | Ramananalysis of liver tissuesandhistopathologicaldiagnosisbasedon
deep learning. a–d The average Raman spectra of 120 carcinoma and 120 para-
carcinoma tissue samples (a), cancer tissue samples of patients with HCC and ICC
(b), HCC tissue samples at different tumour stages (c), andHCC tissue sampleswith
different cancer cell differentiation grades (d). The shaded areas represent the
standard deviations of the mean. e and f Typical photographs of paracancer tissue
(left) and liver cancer tissue sample (right) (e) and the corresponding images of the
H&E-stained tissues (f) from 120 tested samples in this study. g Raman testing of
liver tissue with a micro-Raman spectrometer. h The architecture of the VGG-16-
based deep learningmodel. Raman data consisting of 12,000 spectra were fed into

the initial convolutional layer with 64 filters. Each convolutional layer had a kernel
size of 3, connecting with a ReLU activation layer. A drop-out layer was utilized in
full connection layers, following the basic blocks. Max-pooling (size 2, stride 2) was
employed between blocks to reduce data length. The numbers below each block
refer to the length and the number of channels of output respectively. i, j Cross-
entropy loss (i) and accuracy (j) in iterative training of the CNN. Cross entropy
represents the mean square error between the predicted value and the true value.
k Binary confusionmatrices for the classification of four tissue categories based on
the CNN algorithm in percent (%). l ROC curves and corresponding AUC values.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-35696-2

Nature Communications |           (2023) 14:48 5



components, yielding concentration images and pure spectrum
simultaneously (as described in the “Methods” section). High-quality
images were obtained based on the SMCRmethod (Fig. 4d). A distinct
border of the cancerous region could be seen in the first tissue sample,
where the carcinoma and hepatic parenchyma regions were success-
fully distinguished as shown in different pseudocolours. The tumour
boundaries were not smooth in the Raman imaging (Fig. 4d and e,

upper panel), probably due to the thin tumour capsule and the small
imaging area (50 × 50μm) with micron-scale scanning interval (2μm).
The second tissue showed a relatively poor border of cancer in the
displayed area (Fig. 4d and e, bottom panel), intermingling with the
liver parenchyma, probably due to the presence of cancerous infil-
tration, which was barely detectable in brightfield images. These can-
cerous lesions were confirmed by H&E staining (Fig. 4b). HCA was
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another chemometric method used here to combine a set of spectra
into clusters with similar spectra in a more abstract manner. The
results from HCA-derived images (Fig. 4e) are consistent with those
processed with SMCR (Fig. 4d), indicating the reliability of the image-
processing algorithms.

To further demonstrate the spectral variation in different liver
tissue surface regions, we collected spectra (Fig. 4f) from several
locations marked with arrowheads in Fig. 4d. Points 1, 2, 5, and 6 were
collected from putative paracarcinoma and non-tumour regions and
exhibited higher Raman intensity than those collected from putative
carcinoma regions (points 3, 4, 7, and 8) in both tissue blocks. This

Raman signature difference provides a basis for image algorithm
recognition, supporting our initial expectation of high-precision
tumour margin detection using the Raman technique. Furthermore,
largerRaman images can alsobeobtainedbyusing a low-magnification
objective and/or increasing the scanning interval with the assistanceof
the powerful image algorithm (Supplementary Fig. 8).

Raman imaging of liver tissue sliceswith differentmorphologies
To verify the clinicopathologic and diagnostic capabilities of Raman
spectroscopy, we used a micro-Raman spectrometer to image
unstained humanhepatic tissue slices with a thickness of 5 µm.We first

Fig. 3 | Non-targeted metabolomics analysis of HCC tissues and adjacent non-
tumour tissues. aDistributions of relative abundance for nine types of differential
metabolites betweenHCC tissue samples andmatched adjacent non-tumour tissue
samples, as a ratio to themedian relative abundance in the non-tumour tissues. i–ix
represent metabolites of tyrosine (i), non-aromatic amino acids (ii), fatty acids (iii),
PCs tagged with PUFA (iv), PCs tagged with SFA and MUFA (v), carnitines (vi),
nucleosides (vii), bases and their derivatives (viii), and saccharides (ix).
b Hierarchically clustered heatmap of 108 significantly differential metabolites
between HCC tissues and adjacent non-tumour tissues based on Euclidean dis-
tance. The blocks were coloured according to the relative expression levels of
metabolites. Purple indicates high expression; light orange indicates low

expression. cDifferential content of aromatic amino acids (phenylalanine, tyrosine,
and tryptophan) between HCC tissues and adjacent non-tumour tissues. A sig-
nificant increase in tyrosine was observed in the paracancer group (two-tailed
Student’s t-test, P <0.05), and higher levels of tryptophan and phenylalanine were
also observed, but the changes were not significant (two-tailed Student’s t-test,
P >0.05). Boxplots show mean, median, and lower/upper quartiles; whiskers show
inner fences. d Contents of representative phosphatidylcholines (i), nucleosides,
bases, and saccharides (ii) with significant differences between HCC tissues and
adjacent tissues. Data are presented as mean values ± SD. HCC tissues, n = 25,
adjacent tissues, n = 25. Source data are provided as a Source Data file.
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c Bright-field images (50 × 50 µm) of the mapping test region (left) and corre-
sponding 3D surface profile images built with LiveTrack technology (right) of two

samples. d, e SMCR-derived (d), and HCA-derived (e) Raman images show cancer
margins for the liver tissue samples. f Typical spectra collected from points 1−8
indicated in (d); points 1, 2, 5, and 6 are from the putative paracarcinoma or non-
tumour regions and 3, 4, 7, and 8 are from the putative carcinoma regions. Source
data are provided as a Source Data file.
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acquired original spectra in the range of 2000–3400 cm−1 (Fig. 5a). The
tissue spectra contained a prominent peak at 2930 cm−1, which is
related to CH3 stretching in proteins48. Furthermore, several char-
acteristic Raman peaks related to lipids at 2855, 2885, and 3007 cm−1

were detected, which were attributed to symmetric CH2 vibration of
lipids, the Fermi resonance or asymmetric vibration of CH2 in satu-
rated straight long acyl chains, and the unsaturated =CH stretch in acyl
chains, respectively49. Raman image acquisition in StreamHR mode
was performed on the unstained liver cancer and adjacent tissue sec-
tions at 0.8 µm resolution in the two axial directions. Multivariate
analysis was performed on the Raman mapping data to reconstruct
spatial distribution maps of the principal chemical components of the
tissues. The Raman spectra of pure proteins and lipids were also
resolved by the SMCR algorithm (Fig. 5a). SMCR-reconstructed con-
centrationmaps of proteins and lipids in normal liver tissue are shown
in Fig. 5b and c, respectively. To better understand their relative spatial
distribution, a colour overlay image of both is shown in Fig. 5d.

Next, Raman images of typical normal hepatic parenchyma
(Fig. 5e) and cancerous areas (Fig. 5f) were compared. The overlay
Raman images of proteins and lipids and the corresponding 3D surface
profile images, brightfield images, and H&E-stained images of the test
area are shown in Fig. 5e and f. The SMCR algorithm-derived images
exhibited clear subcellular structure in pseudocolour, revealing var-
iations in lipid and protein concentration. In normal hepatic tissue,
proteinswere at higher concentrations in the nuclear region, and lipids
were mainly distributed in the peripheral regions of the liver cells.
While in cancer cells, proteins are mostly distributed near the cell
membrane with fewer inside cells. It is worth noting that such differ-
ences in the spatial distribution of biochemical components are typi-
cally difficult to discern in H&E-stained images. Moreover, typical
changes during the transformationof cancer cells, suchas the irregular
arrangement of hepatocytes and a larger nuclear/cytoplasmic ratio,
were also observed in the Raman images, consistent with bright fields
and H&E staining. In addition to planar imaging, 3D surface-profile
images were obtained, which combined information about chemical
composition with the topography of the tissue surface.

In addition to normal and cancerous tissues, Raman scans were
carried out on several other tissue regions with typical morphologies,
including steatohepatitis, fibrotic, and connective tissues (Fig. 5g–i).
These Raman images exhibited variousmorphological features of cells
and tissues, such as fat droplets and filament fibres, which were in
accord with the corresponding brightfield and stained images. All
individual SMCR-reconstructed concentration maps of proteins and
lipids in tissue slices are shown in Supplementary Fig. 9. In addition to
two-dimensional (2D) histochemical imaging on the tissue surface, we
also generated ‘z-stack’ images in three dimensions by Raman spec-
troscopy. Supplementary Fig. 10 shows reconstructed 3D images of
the five tissue slices in Fig. 5. The images were reconstructed from a six
z-slice stack (5 µmslices) with each plane covering 50 µm×3 µm,which
provided more abundant histochemical depth information of the tis-
sue samples. In this study, themaximumdetectiondepth of liver tissue
by confocal Raman spectroscopy under a 532 nm laser was about
200 µm (Supplementary Fig. 11). For deeper tissue detection, the
integration of spatially offset Raman spectroscopy (SORS) may be
applied to achieve centimetre-level depth detection50.

Intraoperative liver cancer diagnosis with a portable Raman
system
After validating the performance of Raman spectroscopy in the
diagnosis and imaging of liver tissue in vitro, we further investigated
its feasibility for real-time intraoperative liver cancer diagnosis. A
custom-built handheld portable Raman spectroscopy system was
employed intraoperatively to detect hepatic carcinoma. The system
was composed of a fibre-coupled laser at 785 nm, a handheld probe,
and a fibre spectrometer (details described in the “Methods”

section). The spectrometer was connected to a personal computer
with acquisition software, outputting information on the molecular
contents of the targeted tissue. During operation, the probe was also
covered by a disposable sterile protective cover, which had a negli-
gible effect on the measured Raman spectrum (Supplemen-
tary Fig. 12).

Figure 6 shows the average Raman spectra of liver tissue obtained
from in vivo intraoperative measurements. The probe was held above
the tissue surface to measure Raman signals at several randomly
selected points in the carcinoma and adjacent non-tumour regions.
The total Raman spectral intensity of the non-tumour region was sig-
nificantly higher than that of the tumour region. This is consistent with
in vitro test results, although there is a difference between tissue
spectra collected by the portable Raman spectrometer and micro-
Raman spectrometer (Supplementary Fig. 13). The primary spectral
differences between tumour and non-tumour regions lie on the
protein-related peaks at 640, 976, 1024, 1540, and 1635 cm−1, lipids-
related peaks at 413, 775, 1314, 1381, and 1436 cm−1, and peaks
associated with nucleic acids at 689, 1094, and 1514 cm−1. As more
intraoperative spectral data are acquired, these spectral differences
combined with suitable algorithms can help distinguish tumour and
hepatic parenchymal regions in surgery, and further intraoperative
Raman mapping techniques may make it feasible to visualize tumour
boundaries.

Discussion
Raman spectroscopy has the potential to be a versatile tool for histo-
pathological diagnosis of liver cancer because it allows for rapid
detection and high chemical specificity based on intrinsic molecular
vibration signals. Specifically, spectra of liver cancer showed weaker
overall intensity than those collected from adjacent non-tumour tis-
sues, and different Raman patterns were also observed in varied
pathological tissues, which reflected the complexity of biochemical
metabolism in liver cancer progression51. To confirm these biochem-
ical components’ differences between HCC tissues and adjacent tis-
sues, a metabolomics analysis was performed based on LC–MS,
revealing that most metabolites exhibited a downward trend in HCC
tissues, such as most amino acids, lipids, and nucleic acids, while PCs
tagged with SFAs or MUFAs increased. The result was consistent with
that of Raman analysis, demonstrating that Raman-based metabo-
lomics, also known as Ramanomics52, could bring comprehensive and
reliable biological information as traditional metabolomics, and dis-
tinguish different pathological tissues more conveniently and cost-
effectively without additional consumables.

In addition, a VGG-16-based CNNmodel was built and successfully
employed in the distinction between Raman spectra collected from
hepatic carcinoma tissues and adjacent non-tumour tissues and the
recognition of different hepatic pathological tissues, including differ-
ent subtypes, tumour stages, and differentiations. The results
demonstrated that Raman spectroscopy combined with deep learning
can accurately record and identify spectral patterns in different
pathological samples. Furthermore, we also plan to study the dis-
crimination of HCC precursors and non-malignant liver lesions in the
follow-up work, as well as the distinction between primary and sec-
ondary liver cancer, which is crucial to the treatment and prognosis of
hepatic carcinoma.

Based on the Raman spectral differences, the cell morphology of
tissue slices can be depicted in a label-free way. The SMCR-resolved
Raman images could not only show spatial distributions but also
quantitative identification of the principal biochemical components
(proteins and lipids) of cells and tissues at 2D and 3D subcellular scales,
which are not applicable by standard H&E-staining methods. This
indicates that the subcellular Raman analysis has great potential for
simplifying cancer diagnosis during clinical trials and provides a per-
spective on histopathological diagnosis.
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Clinically, surgical resection is a standard method for cancer
treatment. Accurate tumour boundary identification is helpful for the
complete resection of lesions without excessive resection of normal
tissue, especially for hepatic metastases resection. However, this is
often a challenge for surgeons without suitable intraoperative meth-
ods for visually distinguishing the two tissues. We employed Raman
spectroscopy inboth ex vivo and in vivomeasurements for liver tissues
characterized by different pathological patterns. Images acquiredwith
distinct cancer margins were visible based on the spectra differences
between tumour and hepatic parenchymal regions. Besides, we suc-
cessfully verified the feasibility of the portable Raman spectrometer to
distinguish tumours from non-tumour regions during surgery. These
suggest that the Raman technique has the potential to assist surgeons
in rapidly analysing regions of interest during surgery, without dis-
ruptions or delays from intraoperative frozen sectioning or H&E
staining53.

It is noteworthy that Raman spectra of tissue collected by the
portable Raman spectrometer are at variance with those obtained
from the micro-Raman spectrometer, specifically at some peak posi-
tions (Supplementary Fig. 13). This may be attributed to differences
between the two types of spectral equipment, such as laser sources,
laser power and wavelength, and spectrometer. A similar result was
also observed in a Raman detection of mouse tumours by a portable
Raman device54. However, although there were differences in the
Raman data measured by the two pieces of equipment, this did not
affect Raman spectroscopy’s ability to discriminate cancerous from
adjacent normal tissues.

Moreover, the practical application of Raman spectroscopy as a
clinical tool still requires further exploration and optimization. In this
research, the Raman signal derived from liver tissue blocks is high
enough to be detected for diagnosis. Thus, no metallic nanoparticles
were required for Raman signal enhancement, avoiding the risk of
metal particle toxicity and excretion in clinical applications55,56. How-
ever, one of the primary defects of spontaneous Raman spectroscopy
is the relatively low signal intensity, necessitating a compromise
between image quality and short acquisition time. This might be
solved by combining the coherent Raman spectroscopy, which is
based on non-linear optical effects and can be used simultaneously for

high speed and high spatial resolution in Raman spectral imaging48,57.
In addition, the limited spectral collection points with the handheld
Raman probe may lead to missing lesions during surgery, while the
respiratory fluctuations may affect the spectral quality even though
the Raman integration time is more than 10-fold shorter than the
respiratory period. We hope to demonstrate that an intelligent robot
collaboration system can be used to assist in intraoperative Raman
imaging to solve such issues in our follow-up work. Furthermore, the
development of integrated handheld diagnostic equipment has
allowed for the precise removal of regions of interest in a more con-
venientmanner during cancer surgery58. However, with the emergence
of these new instruments, standardization of instruments across all
users is also of concern29, and factors such as excitation wavelength,
laser power, spectrum collector type, along with data processing
algorithms, should be standardized. Therefore, it is hoped that a
convenient Raman spectroscopy systemwith a normalization criterion
for the accurate diagnosis will be developed soon to facilitate its
clinical adoption.

Although the current work was carried out in the context of
hepatic carcinoma, the same approach could be used to assess similar
histologic features of tumours in other organs. Thus, we conclude that
the Raman technique, coupled with intelligent algorithms, could be
applied for the diagnosis of liver and other types of tumours, playing a
potential role in pathological identification and intraoperative
guidance.

Methods
Ethics statement
All current research methods were carried out under guidelines
approved by the Ethics Committee of The First Affiliated Hospital of
WenzhouMedicalUniversity (EthicalApprovalNo. 2020213). Informed
written consent was obtained from all patients for whom the risks and
benefits of the trial were detailed.

Preparation of human tissue samples
In the present study, a total of 240 tissue samples with paired liver
cancer and adjacent non-tumour tissue blocks were obtained from 120
patients with primary liver cancer, of whom 98 individuals were diag-
nosed with hepatocellular carcinoma (HCC), and 22 were intrahepatic
cholangiocarcinoma (ICC). Detailed information about the clinical and
histopathological diagnoses of the 120 patients is provided in Sup-
plementary Table 1. Diagnostic results of patients, including cancer
type, cancer stage, and differentiation type were confirmed based on
related clinical and pathological indicators4 by doctors from The First
Affiliated Hospital of Wenzhou Medical University.

After surgical resection and inspection, all samples were stored in
a refrigerator at −80 °C. Before spectral measurements, tissue blocks
were placed on a glass slide, and water from the tissue surface was
absorbedwith tissue paper.Minimal sample processingwas applied so
as to facilitate further application in intraoperative detection and
imaging. The tissue blocks collected from cancer tissues and adjacent
non-tumour tissues were reconfirmed by pathologists based on H&E
staining.

For the imaging of tissue slices, the tissue slices of thickness 5 µm
were prepared using a freezing microtome and the slices were
attached to glass slides for Ramanmeasurements. The same tissuewas
observed by H&E staining after Raman measurements.

Raman measurements and imaging of liver tissue
Raman spectra of tissue samples were obtained by a micro-Raman
spectrometer (Renishaw, Gloucestershire, UK) using an excitation
laser at 532 nm. The laser beamwas focused onto the sample’s surface
by an L×50 objective (numerical aperture (NA) = 0.50, the working
distance (WD) = 8.2mm). Each spectrum was integrated over 3 s at 5%
(1.25mWcm−2) laser power. At least 50 spectra in the range of
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Fig. 6 | Intraoperative detection with a handheld fibre-coupled Raman spec-
trometer. The average Raman spectra of in vivo intraoperative measurements for
carcinoma and paracarcinoma tissue were collected from six patients. The spectra
were collected by a handheld portable Raman spectrometer system equipped with
a 785 nm NIR laser and a computerized CCD spectrometer. The shaded areas
represent standard deviations of the means. Source data are provided as a Source
Data file.
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500–2000 cm−1 were collected from randomly selected points on the
surface of each tissue sample. Before statistical analysis, the spectral
data were processed usingWIRE 5.3 softwarewith baseline subtraction
and Savitzky–Golay smoothing to remove the fluorescence back-
ground and increase the signal-to-noise ratio.

In Raman imaging of tissue blocks for tumour margin delinea-
tion, Raman spectra were also acquired with an L×50 objective
(NA = 0.50, WD= 8.2mm), equipped with a 532 nm laser, with
2.5mWcm−2 laser power and 2 s exposure time for each data point.
The Raman scans were collected with a resolution of 2 μm in the x-
and y-directions (StreamHR mode), which allows for rapid collection
of spectra at high spatial resolution. To avoid compromising the
quality of high magnification Raman analysis because of uneven
surfaces of tissue samples during imaging, LiveTrack focus-tracking
technology was used to automatically focus on the sample surface
during image acquisition.

In Raman imaging of tissue slices, Raman spectra were acquired at
a higher resolution of 0.8μminboth axial directions, with 12.5mWcm−2

laser power and 0.5 s exposure time for each data point. StreamHR and
LiveTrack mode equipped with a 532 nm laser and L×50 objective
(NA=0.50,WD=8.2mm)were used as above for rapid andprecise data
acquisition.

WiRE 5.3 software self-modelling curve resolution (SMCR) and
hierarchical cluster analysis (HCA) were used for Raman imaging
analysis of tumour margins. The spectra were pre-processed by base-
line correction, smoothing, cosmic ray removal, and noise filtering
before any further multivariate imaging.

Intraoperative Raman detection of liver cancer
A handheld Raman spectroscopy system was employed in intrao-
perative liver cancer detection. A fibre-coupled laser at 785 nm (FC-D-
785, Changchun New Industries Optoelectronics Technology Co., Ltd.,
China) was employed as the laser source, which was introduced into a
handheld probe connected to a 100 µm fibre for laser excitation and a
200 µm standard fibre for signal collection (NA=0.22). Raman signals
were collected with a charge-coupled device (CCD)-based fibre spec-
trometer (QE Pro, OceanOptics Inc., Dunedin, FL, USA) over a spectral
range of 200–1100 nmand resolutionof 6–7 cm−1. The spectra covered
a wide range of spectral shifts from 0 to 4000 cm−1. The spectrometer
was connected to a PC by an OceanView interface.

To avoid intraoperative infection, the Raman probe and con-
nected fibre were wiped with medical alcohol and covered with a dis-
posable sterile protective slipcover made of polyethylene (Renhe
Medical Supplies Industry and Trade Co., Ltd, Chun’an, China). Before
measurement, the tissue surface was processed to minimize blood in
the tested area. A background spectrum was first recorded and sub-
tracted automatically before every measurement using an integration
time of 0.2 s with the laser off. Then five measurements were taken
with an integration timeof 0.2 s from randomly selectedpoints of each
tissue surface. The laser power at the tip of the probe was about
40–56mWcm−2, measured with an optical power meter (PM100D
from Thorlabs Inc.). The measured tissues were collected for tissue
biopsy by pathologists after surgery.

Tissue metabolomics analysis by LC–MS
Twenty-five pairs of matched HCC tissues and adjacent non-tumour
tissues were selected to detectmetabolic differences by LC–MS in this
study. The specific sample processing and testing methods were as
follows.

Extraction of metabolites. 25mg of sample was weighed in an Eppen-
dorf tube, and 500μl of extract solution (methanol:acetonitrile:water =
2:2:1) and isotopically labelled internal standard mixture were added.
Then the samples were homogenized at 35Hz for 4min and sonicated
for 5min in an ice-water bath. The homogenization and sonication cycle

was repeated three times. Then the sampleswere incubatedat−40 °C for
1 h and then centrifuged at 12,000 rpm for 15min at 4 °C. The resulting
supernatant was transferred to a fresh glass vial for analysis. The quality
control (QC) sample was prepared by mixing equal aliquots of the
supernatants from all the samples.

LC–MS/MS analysis. LC–MS/MS analyses were performed using a
UHPLC system (Vanquish, Thermo Fisher Scientific) with a UPLC BEH
Amide column (2.1mm× 100mm, 1.7μm) coupled to a Q Exactive HFX
mass spectrometer (Orbitrap MS, Thermo). The mobile phase con-
sisted of 25mmol/L ammonium acetate and 25mmol/L ammonia
hydroxide inwater (pH= 9.75) (A) and acetonitrile (B). Gradient elution
was used: 0~0.5min, 95% B; 0.5–7min, 95%–65% B; 7–8min, 65%–40%
B; 8–9min, 40% B; 9–9.1min, 40%–95% B; 9.1–12min, 95% B. The flow
rate was 0.5ml/min. The auto-sampler temperature was 4 °C, and the
injection volume was 2μl.

The QE HFX mass spectrometer could acquire MS/MS spectra in
information-dependent acquisition mode in the control of the acqui-
sition software (Xcalibur, Thermo). In this mode, the acquisition soft-
ware continuously evaluates the MS spectrum. The ESI source
conditions were as follows: sheath gas flow rate, 30Arb; Aux gas flow
rate, 25 Arb; capillary temperature, 350 °C; full MS resolution, 60,000;
MS/MS resolution, 7500; collision energy, 10/30/60 in NCE mode;
spray voltage, +3.6 or −3.2 kV. Themeasurementwas achievedwith the
support of Shanghai Biotree Biotech Co., Ltd.

Data preprocessing and annotation. Raw data were converted to
mzXML format using ProteoWizard and processed by an in-house
programme developed using R and based on XCMS for peak detec-
tion, extraction, alignment, and integration. The identification of
compounds was based on themass-to-charge ratio of the parent ions
in the primary mass spectrometry and characteristic product ions
generated by the fragmentation. A commercial MS2 database (Bio-
treeDB) was used for annotating metabolites. The cutoff for anno-
tationwas set at 0.6. All the detected ions were normalized according
to internal standards for subsequent quantitative analysis. Ions
detected from ESI+ and ESI− were imported into SIMCA software
(Umetrics, Umea, Sweden) for multivariate analysis. To screen dif-
ferential metabolites between HCC and adjacent non-tumour tissues,
ions with significant changes (Student’s t-test, P < 0.05), as well as
variable importance in the project (VIP) values > 1 were selected in
the OPLS-DAmodel. Ultimately, 57metabolites in ESI+ mode and 51 in
ESI− mode were identified and selected as candidate differential
metabolites.

CNN architecture and training details. The Raman spectra were
analysed by PyTorch, and theCNN architecturewasmodified based on
the VGG-16 framework36. The CNN model was built up with 13 one-
dimensional convolutional layers (including 2 convolution layers with
64 kernels, 2 convolution layers with 128 kernels, 3 convolution layers
with 256 kernels, and 2 sets of 3 convolution layers with 512 kernels), 5
pooling layers (size 2, stride 2), and 3 fully connected layers, as illu-
strated in Fig. 2h.

To differentiate spectra from cancer and paracancer tissue
areas, a soft-max optimizer was used to transform the output of the
previous connection layer into a probability output, with a learning
rate of 0.0001, and a batch size of 128. To prevent overfitting, a
dropout layer was employed with a rate of 50%, which nullified the
contribution of 50% of neurons towards the next layer to reduce
over-reliance on certain neurons for classification. Spectral data from
20 pairs of liver tissue samples were randomly selected as a test set,
and spectral data of the remaining 100 pairs of samples were ran-
domly divided into a training set and a validation set in a ratio of 8:2.
Similar splits were performed in other three classification models
that 20% of the samples in each group are randomly selected as the
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test set, and the remaining samples are divided into the training set
and the validation set according to the ratio of 9:1. Weight balancing
was used to alleviate possible data imbalances by altering the weight
of each training sample when computing the loss to make all classes
contribute equally to the loss (detail of the code can be found in the
following GitHub link).

Correlation analyses of representative Raman peak intensities
based on Pearson’s correlation coefficient (r) in the form of a corre-
lation matrix heatmap were calculated by Python. The version of
software used for analysing data are as follows: Python 3.9.9, pytorch
1.10.1, numpy 1.22.0, matplotlib 3.5.1, torchvision 0.11.2, tqdm 4.62.3,
pandas 1.0.4, and seaborn 0.9.0.

Statistics and reproducibility
Data are expressed as mean± standard deviation (SD) as indicated in
each figure legend. All data conformed to the normal distribution. The
statistical significance between the two groups was obtained by a two-
tailed Student’s t-test with P values < 0.05 considered significant. The
micrographs of staining images and Raman images are representative
of three independent measurements.

Images processing
TheSMCRalgorithmwasused in tissue sliceRaman imaging analysis to
identify various hepatic histopathological patterns. The SMCRmethod
is a form of multivariate curve determination and alternating least-
squares analysis, which transforms component information into phy-
sically meaningful components. Briefly, SMCR decomposes the
experimental data matrix (X), containing all the spectral data for every
pixel, into two smaller matrices, the matrix of concentration imaging
(C) and the matrix of the pure spectrum (S):

X=C � ST +E ð1Þ

where E is the error matrix. By initially estimating the spectra matrix S,
C and ST can be calculated, and then iterative optimization using the
alternative least-squares (ALS) algorithm can be performed until
convergence is reached59.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the results of this study are available within the
manuscript and its Supplementary Information. The raw mass spec-
trometry data associated with this manuscript can be found in Sup-
plementary Data 1 and 2. While the commercial MS2 database
(BiotreeDB) needs to be obtained by contacting Biotree Biotech Co.,
Ltd. Source data are provided with this paper.

Code availability
The code used for the CNN model and demo datasets is available at
https://github.com/thidoiSanren/CNN_liver-cancer_Raman60.
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