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Humans have altered natural patterns of fire for millennia, but

the impact of human-set fires is thought to have been slight in

wet closed-canopy forests. In the South Island of New Zealand,

Polynesians (Māori), who arrived 700–800 calibrated years (cal y)

ago, and then Europeans, who settled ∼150 cal y ago, used fire

as a tool for forest clearance, but the structure and environmental

consequences of these fires are poorly understood. High-resolution

charcoal and pollen records from 16 lakes were analyzed to recon-

struct the fire and vegetation history of the last 1,000 y. Diatom,

chironomid, and element concentration data were examined to

identify disturbance-related limnobiotic and biogeochemical

changes within burned watersheds. At most sites, several high-

severity fire events occurred within the first two centuries of Māori

arrival and were often accompanied by a transformation in vege-

tation, slope stability, and lake chemistry. Proxies of past climate

suggest that human activity alone, rather than unusually dry or

warm conditions, was responsible for this increased fire activity.

The transformation of scrub to grassland by Europeans in the

mid-19th century triggered further, sometimes severe, watershed

change, through additional fires, erosion, and the introduction of

nonnative plant species. Alteration of natural disturbance regimes

had lasting impacts, primarily because native forests had little or

no previous history of fire and little resilience to the severity of

burning. Anthropogenic burning in New Zealand highlights the

vulnerability of closed-canopy forests to novel disturbance regimes

and suggests that similar settings may be less resilient to climate-

induced changes in the future.

human impacts ∣ land cover change ∣ deforestation

The degree to which ecosystems have been altered by human
activities is a key criteria for prioritizing conservation efforts

globally, particularly in identifying regions that are largely pris-
tine and worthy of protection (1, 2). Paleoecological records have
become an important tool in such assessments because they dis-
close the enduring effects of prehistoric forest clearance, cultiva-
tion, and pastoralism, as well as the consequences of species
introductions and extinctions well before 17th century European
expansion (3–8). Globally, ancient land-cover change has been
greatest in regions of densely populated agricultural societies
(9, 10). The colonization of islands in Eastern Polynesia by
agricultural-based societies [from circa (ca.) A.D. 800] was no
exception and was almost always associated with extensive forest
clearance, erosion, and biotic extinctions through the introduc-
tion of fire, cultigens, weeds, and mammalian predators (7,
11–14). Similarly, Polynesian (Māori) arrival in the South Island
of New Zealand 700–800 y ago was followed by clearance of more
than 40% of the native forests (12, 15, 16). What is remarkable is
that this extensive deforestation was accomplished by small,
largely transient, nonagricultural populations in places remote
from any settlement, and the forest loss occurred throughout
the relatively large South Island (151;215 km2) in only a few dec-
ades. In many areas the native forest has not recovered (12, 16).

Although the fact that once-extensive forests had vanished was
well documented in the 19th century, a long debate ensued as to
whether people or climate changes were responsible (15, 17).
McGlone (15, 17) concluded that climate change was not a sig-
nificant factor, based on a synthesis of the relatively few, poorly
dated pollen diagrams and subfossil wood-charcoal data that
were available. Elsewhere in the world, where people have been
present throughout the Holocene, climate changes are strongly
implicated in changing fire frequencies (18). It therefore has
remained a possibility that Māori settlement of New Zealand co-
incided with a climate regime unusually suited to large-scale fire.
Here, we reexamine the hypothesis that the rapid deforestation of
New Zealand was due to human influence alone by examining the
climate, fire, and environmental changes of the last 1000 y across
gradients of topography and precipitation.

Before Polynesian arrival in New Zealand, 85–90% of the
country was heavily forested with low scrub and herbaceous
communities occurring above treeline (15). The South Island
supported continuous closed-canopy forests dominated by
Nothofagus spp. (beech) at wetter, higher elevations, and podo-
carps in drier, lower elevations (predominantly represented
by Dacrydium cupressinum, Prumnopitys spp., Dacrycarpus dacry-
dioides, Podocarpus spp., Halocarpus spp. and Phyllocladus alpi-
nus), as evidenced by a network of pollen records (12). A low
podocarp-dominated scrub with some grassland was widespread
below treeline in the semiarid center of Otago and South Canter-
bury (12), but otherwise, extensive scrub was rare. Māori arrived
in New Zealand ca. A.D. 1280 (19, 20), probably in a founding
group that included at least 50–100 women (21). Across most of
the South Island, charcoal preserved in soils suggests that fire oc-
currence prior to human arrival was rare (1–2 events∕millennia)
(22) and, with few exceptions (23), ecologically insignificant. By
the time of European settlement in the mid 19th century, over
40% of the island’s forests had been cleared by fire (15, 24)
and replaced by tussock grassland and fern-shrubland (25–27).
Subsequent forest clearance by Europeans transformed the re-
maining fern-shrubland to pastureland with nonnative plants.

Recent studies have documented the vegetation changes (12)
and refined the timing of human arrival (19), but the relative im-
portance of anthropogenic burning and climate change in driving
the deforestation, and the character of fire events and ecological
and limnobiotic responses, have not been addressed (16). To bet-
ter understand the sequence of events that led to the demise of

Author contributions: D.B.M., C.W., J.M.W., and M.S.M. designed research; D.B.M., C.W.,

J.M.W., and M.S.M. performed research; D.B.M., C.W., J.M.W., and M.S.M. contributed

new reagents/analytic tools; D.B.M., C.W., J.M.W., M.S.M., M.F., X.L., A.D.-K., W.O.H.,

S.C.F., and E.R.C. analyzed data; and D.B.M., C.W., J.M.W., M.S.M., X.L., A.D.-K., W.O.H.,

S.C.F., and E.R.C. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

See Commentary on page 21234.

1To whom correspondence should be addressed. E-mail: dmcwethy@montana.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/

doi:10.1073/pnas.1011801107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1011801107 PNAS ∣ December 14, 2010 ∣ vol. 107 ∣ no. 50 ∣ 21343–21348

E
N
V
IR
O
N
M
E
N
TA

L

S
C
IE
N
C
E
S

S
E
E
C
O
M
M
E
N
TA

R
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011801107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011801107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011801107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011801107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011801107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011801107/-/DCSupplemental


extensive native forests in the South Island of New Zealand, we
reconstruct the watershed history of 16 sites, based on paleoen-
vironmental data preserved in the sediments of 16 small closed-
basin lakes that span a range of environmental conditions (Fig. 1
and Table S1), from low-elevation watersheds [0–300 m above
sea level (masl)], once dominated by podocarp forests, to cooler,
moister middle-elevation (300–600 masl), and wet watersheds at
high elevations [>600 masl,>1600 mmmean annual precipitation
(ppt)] that formerly supported closed-canopy beech forest. For
each site, we derived chronologies from accelerator mass spectro-
metry (AMS) radiocarbon-dated sediment cores (Table S2) and
analyzed macroscopic charcoal data to identify individual fire
events (charcoal peaks representing one or more fires during
the time span of the peak) and patterns and trends in overall burn-
ing. Pollen records revealed the sequence of vegetation changes,
geochemistry and magnetic susceptibility data indicated changes
in erosion and slope stability, and diatom and chironomid data
showed changes in the limnobiota.

Results and Discussion
Within 200 y of Māori arrival, charcoal records from all but the
wettest (>1600 mm ppt), high-elevation (>800 masl) locations
registered a dramatic increase in macroscopic charcoal abun-
dance, suggesting a period of intense local fire activity (Fig. 1).
This initial burning period (IBP) (16) consisted of one to three
fire events per century in individual watersheds. While the IBP
was not synchronous across the South Island (within dating
error), it occurred between ca. A.D. 1280–1600, except at sites
with high rainfall and where geographic barriers (e.g., large lakes
or rivers) likely prevented fire spread. Local fires during the IBP
were large and/or severe (Fig. 1), judging from the magnitude of
individual charcoal peaks: Mean peak magnitude during the IBP
was 48.17 particles cm−2 y−1 (95% C:I:s ¼ 20.09 to 76.26),

whereas mean peak magnitude prior to ca. A.D. 1280 was 2.13
(C:I:s ¼ −1.61 to 5.86).

Dendroclimatological and speleothem data registered consid-
erable climate variability during the last 1000 y (28–30), but
climate changes were not associated with the fires of the IBP.
Superposed epoch analysis (SEA) (31, 32) allowed comparison
of charcoal levels and fire events with extreme summer tempera-
tures; the latter were reconstructed from silver pine (Lagarostrobos
colensoi) tree-ring chronologies and calibrated with instrumental
data (>95% C.I. of mean summer temperatures from ca. A.D.
850–2000). The results showed no statistical relationship between
anomalous summer temperatures (Fig. S1) (29, 30) and the IBP at
particular sites, confirming an anthropogenic origin for the fires.

The charcoal records from most sites showed a pattern of
several high-magnitude fire events (charcoal peaks) during the
decades that define the IBP followed by a period of less-frequent
and less-severe fire events during the Late Māori period
(∼1600–1840 A:D:) and a second increase in the frequency
and intensity of fire activity following European arrival (A.D.
1840 to present) (Fig. 1, Bottom Right). A few sites experienced
sustained burning from the onset of human arrival until present
(e.g., Lake Kirkpatrick and Travis Swamp), and several sites
showed little evidence of fire occurrence during the past 1000 y
(e.g., Lewis Pass, Lagoon Saddle, and Blackwater Lake).

Sites where pollen data were also available (Horseshoe Lake,
Diamond Lake, Dukes Tarn, Travis Swamp, Pomahaka Bog, and
Lake Thomas) indicate that the most severe deforestation during
the IBP occurred in moderate or low rainfall regions (<1600 mm
ppt), where large fire events caused a shift from beech and
podocarps to bracken (Pteridium esculentum), grasses, and small
trees and shrubs (e.g., Coprosma spp., Coriaria spp., and Kunzea
ericoides) (Fig. 2). Sites exhibiting some forest recovery in the
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Fig. 1. Charcoal accumulation rates (CHAR

pieces−1 cm−2 y−1) and location of 16 sites,

South Island, New Zealand. Site names above

plots and elevations (masl). Small plots show

variation in CHAR between A.D. 1100–1700.

(Bottom Right) Composite plot with standar-

dized CHAR levels for each site (gray lines)

and mean CHAR for all 16 sites (thick black

line) for the time period A.D. 300–2000. Gray

band in both small plots and large plot indi-

cates estimated time of Polynesian (Māori)

arrival in New Zealand ca. A.D. 1280 (19).
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Late Māori period lie in moderately wet high-elevation settings
that currently experience no measurable annual water deficits
(e.g., Dukes Tarn and Pomahaka Bog, 1000–2000 mm; Table S1).
Sites with no fire activity in the last 1000 y are located in wet
(>1600 mm ppt), high-elevation (>800 masl) settings (e.g., Lewis
Pass) or protected locations (e.g., Lake Letitia, which was likely
spared from fire spread by the broad Waimakariri River flood-
plain). Dukes Tarn, a moderately wet (∼1340 mm ppt) high-eleva-
tion (830 masl) site, recorded persistent fire activity in the IBP and
Late Māori period, but only modest impacts on vegetation.

Changes in patterns of fire, vegetation, erosion, slope stability,
and lake chemistry were more fully examined at three lakes
(Horseshoe Lake, Diamond Lake, and Dukes Tarn), and limno-
biotic responses were analyzed at Diamond Lake. These lakes
represent three different settings: a dry, middle-elevation
(460 masl) site situated along what was known to be an important
east–west travel way (Horseshoe Lake); a dry (980 mm ppt), mid-
dle-elevation (380 masl) site adjacent to Lake Wanaka (Diamond
Lake); and a moderately wet (>1342 mm ppt) high-elevation
(830 masl) site near treeline in the Southern Alps (Dukes Tarn).

Horseshoe Lake (Latitude 42.60° South, Longitude 172.52° East;

460 masl). Horseshoe Lake is a middle-elevation site located on
the south side of Lewis Pass in the central foothills of the South
Island and lies along the seismically active Hope Fault (33)
(Fig. 1). Charcoal and pollen data from Horseshoe Lake suggest
that the IBP began ca. A.D. 1370 and involved three large-mag-

nitude fire events (Fig. 2A). The pollen data record a rapid de-
cline in closed-canopy forest taxa (from 90–20% of terrestrial
pollen taxa) and a rise in ferns (from 5–75%) and grassland (from
5–20%; Fig. 2A). Peaks in magnetic susceptibility and element
concentrations (titanium, potassium, and calcium) match silt
layers that date to known seismic activity along the Hope Fault
as well as to increased fire activity; at the same time, phosphorus
levels drop precipitously. Prior to the IBP, increases in magnetic
susceptibility and titanium, potassium, and calcium match a
layer of silt that coincides with an earthquake in A.D. 1316 (33).
Magnetic susceptibility and titanium, potassium, and calcium also
peaked immediately following large-magnitude IBP fire events
(versus steep declines in phosphorus), especially ca. A.D. 1400–
1450 and suggest that increased fire activity led to soil instability
and large-magnitude erosion.

During the Late Māori period, ca. A.D. 1600–1840, three fire
events occurred ca. A.D. 1610, 1720, and 1840. Episodic but
less-frequent fire events (<1 per century) were associated with
an increase in Nothofagus and Podocarpaceae pollen, suggesting
partial recovery of native forest. Brief (years to decades) but dra-
matic spikes in magnetic susceptibility and titanium, potassium,
and calcium coincide with two silt layers ca. A.D. 1720 and 1770;
the first corresponds with a fire event, and the second may be
associated with a seismic event in the mid-18th century (33).

In the European period, two small fire events (ca. A.D. 1920
and 1980) are matched by a pollen increase from exotic plants
(Pinus and Rumex acetosella) (Fig. 2A). Sustained increases in

A

B

C

Fig. 2. Paleoenvironmental data for sites with

varying degrees of human impact, South Island

New Zealand. Variation in CHAR, pollen percen-

tages, magnetic susceptibility, and element con-

centrations for (A) Horseshoe Lake, (B) Diamond

Lake, and (C) Dukes Tarn. Diamond Lake plot (B)

also shows changes in diatom and chironomid

community composition.
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magnetic susceptibility, titanium, potassium, and calcium at the
same time that phosphorus dropped precipitously to near unde-
tectable levels (ca.A.D. 1840–1960) correspond to a wide band of
silt in the core (Fig. 2A.), most likely a result of earthquake
destabilized slopes from a large-magnitude earthquake in A.D.
1888 (33) and possibly also from steady leaching of deforested
substrates following fires. Repeated burning of seral vegetation
probably limited forest recovery. Such surface fires are not easily
detected in the macroscopic charcoal record (34) but may be in-
ferred from low-magnitude charcoal accumulation rates (CHAR)
and the steady loss of phosphorus.

The multiple proxy records from Horseshoe Lake portray a
history of earthquakes, fires, and changing land use. These re-
cords indicate that significant burning in the IBP led to a shift
from closed-canopy forest to a fern-shrubland, increased erosion,
and steady nutrient transfer from the watershed to the lake. The
Late Māori period and European periods were characterized by
small fire events marked by peaks in erosion, highly variable
nutrient levels, and little forest recovery. The magnitude of
European land-use change at Horseshoe Lake is similar to that
observed at sites in the North Island of New Zealand, where
sheep farming and slope instability have been intense (35).

Diamond Lake (Latitude 44.65° South, Longitude 168.96° East;

380 masl). Diamond Lake is a middle-elevation site located
2 km from the southern shore of Lake Wanaka (Fig. 1). Charcoal
data suggest four large-magnitude fire events occurred during the
IBP at ca. A.D. 1320, 1340, 1460, and 1560 (Fig. 2B). These
events resulted in a decline in forest taxa (pollen percentages de-
cline from 80 to 20%) and an increase in ferns (from <5–60%)
and grasses (from <5–15%) (Fig. 2B). Large peaks in magnetic
susceptibility and element concentrations (titanium, potassium,
and calcium) at the beginning and end of the IBP (ca. A.D.
1330 and 1590) suggest substantial erosion in the watershed,
following fire events in A.D. 1320 and 1560. Phosphorus levels
in Diamond Lake decreased to low levels following the first in-
dication of fire activity during the IBP (ca. A.D. 1330) but then
increased substantially in the late 16th century. The IBP was also
associated with a shift in diatom and chironomid communities.
For example, prior to the IBP the diatom community was domi-
nated by benthic and tychoplanktonic diatom species that toler-
ated a large range of nutrient conditions and would have
inhabited large areas of the lake bottom. After the IBP, plank-
tonic species dominated the assemblages, especially Discostella
stelligera, which has been shown to respond positively to phos-
phorus additions (36) and would have benefited from inputs of
silica from erosional events (Fig. 2B). Increased terrestrial inputs
could have also reduced light availability to the lake bottom, re-
ducing the area of benthic habitat. Likewise, chironomid species
assemblages indicate a shift from ca. A.D. 1300–1430 (Fig. 2B).
Prior to humans, Naonella kimihia was generally low, and abun-
dances of species associated with low nutrient levels and benthic
habitat (e.g., Cladopelma and Tanytarsus vespertinus) were high.
During the IBP, Naonella kimihia, which tolerates relatively high
conductivity that often result from terrestrial inputs (nutrients
and dissolved solids), peaked with an erosion event ca.A.D. 1320,
and Cladopelma and Tanytarsus vespertinus decreased.

Fire activity was low during the Late Māori period, with only
a single small fire event ca. A.D. 1750. The watershed supported
a mixed fern-shrubland with grasses, and a period of erosion
occurred from ca. A.D. 1600–1700 (as evidenced by high mag-
netic susceptibility and titanium levels). An interval between fires
ca. A.D. 1340–1460 and a decrease in fire activity after ca. A.D.
1560 are associated with the return of benthic diatom species
(e.g., Staurosirella pinnata and Staurosira spp.) as well as chirono-
mid speciesCladopelma, which dominated prior to human arrival.

Renewed fires and deforestation in the European period were
associated with an increase in grasses (often sown after deliberate

fires) and the establishment of nonnative plant taxa. Novel dia-
tom communities emerged, as evidenced by increases in euplank-
tonic diatom taxa Fragilaria tenera and Asterionella formosa, which
are strong competitors for phosphorus and nitrogen and have
moderate to high silica requirements (37, 38). Nutrient leaching
from land-use activities and the introduction of A. formosa may
have driven this diatom shift (39). Similarly, the chironomid as-
semblage during the last 100 y is quite different from any previous
time, with increasing numbers of Cricotopus aucklandensis, a spe-
cies tolerant of high conductivity and nutrient inputs associated
with erosional events.

Paleoenvironmental data from Diamond Lake suggests that
high-magnitude fire events during the IBP altered vegetation
and watershed conditions, and the ecological response included
dynamic species turnover of the limnobiota. During the Late
Māori period, intervals of decreased fire activity or lower-magni-
tude fires (as evidenced by peak magnitude) suggest some level of
postfire recovery of vegetation as well as diatom and chironomid
community composition to a near pre-Māori state. European
burning marked a second shift in vegetation, the introduction
of nonnative plants and the establishment of novel diatom and
chironomid assemblages.

Dukes Tarn (Latitude 44.96° South, Longitude 168.49° East; 830 masl).

Dukes Tarn is located 2 km east of the eastern shores of Lake
Wakatipu at relatively high elevation (830 masl) (Fig. 1). Charcoal
data register fire events during the IBP at ca.A.D. 1290, 1360, and
1570, and the pollen data indicate that forests recovered within
decades (Fig. 2C). For example, following evidence of fire activity
in ca. A.D. 1360, percentages of Pteridium and Poaceae rose from
<5% to>10%andfell to low levels (<5%)atca.A.D.1450(Fig.2C).
Phosphorus, calcium, and potassium levels declined abruptly at ca.
A.D. 1380 and ca.A.D. 1750, followed by a return to pre-IBP levels.
Fire activity continued into theLateMāori period;native forest taxa
declined and open vegetation increased modestly ca. A.D. 1750–
1850. No large fire events occurred in the European period, and
introduced plant taxa mark conversion to pastureland in the mid-
19th century. Unlike the other two sites, there was some recovery
of native vegetation within decades of the IBP and European burn-
ing periods, and fires seem to have had little lasting impact on the
long-term structure and composition of vegetation.

Conclusions
Our results confirm that human-set fires were responsible for
the loss of New Zealand’s forests, and that the severity and con-
sequences of the fires varied with geography and local climate.
Interannual to decadal climate variations recorded in tree-ring
data do not suggest that dry or warm periods coincided with
the IBP, although we cannot rule out seasonal climate variability
as a possible determinant of fire size and severity. Among our 16
watersheds, sites at low and middle elevations (<0–600 masl) and
dry settings (<1600 mm ppt) showed wholesale conversion of
closed forest to tussock grasslands and fern-shrubland and little
subsequent recovery. Higher-elevation watersheds in wet settings
(>1600 mm ppt) registered substantially less impact during the
IBP, and pollen data from one high-elevation site shows forest
recovery during the Late Māori period (Fig. 2C). The fire activity
during the IBP was also determined by site location. Those sites
isolated from travel ways (40, 41) or surrounded by natural fire
breaks also experienced fewer fire events and less deforestation.
Drier, lower-elevation sites with larger and more permanent
human settlement (e.g., Travis Swamp; <650 mm ppt) had per-
sistent fires from the onset of Māori arrival to the present (42).

Fires initiated forest destruction, slope instability, and erosion.
The import of sediments and nutrients evoked a response in the
lake chemistry and limnobiota, as evidenced by shifts in diatom
and chironomid community composition. In some locations, forest
and limnobiota recovered in the Late Māori period to their pre-
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IBP conditions within a few decades, but sites in the interior region
remained open landscapes, probably from sustained burning.
European arrival led to increased fires and the conversion of open
tussock grasslands and fern-shrublands to pastureland. In a few
watersheds, European impacts via erosion, nutrient transport,
and eutrophication were more severe than in the IBP (35, 43).

When compared with other islands in the Pacific, and even the
North Island of New Zealand, the rate and scale of deforestation
across a topographically diverse landscape is impressive. How
then did so few people manage to transform so much of the South
Island landscape within 200 y? Polynesians had a long history of
island colonization that informed their use and management of
New Zealand landscapes (7, 11, 13, 44–46). Successful establish-
ment of Polynesian populations typically involved intensive use
and management of wild terrestrial, freshwater, and marine
resources [for example, in New Zealand, moa (family Dinornithi-
dae), freshwater eels (family Anguillidae), and cockles (Austrove-
nus stutchburyi)]. There is no evidence that New Zealand forests
were cleared to facilitate the hunting of birds; rather, birds were
snared or speared along forest tracks. Management of natural
resources, the cultivation of important food crops, and the har-
vesting of edible wild foods required efficient methods of land
clearance and subsequent stewardship to maintain open land-
scapes and varied vegetation (15). In the case of the South Island,
archaeological evidence suggests that successful cultivation of
introduced food crops such as kumara (Ipomoea batatas) and taro
(Colocasia esculenta) was not possible in the montane interior nor
along the coast south of Banks Peninsula (latitude 43° south) (47).
In these regions, the rhizomes of postfire-induced bracken and
other starch-rich plants, such as Cordyline australis, were an impor-
tant source of carbohydrates inMāori diets (27, 48). Māori, in their
efforts to increase the productivity of beech and podocarp forests
for their uses, encouraged more heterogeneous (both structurally
and compositionally) and economically useful fern-shrubland at
the same time as making travel easier (15, 17, 27). Europeans
embarked on a similar campaign to enhance and augment the re-
source base in the interior South Island by grazing open tussock
grasslands and converting shrublands to pasture (45).

The vulnerability of South Island forests to human-set fires was
closely linked with a strong west–east rainfall gradient, and
forests in areas with high levels of rainfall (>1600 mm ppt) were
less impacted by fires than drier eastside forests (15). The wet,
cool conditions of the late Holocene limited natural ignitions
throughout most of the South Island (28) and likely facilitated
the establishment of tree species that were poorly adapted to fire,
in that they have thin bark, are poorly adapted to resprouting
(e.g., lignotubers), and have seeds that are particularly vulnerable
to fire and have relatively short-lived viability (20, 49–51). Even
where fire activity decreased after the IBP, recovery of native for-
ests was slow (i.e., centuries), further suggesting the vulnerability
of forest species to repeated fire. The clearance by fire of vast
tracts of native forests in the drier eastern regions of the South
Island illustrates the positive feedbacks that are initiated with the
introduction of a new disturbance.

A shift to novel plant communities and nonforested vegetation
in New Zealand (sensu ref. 52) led to long-term changes in
watershed and aquatic characteristics that persist to the pre-
sent-day in some settings. High-resolution and well-dated paleoe-
cological records from the South Island of New Zealand help to
disentangle the influence of humans and climate on vegetation
and watershed change since the time of settlement and offer
insights into the natural role of fire that could not be inferred
by examination of the present-day landscape alone. Historical
insights, such as these, provide important information for devel-
oping current fire-management plans and conservation strategies.

Materials and Methods
Age determinations and core chronologies were based on AMS 14C dates

obtained on twig charcoal and terrestrial plant macrofossils (twigs, leaves,

and plant fragments) (Table S2). Pollen analysis followed the preparation

methods of Moore et al. (53). Pollen counts were continued until a dryland

pollen sum of at least 250 grains was reached. Percentage calculations are

based on a terrestrial pollen sum (excluding tree fern spores because they

tend to be highly overrepresented). The first evidence of exotic Pinus (pine)

pollenmarks the establishment of large pine plantations in the late European

period (post-1960s) (54). Pollen types were grouped as closed forest taxa (pre-

dominantlyNothofagus spp. and Podocarps); small trees and seral shrubs and

ferns (for example, Myrsine, Coprosma spp., Coriaria spp., Leptospermum,

Pseudopanax, Rubus, and Pteridium esculentum), herbs (mostly Poaceae

and Cyperaceae), and exotic taxa, including Pinus spp. and Rumex acetosella.

These groupings were used to identify the transition from closed forest to

fern-shrubland and grassland and European arrival.

High-resolution charcoal analysis followedmethods ofWhitlock et al. (55).

Charcoal particles (>125 μm) were examined to reconstruct local fire events

(55) based on changes in CHAR (particles cm−2 y−1). Decomposition of the

charcoal time series employed a Gaussian mixturemodel to identify themean

and variance of the background CHAR distribution (56). The 99th percentile

of this distribution is defined as the threshold value separating peak fire

events from “noise.” Significant charcoal peaks, determined by CHAR values

greater than a locally defined threshold value, identified specific fire events.

Because each 1-cm-long core interval in our lakes represents 5–10 y, a char-

coal peakmay represent one or more fires occurring within the time span of a

charcoal peak. The statistical significance of each peak was evaluated by com-

paring the original charcoal counts against the values in samples occurring

35 y before the peak. If the maximum count of a peak had a >5% chance

of coming from the same Poisson-distributed population as the minimum

charcoal count within the preceding 35 y, then a “peak” was not identified

(57). Fire size and/or intensity are inferred from the magnitude of individual

charcoal peaks (particles cm−2 y−1) (58).

Magnetic susceptibility was performed at 1-cm-long core intervals with a

Geotek XYZ multisection automated split core logger that measured inor-

ganic allochthonous sediment (59). Major, minor, and trace element concen-

trations were measured to examine changes in nutrients and to reconstruct

lake chemistry and its relationship to soil fertility. Mineralogical and geo-

chemical analyses at 1-cm intervals (∼5–10 y resolution) were derived from

X-ray defraction mineralogy using an Itrax X-ray fluorescence instrument,

and each measurement was taken over an area of 1 cm2 using a 30-s count

time (60, 61).

Slides for diatom identification were prepared by digesting ∼100 mg of

sediment in 10% HCl and 30% H2O2 to oxidize carbonates and labile organic

matter, respectively. Samples were allowed to settle passively, the superna-

tant was aspirated, and the sample was rinsed three times with deionized

water. Diluted slurries were permanently mounted using Naphrax® (62). Dia-

toms were identified and enumerated with differential interface contrast

light microscopy at 1000×. The published floras of Krammer et al. (63–66)

were used for identification.

Chironomid head capsules were extracted from 0.5-mL sediment samples

following the procedure described by Walker et al. (67). This volume was

sufficient to recover 62–96 full head capsules per level. Heads were identified

with reference to Dieffenbacher-Krall et al. (68). Cluster analysis of chirono-

mid data was performed by incremental sum-of-squares using the CONISS

program (69) to identify periods of major assemblage transition. Canonical

correspondence analysis of chironomid and environmental data from

Dieffenbacher-Krall et al. (70) surface samples from South Island lakes was

performed with Diamond Lake samples to identify potential environmental

factors associated with assemblage changes.
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Fig. S1. Superposed epoch analysis (SEA) examining mean charcoal accumulation rates relative to extreme summer temperature events. Bars represent mean

standardized charcoal accumulation rates (CHAR pieces cm−2 y−1) in the composite record during decades with extreme summer temperature events (year 0,

>95% C.I. of mean temperatures from circa A.D. 850–2000) and for five decades prior to and after extreme temperature events. Summer temperature re-

construction is derived from silver pine (Lagarostrobos colensoi) tree-ring chronologies and calibrated with instrumental data (1, 2). Mean CHAR levels did not

exceed 95% C.I. Confidence intervals represent the 2.5th and 97.5th quartile when repeating the SEA 1,000 times using randomly shifted temperature event

series.
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Table S1. Site locations and climate data derived from 30 y (1950–1980) mean climate observations

Site

Elevation,

m

Latitude,

°south

Longitude,

°east

Mean annual

temperature, °C

Precipitation

(mm∕y)

Annual water

deficit, mm

Diamond Lake 380 44.65 168.96 10.10 980 90
Glendhu Lagoon 280 44.66 169.05 10.10 896 114
Lake Kirkpatrick 570 45.03 168.57 8.00 1077 26
Lake Te Aroha 290 45.33 167.80 9.10 1311 0
Lake Thomas 490 45.47 167.95 8.30 1109 5
Lake Sarah 570 43.05 171.78 9.10 1154 26
Lake Letitia 600 43.05 171.95 8.70 1086 49
Blackwater Lake 680 43.12 171.92 8.60 1096 44
Lagoon Saddle 1170 43.05 171.60 5.80 2292 0
Horseshoe Lake 460 42.60 172.52 9.70 968 95
Lewis Pass 860 42.38 172.40 7.70 2599 0
Dingle Burn 370 44.44 169.38 10.00 1075 56
Duke’s Tarn 830 44.96 168.49 6.70 1342 0
Lake Johnson 390 45.00 168.73 9.50 739 165
Travis Swamp 5 43.42 172.70 11.90 591 285
Pomahaka 845 45.51 169.25 6.40 1029 0

Climate data were derived from mathematical analysis of long-run average weather station data by Land Environments of New Zealand (1). Annual

water deficit (mm) is the sum of monthly amounts in which evaporation exceeds rainfall (1).

1 Leathwick J, et al. (2003) Land Environments of New Zealand David Bateman Ltd., Auckland, NZ), p 183.
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Table S2. AMS radiocarbon dating and pollen determined age information for each site

Site (year core

collected)

Depth below

surface, cm

Uncalibrated

14C age,

14C years B.P.

Calibrated age

95% confidence

intervals, years B.P.

Calibrated

14C age,

years B.P.

Years,

B.C./A.D. Material dated

Lab ID

KCCAMS,

CAMS*, NZ†

Blackwater Lake (2008) 51 2,595 ± 35 2,617 ± 135 2,625 ± 57 B.C. 675 ± 57 plant fragments,
wood charcoal

55529

Blackwater Lake (2008) 135 8,220 ± 100 9,126 ± 319 9,049 ± 142 B.C. 7,099 ± 142 plant fragments,
wood charcoal

55528

Lagoon Saddle (2008) 49 1,800 ± 60 1,655 ± 143 1,618 ± 74 332 ± 74 plant fragments 55531
Lagoon Saddle (2008) 119 3,425 ± 20 3,610 ± 93 3,802 ± 43 B.C. 1,852 ± 43 plant fragments 55530
Diamond Lake (2007) 20 — — — 1,970 inferred from pollen —

Diamond Lake (2007) 64 640 ± 40 602 ± 33 519 ± 11 1,431 ± 11 plant fragments 39052
Diamond Lake (2007) 89 585 ± 25 543 ± 24 622 ± 7 1,328 ± 7 wood charcoal 39053
Diamond Lake (2007) 101 820 ± 20 702 ± 16 704 ± 15 1,246 ± 15 wood charcoal 42006
Diamond Lake (2009) 28 1,240 ± 15 1,111 ± 57 * * wood charcoal 71865
Diamond Lake (2009) 43 770 ± 15 668 ± 23 619 ± 18 1,331 ± 18 wood charcoal 71866
Diamond Lake (2009) 54 660 ± 15 606 ± 43 680 ± 13 1,270 ± 13 seed 71864
Diamond Lake (2009) 141 2,260 ± 15 2,234 ± 84 2,215 ± 43 B.C. 265 ± 43 leaf 71867
Dingle Burn (2008) 59 490 ± 20 504 ± 17 494 ± 9 1,456 ± 9 wood charcoal 55539
Dingle Burn (2008) 80 505 ± 40 510 ± 46 535 ± 9 1,415 ± 9 wood charcoal 55538
Dingle Burn (2008) 100 640 ± 20 607 ± 43 598 ± 12 1,352 ± 12 wood charcoal 55537
Dingle Burn (2008) 172 1,015 ± 20 854 ± 59 852 ± 34 1,098 ± 34 seed 55536
Dukes Tarn (2008) 33 210 ± 20 194 ± 105 74 ± 28 1,876 ± 28 leaf 55542
Dukes Tarn (2008) 119 390 ± 15 383 ± 77 435 ± 31 1,515 ± 31 leaf 55541
Dukes Tarn (2008) 139 670 ± 15 602 ± 44 664 ± 23 1,286 ± 23 leaf 55540
Dukes Tarn (2008) 165 905 ± 20 1,190 ± 72 1,066 ± 16 884 ± 16 leaf 71876
Glendhu Lagoon (1998) 80 540 ± 25 524 ± 11 548 ± 18 1,402 ± 18 wood charcoal 42012
Horseshoe Lake (2008) 20 195 ± 15 207 ± 133 148 ± 14 1,802 ± 14 plant fragments 55546
Horseshoe Lake (2008) 44 390 ± 20 392 ± 79 396 ± 22 1,554 ± 22 wood charcoal 55545
Horseshoe Lake (2008) 64 675 ± 20 601 ± 46 551 ± 22 1,399 ± 22 wood charcoal 55544
Horseshoe Lake (2008) 143 1,500 ± 20 1,332 ± 40 1,306 ± 24 644 ± 24 woody material 55543
Horseshoe Lake (2009) 28 190 ± 15 211 ± 136 177 ± 18 1,773 ± 18 woody material 71868
Horseshoe Lake (2009) 30 150 ± 20 97 ± 129 194 ± 19 1,756 ± 19 leaf 71869
Horseshoe Lake (2009) 46 375 ± 15 383 ± 71 334 ± 22 1,616 ± 22 woody material 71870
Horseshoe Lake (2009) 111 995 ± 15 849 ± 57 850 ± 21 1,100 ± 21 woody material 71871
Lake Johnson (2009) 15 145 ± 15 94 ± 126 94 ± 77 1,856 ± 77 woody material 71872
Lake Johnson (2009) 23 155 ± 15 98 ± 129 93 ± 74 1,857 ± 74 woody material 71873
Lake Johnson (2009) 47 1,505 ± 15 1,335 ± 39 1,299 ± 26 651 ± 26 woody material 71874
Lake Kirkpatrick (2007) 8 — — — 1,970 inferred from pollen —

Lake Kirkpatrick (2007) 95 690 ± 20 599 ± 31 569 ± 8 1,381 ± 8 wood charcoal 42007
Lake Kirkpatrick (2007) 117 705 ± 15 595 ± 33 651 ± 8 1,299 ± 8 wood charcoal 42008
Lake Kirkpatrick (2009) 108 710 ± 15 596 ± 46 655 ± 14 1,295 ± 14 leaf, woody material 71875
Lake Kirkpatrick (2009) 119 645 ± 15 609 ± 41 735 ± 15 1,215 ± 15 woody material 71877
Lake Kirkpatrick (2009) 191 1,625 ± 15 1,466 ± 59 1,307 ± 24 643 ± 24 leaf 71878
Lake Letitia (2008) 32 355 ± 15 392 ± 64 427 ± 25 1,523 ± 25 wood charcoal 55555
Lake Letitia (2008) 80 2,245 ± 45 2,214 ± 137 2,153 ± 54 B.C. 203 ± 54 plant fragments 55535
Lake Sarah (2008) 33 520 ± 30 516 ± 23 500 ± 14 1,450 ± 14 wood charcoal 55534
Lake Sarah (2008) 53 620 ± 40 590 ± 60 627 ± 24 1,323 ± 24 wood charcoal 55533
Lake Sarah (2008) 136 1185 ± 20 1,018 ± 69 1,017 ± 33 933 ± 33 leaf 55554
Lake Sarah (2008) 164 1,245 ± 30 1,113 ± 107 1,117 ± 32 833 ± 32 plant fragments 55532
Lake Te Aroha (2007) 33 535 ± 20 522 ± 10 502 ± 8 1,448 ± 8 leaf 42011
Lake Te Aroha (2007) 47 510 ± 15 512 ± 7 534 ± 6 1,416 ± 6 woody material 39055
Lake Thomas (2007) 22 — — — 1,970 inferred from pollen —

Lake Thomas (2007) 95 590 ± 140 589 ± 118 320 ± 21 1,630 ± 21 wood charcoal 42009
Lake Thomas (2007) 138 410 ± 30 482 ± 53 503 ± 14 1,447 ± 14 wood charcoal 42010
Lake Thomas (2007) 154 2,500 ± 45 2,579 ± 93 2,361 ± 86 B.C. 411 ± 86 woody material 133155*
Lewis Pass (2008) 88 4,020 ± 20 4,433 ± 106 4,466 ± 40 BC 2,516 ± 40 leaf 55548
Lewis Pass (2008) 132 8,250 ± 25 9,141 ± 119 9,027 ± 63 B.C. 7,077 ± 63 plant fragments 55547
Travis Swamp (1995) 37 722 ± 65 629 ± 133 634 ± 86 1,316 ± 86 peat NZA 6649†

Travis Swamp (1995) 113 1,341 ± 70 1,204 ± 146 1,205 ± 109 745 ± 109 peat NZA 6335†

Pomahaka Bog (2001) 38 378 ± 74 393 ± 160 516 ± 132 1,434 ± 132 plant fragments NZA 7902†

Pomahaka Bog (2001) 40 807 ± 41 696 ± 173 583 ± 155 1,367 ± 155 peat NZA 19668†

Pomahaka Bog (2001) 42 775 ± 40 673 ± 187 653 ± 178 1,297 ± 178 plant fragments NZA 19951†

Pomahaka Bog (2001) 82 4,038 ± 42 4,456 ± 200 2,380 ± 201 B.C. 430 ± 201 plant fragments NZA 19952†

Diamond Lake sample 71865 was not used in age-depth determination because of suspected contamination. Samples dated at three AMS laboratories:

W. M. Keck Carbon Cycle Accelerator Mass Spectrometry Laboratory (KCCAMS),

*Lawrence Livermore National Laboratory’s Center for Accelerator Mass Spectrometry (CAMS, Livermore, CA), and
†Waikato Radiocarbon Dating Laboratory (University of Waikato, Hamilton, NZ).
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