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ABSTRACT 

Non-Destructive Evaluation (NDE) is popular for component 

testing in the automobile industry because they do not cause 

any permanent alteration to components. Large-scale 

manufacturing in automotive industries are demanding for a 

rapid and reliable inspection to maintain the overall structural 

integrity. Some NDE techniques require sensors (Piezo 

Electric transducers, PVDF films, Optical fiber, etc.) that 

need to be bonded to the structure for testing. Some of these 

sensors are expensive and cannot be reused once detached. 

This work aims at rapid inspection with the reusability of 

sensors. Further, the reusable sensors can be deployed in an 

array configuration for multi-purpose NDE. Smart skin shall 

be explained as a Multiple-Transmitter-Multiple-Receiver 

(MTMR) Piezo-ceramic based sensor array which is 

embedded to a conformable skin.  

In this work, we have validated the ability of rapid material 

characterization using different grades of aluminum. Using 

experimental data collected by Smart skin, we have 

developed an automated material classification algorithm 

using various machine learning algorithms. Features 

extracted based on wavelets, zero crossing coefficients are 

feed into Support Vector Machine (SVM) for classification. 

However, feature extraction is time consuming as it needs 

manual intervention and the classifier accuracy depends on 

the type of extracted feature. Here 2D Convoluted Neural 

Network (2D CNN) is developed that works directly on the 

obtained experimental signal instead of extracting features. 

Manual intervention is not needed for feature extraction for 

these deep learning models. Different dimensionality 

reduction techniques, functional data analysis is used to 

reduce the dimension of the features. The efficacy of different 

models is thereby compared. Encouraging results are 

obtained that shows the deep learning methodology is 

efficient over the conventional feature extraction method as 

it improves the prediction performance on the classifier and 

result in an autonomous and cost-effective model. 

1. INTRODUCTION 

Application of GW in material characterization and damage 

detection has been successfully demonstrated in several 

studies (Vogt, Lowe, & Cawley, 2004) (Hosten, Castaings, 

Tretout, & Voillaume, 2001) (Vishnuvardhan, 

Krishnamurthy, & Balasubramaniam, 2007) (Keulen, Yildiz, 

& Suleman, 2014). Recent studies used GW to detect 

disbonds, cracks, perform quality control, and in-service 

fatigue monitoring (Siryabe, Renier, Meziane, & Castaings, 

2015) (Castaings, 2014) (Dalton, Cawley, & Lowe, 2001) 

(Drinkwater, Castaings, & Hosten, 2003) (Banerjee, 

Karpenko, Udpa, Haq, & Deng, 2018) (Banerjee, 

Palanisamy, Haq, Udpa, & Deng, 2019) (Banerjee, 

Palanisamy, Udpa, Haq, & Deng, 2019). A MTMR 

configuration is generally used for material characterization. 

In most of the above-mentioned studies, piezo-ceramic 

sensors are permanently bonded to the surface of the substrate 

during inspection. In this study we have developed  
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a smart skin where the emended sensors can be reused. 

However, to enable rapid inspection machine learning 

models are used to process the data collected form smart skin. 

To demonstrate the ability of material characterization two 

grades of Aluminum having same thickness are chosen. 

Shallow machine learning models need efficient feature 

extraction for correct classification. Thus, the experimental 

signals are first preprocessed by clearing the offsets and by 

excluding the transmitted signal from the received ones. Then 

21 features such as wavelet coefficients, zero crossing 

coefficients, mean, energy, standard deviation etc. are 

extracted. These obtained features are then feed into Support 

Vector Machine (SVM) classification algorithms (Rathod, 

Mukherjee, & Deng, 2020) for material characterization. 

However, extracting meaningful features are time consuming 

and need opinion of experts (Sultana, Chilamkurti, Peng, & 

Alhadad, 2019). Moreover, with massive amount of data 

these days there is possibility of erroneous classification and 

detection as the number of features become excessive which 

is called curse of dimensionality (Verleysen & François, 

2005).  Feature extractions and dimension reductions by 

Principal Component Analysis (PCA) though has great 

interpretability, but can leave out features with small 

contributions which can entail important information about 

material characterization. Deep learning involving 

Convoluted Neural Networks (CNN) show promising results 

as these networks reduce the manual design effort of feature 

extraction. Features are extracted directly from the raw data 

by these networks (Kwon, et al., 2019). Here the 

experimental images are directly feed into the developed 2D 

CNN network for binary classification. Figure 1 shows the 

schematic of the working methodology in this paper. 

This paper is organized as follows. Section 2 and 3 describes 

the fabrication of smart skin and its application in Guided 

wave transmission and acquisition on aluminum plate. 

Section 4 illustrate the features extracted from experimental 

data and how they are used in SVM. Section 5 shows the 

development of 2D CNN technique. Results of material 

classification using SVM and 2D CNN are discussed in 

section 6. Summary, conclusion, and future work are 

presented in section 7.  

 

2. SMART SKIN 

A Multiple-Transmitter-Multiple-Receiver (MTMR) Piezo-

ceramic based sensor (PZT) array is embedded to a 

conformable skin. The bottom layer of the skin is coated with 

pressure-sensitive adhesive to be attached to most curved and 

non-curved structural surfaces (refer Figure 2). Each PZT 

sensor nodes are individually controlled by a MATLAB code 

that actuates and receive the GW waves signals. The skin 

could actuate and receive GW waves in each direction of the 

material. Further, the reusable sensors can be deployed in an 

array configuration for multi-purpose NDE (Mahmoodul 

Haq, 2018). Figure 3 shows the application of “SMART 

SKIN” on an Aluminum plate for material characterization.  

 

Figure 2 Schematic of smart skin 

Double sticky film

(Pressure Sensitive Adhesive coat)

skin

Sensor

[Skin]

(MTMR-PZT/PVDF array)

Figure 1. Schematic of the characterization methodology 
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3. EXPERIMENTS 

Two different grade of aluminum plates with same thickness 

as shown in Table 1 are chosen for classification   

Table 1 Properties of selected Aluminum sample 

Sample 

(name) 

Thickness 

(mm) 

Elastic modulus, E  

(GPa) 

AL-6061 

AL_1 
1.6 68.9 

AL-2024 

AL_2 
1.6 73.1 

 

The block diagram in Figure 3 Smart skin attached to 

aluminum sample with GW DAQ setupshows the GW 

experimental setup. It consisted of 1) Smart skin deployed on 

the aluminum sample, 2) arbitrary waveform generator 

33220A from Keysight Technologies, 3) Oscilloscope DSO 

1004A from Keysight Technologies. Piezoelectric transduces 

embedded on smart skin were electrically connected to the 

output of the waveform generator. Excitation was done using 

a Morlet wavelet function with center frequency of 150 kHz. 

Guided waves transmitted through the aluminum plate were 

sensed using piezoelectric receivers, which were connected 

to the oscilloscope. Data was then transferred to a PC with 

MATLAB.  

 

 

Figure 3 Smart skin attached to aluminum sample with GW 

DAQ setup 

 

Based on the dispersion analysis for selected aluminum 

plates, excitation of 150 kHz would avoid any higher-modal 

excitation and lower dispersion of excited wave. Excited and 

received signal from one pair of transducers are shown in 

Figure 4. 

 

 
Figure 4 Excited and received guided wave signal form 

smart skin 

4. NUMERICAL METHODS 

Material Characterization of two grades of Aluminum is a 

binary classification problem. For each specimen type 40 

signals are acquired.  Thus, the entire data consists of 80 

patterns where from each pattern 21 features are extracted. 

The data set is divided into 50 training data, 10 data for 

validation set and remaining 20 for test set.  The extracted 

features are feed into shallow machine learning network 

(SVM) and the direct experimental images to deep learning 

network, 2D CNN.  

4.1. Feature Extraction: 

Here at first the signals have been normalized by considering 

the absolute of the maximum of the signals. Then from those 

normalized values different features like mean, variance, 

energy, zero crossing coefficients and discrete wavelet 

transform (DWT) are obtained. Wavelet transform 

constitutes an important feature as the guided wave based 

ultrasonic signals contain various stationary and non-

stationary characteristics. Thus, signal analysis by wavelet 

decompositions provides an efficient method in NDE and 

SHM community compared to that with Fourier transforms 

(Bettayeb, Rachedi, & Benbartaoui, 2004; Mukherjee, 

Huang, Udpa, & Deng, 2019). From the experimental signals 

the offsets and transmitted signal is being eliminated. Now 

on this transformed signal Debauchies wavelet of level 4 

based on Mallat’s pyramidal algorithm (Mallat, 1999) has 

been used as an extracted feature. Zero crossing is the place 

where the sign of a mathematical function changes, thus 

providing another important feature (Higgins, 1980). At zero 

crossing, the time points where the amplitude of the 

experimental signal crosses zero has been considered. The 

insignificant segments at the beginning are ruled out by 

setting a minimum pass filter on standard deviation and 

maximum amplitude metrics at 10%. Different significant 

1
2

3

4

450

Function 
Generator

PC
MATLAB

Oscilloscope 
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features as obtained from an experimental signal are shown 

in Figure 5.  

 

 

Figure 5 (a) maximum signal envelope of the signal, (b) 

standard deviation and energy feature of the signal 

4.2. Description of the dataset: 

The bar plot below shows the distribution of the features 

across the two classes. Color red (label 1) represents the class 

of AL_1 sample whereas light green (label2) represents the 

AL_2sample.  As different features have different ranges, 

hence the features are normalized to the same scale in bar 

plot. 

 

 
Figure 6 Feature distributions in bar plots representing A_1 

in red and A_2 in light green. F_1 stands for Feature_1 

4.3. Analysis Conducted  

Dimension reduction is done by Principal Component 

Analysis (PCA) where 5 PC and 10 PC directions are used as 

extracted features forming two different datasets and the 

results are compared with that on original dataset. Table 2: 

Variability coverage based on Principal components 

(PC)shows the cumulative variability coverage by the PCA 

components. The table shows that the three few PCA 

components do not cover the entire variability of the data. 

 

Table 2: Variability coverage based on Principal 

components (PC) 

Variability Coverage by the Principal components 

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 

47.13% 68.26% 79.84% 84.96% 89.57% 

6 PCs 7 PCs 8 PCs 9 PCs 10 PCs 

93.73% 95.41% 96.59% 97.65% 98.52% 

11 PCs 12 PCs 13 PCs 14 PCs 15 PCs 

99.19% 99.47% 99.65% 99.78% 99.90% 

16 PCs 17 PCs 18 PCs 19 PCs 20 PCs 

99.96% 99.99% 99..99% 100% 100% 

 

Figure 7 shows the variability in dataset based on first two 

principal components. From the below picture it is clear that 

it is hard to distinguish the two classes based on two PCs as 

there is overlap between the 2 classes 

 

 
Figure 7 Data representation based on first two principal 

components 

 

(a)

(b)
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The AL_1 class is shown in red whereas AL_2 class is shown 

in dark green. Hence it is better to perform the classification 

analysis by taking into consideration more than 4 principal 

components or without dimension reduction. 

Support Vector Machine (SVM) is applied where the cost 

parameter is varied from 1 to 10 on both the training and test 

sets. It is seen that cost parameter 8 produces the optimal 

result on the test set. Figure 8 shows the train and test errors 

when SVM is applied. Choosing the cost parameter as 8 gives 

the lowest misclassification rate on the test set. 

 

 
Figure 8 Error rate for different values of cost function 

5. 2D CNN 

Recently in the field of Nondestructive evaluation (NDE), 

studies involving defect classifications and material 

characterization using deep learning is gaining prominence 

(Liu, Bao, Wang, & Zhang, 2018) (Iyer & Sinha, 2005) 

(Mukherjee, Huang, Rathod, Udpa, & Deng, 2020). Here we 

have developed a 2D CNN network to perform the material 

characterization between two grades of Aluminum. The 

experimental data here are stored in the form of images of 

dimension 300 𝑋 30 . The deep learning models are 

developed in using keras and TensorFlow in Google Colab 

platform. A 2D CNN network uses convolution operation and 

deals with data in grid formats where it learns features in a 

hierarchical fashion by constructing deep neural architecture 

(Dahl, Sainath, & Hinton, 2013). The network comprised of 

5 convolutional layers and 3 fully connected dense layers. 

Maximum pooling layers and dropout layers are also present 

on order to remove dimension and to introduce regularization 

respectively. The first convolutional layer contains 32 

kernales each of size 3𝑥3  and stride as 1 . After second 

convolution the output dimension reduces to 296𝑥296𝑥32. 

Then maximum pooling of window size 2𝑥2 is applied which 

reduces the output dimension to 148𝑥148𝑥32. Next dropout 

is introduced to reduce regularization. Then another layer of 

convolution, maxpooling and dropout layer is applied which 

further reduces the dimension to 73𝑥73𝑥32 . The fourth 

convolutional layer contains 64 kernels modifying the output 

dimension to 71𝑥71𝑥64 . as the non-linear activation 

function in the convolutional and dense layers. The optimizer 

used in the model is ADAM. Figure 9 shows the schematic 

of the described architecture of the 2D CNN. 

6. RESULTS AND DISCUSSIONS 

In this section the performance of the shallow machine 

learning algorithms SVM on the extracted features and deep 

learning algorithm 2D CNN on the experimentally gathered 

data are compared. Out of total 80 data, 50 are used for 

training, 10 for validation and rest 20 are used for testing. 

Figure 10 shows the train and validation accuracies and losses 

as obtained from the 2D CNN. The accuracy obtained using 

2D CNN on test dataset is 100%. Deep learning model is 

successful in material characterization. 

Figure 9 Schematic of the developed 2D CNN model 
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Figure 10 (a), (b) shows the 2D CNN accuracy and loss on 

the original dataset 

 

The shallow machine learning models also produce accurate 

classification results as the dataset is small. we receive the 

accurate classification choosing cost parameter as 8 in SVM 

gives the accuracy of 95%. Thus, due to a smaller number of 

data almost all the classifiers give 100% accuracy.  Figure 11 

shows the confusion matrix for SVM and 2D CNN. 

 

 

Figure 11 Confusion matrix of (a) SVM, (b) 2D CNN 

7. CONCLUSION 

This paper presents the development of smart skin for 

reusable and rapid NDE. Rapid Material characterization is 

one of the applications of smart skin. This application is 

achieved with various machine learning algorithms. SVM 

and 2D CNN is used successfully to classify two different 

grades of aluminum sheet. Classification results are 

promising and clearly indicates the ability to use smart skin 

for rapid material classification. In future, an improved 

algorithm for composite material property identification and 

classification is planned.   
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