
Rapid Mathematical Programming

vorgelegt von Diplom-Mathematiker

T K

Flensburg

Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin

zur Erlangung des akademischen Grades

D  N

genehmigte Dissertation

Promotionsausschuß

Vorsitzender Prof. Dr. Fredi Tröltzsch

Berichter/Gutachter Prof. Dr. Martin Grötschel

Berichter/Gutachter Prof. Dr. Alexander Martin

Tag der wissenschaftlichen Aussprache: . Dezember 

Berlin 

D

Rapid Mathematical

Programming

T K

Copyright ©  by Thorsten Koch

All rights reserved.

This book was typeset with TEX using LATEX and many further formatting packages.

The pictures were prepared using , ,  and .

All numerals in this text are recycled.

Für meine Eltern

Preface

Avoid reality at all costs

— fortune()

As the inclined reader will find out soon enough, this thesis is not about deeply involved

mathematics as a mean in itself, but about how to apply mathematics to solve real-world

problems. We will show how to shape, forge, and yield our tool of choice to rapidly

answer questions of concern to people outside the world of mathematics.

But there is more to it. Our tool of choice is software. This is not unusual, since

it has become standard practice in science to use software as part of experiments and

sometimes even for proofs. But in order to call an experiment scientific it must be

reproducible. Is this the case?

Regarding software experiments, we have first to distinguish between reproducing

and repeating results. The latter means that given the same data and the same programs,

running on a similar computer, the results are identical. Reproducing results means to

use the same data, but different programs and an arbitrary computer.

Today we can reproduce experiments conducted by Leonardo da Vinci in the fif-

teenth century. But can we expect even to repeat an experiment that involves a -year-

old (commercial) program? Or in case we try to reproduce it, using different software

and get dissenting results, can we make any conclusions why the results differ?

Software is getting more complex all the time. And by no means it is usually possible

to prove the correctness of a specific implementation even if the algorithm employed is

known to be correct. But what can we do if the source code of the program is not

available at all? How could we assert what the program is really doing?

Science is about using the work of fellows. If a proof or experiment is published

anybody can use it as part of their work, assumed due credit is given to the author. But

how can we build on software that is not freely available?

The same questions can be asked for the input data. Without the precise data, com-

putational experiments can neither be repeated nor reproduced. Surely part of the prob-

lem is that there is no accepted or even adequate way to publish software and data for

review in the same way as articles are published. While this thesis by no means gives

answers to the above questions, considerable efforts were taken to set a good example

regarding the correctness of the software and to improve the possibilities for the reader

to repeat or reproduce the results shown.

Acknowledgements

I am deeply indebted to all my friends and colleagues at , who supported me in

writing this thesis. They showed me that teamwork does not mean to work in a crowd,

but to improve the quality of the work by combining the knowledge of many people.

I would especially like to thank my supervisor Prof. Martin Grötschel, who started

his work in Berlin just at the right time to attract me to combinatorics and optimization.

1 For more information on these topics, see Borwein and Bailey (), Greve (), Johnson ().

The environment and challenges he has provided me are the most fertile and stimulating

I have encountered so far.

This thesis would not have happened without Prof. Alexander Martin, who re-

cruited me two times and taught me much of what I know about optimization.

Many thanks go to my brave proof readers Monica Ahuna, Andreas Eisenblätter,

Sven Krumke, Roland Wessäly and especially Tobias Achterberg, Volkmar Gronau, Syl-

wia Markwardt, and Tuomo Takkula.

And last but not least, I would like to thank Ines for her inexhaustible support and

Keiken for inexhaustibly trying to distract me.

Berlin, October 

Thorsten Koch

Contents

 Introduction 

. Three steps to solve a problem . 

.. Mathematical workbench . 

.. Modeling Language with out-of-the-box solver 

.. Framework . 

.. Doing it all yourself . 

. What’s next? . 

I Design and Implementation 

 The Zimpl Modeling Language 

. Introduction . 

. Invocation . 

. Format . 

.. Expressions . 

.. Sets . 

.. Parameters . 

.. Variables . 

.. Objective . 

.. Constraints . 

.. Details on sum and forall . 

.. Details on if in constraints . 

.. Initializing sets and parameters from a file 

.. Function definitions . 

.. Extended constraints . 

.. Extended functions . 

.. The do print and do check commands 

. Modeling examples . 

.. The diet problem . 

.. The traveling salesman problem 

.. The capacitated facility location problem 

ix

x

.. The n-queens problem . 

. Further developments . 

 Implementing Zimpl 

. Notes on software engineering . 

. Zimpl overview . 

. The parser . 

.. BISON as parser generator . 

.. Reserved words . 

.. Type checking . 

. Implementation of sets . 

. Implementation of hashing . 

. Arithmetic . 

.. Floating-point arithmetic . 

.. Rational arithmetic . 

. Extended modeling . 

.. Boolean operations on binary variables 

.. Conditional execution . 

. The history of Zimpl . 

. Quality assurance and testing . 

.. Regression tests . 

.. Software metrics . 

.. Statistics . 

.. Program checking tools . 

II Applications 

 Facility Location Problems in Telecommunications 

. Traffic . 

.. Erlang linearization . 

.. Switching network vs. transport network 

. A linear mixed integer model for hierarchical multicommodity

capacitated facility location problems 

. Planning the access network for the G-WiN 

. Planning mobile switching center locations 

. Planning fixed network switching center locations 

.. Demands and capacities . 

.. Costs . 

.. Model . 

.. Results . 

. Conclusion . 

xi

 MOMENTUM 

. UMTS radio interface planning . 

. Coverage or how to predict pathloss . 

.. How much freedom do the choices give us? 

. Capacity or how to cope with interference 

.. The CIR inequality . 

.. Assumptions and simplifications 

.. Cell load . 

.. Pathloss revisited . 

.. Assessment . 

. Models . 

.. Site selection . 

.. Azimuth (and a little tilting) . 

.. Snapshots . 

. Practice . 

.. Conclusion . 

.. Acknowledgements . 

 Steiner Tree Packing Revisited 

. Introduction . 

. Integer programming models . 

.. Undirected partitioning formulation 

.. Multicommodity flow formulation 

.. Comparison of formulations . 

. Valid inequalities . 

. Computational results . 

.. Choosing the right LP solver algorithm 

.. Results for the Knock-knee one-layer model 

.. Results for the node disjoint multi-aligned-layer model 

. Outlook . 

 Perspectives 

Appendix 

A Notation 

A. Decibel explained . 

B Zimpl Internals 

B. The grammar of the Zimpl parser . 

B. Detailed function statistics . 

xii

C Zimpl Programs 

C. Facility location model with discrete link capacities 

C. Facility location model with configurations 

C. UMTS site selection . 

C. UMTS azimuth setting . 

C. UMTS snapshot model . 

C. Steiner tree packing . 

D Steiner Tree Packing Instances 

List of Figures 

List of Tables 

Bibliography 

Chapter 

Introduction

Ninety-Ninety Rule of Project Schedules:

The first ninety percent of the task takes ninety percent of the time,

and the last ten percent takes the other ninety percent.

— fortune()

This thesis deals with the implementation and use of out-of-the-box tools in linear

mixed-integer programming. It documents the conclusions drawn from five years of

implementing, maintaining, extending, and using several computer codes to solve real-

life problems.

Although most of the projects carried out were about location planning in the tele-

communication industry, the lessons learned are not tied to a specific area. And while

many of the topics presented might be well-known in general, we hope to provide some

new insights about details of implementation, integration, and the difficulties that can

arise with real-world data.

What makes general tools attractive?

In our experience customers from industry share a few attributes. They

◮ do not know exactly what they want,

◮ need it next week,

◮ have not collected yet the data necessary,

◮ usually have not really the data they need,

◮ often need only one shot studies,

◮ are convinced “our problem is unique”.

This mandates an approach that is fast and flexible. And that is what general tools are all

about: Rapid prototyping of mathematical models, quick integration of data, and a fast

way to check if it is getting to be feasible. Due to the ongoing advances in hardware and



 Rapid Mathematical Programming

software, the number of problems that can be successfully tackled with this approach is

steadily increasing.

. Three steps to solve a problem

According to Schichl () the complete process to solve a problem looks like that

depicted in Figure .. Given availability of data which represents instances of a problem

we can summarize this to three tasks:

i) Build a mathematical model of the problem.

ii) Find or derive algorithms to solve the model.

iii) Implement the algorithms.

Of course this sounds much easier than it usually is. First we have to gain enough un-

derstanding of the problem to build a mathematical model that represents the problem

well enough such that any solution to an instance of the model is meaningful to the real

problem. Then we have to turn the theoretical model into an algorithm, i. e., we need

a model that leads to (sub-) problems that can be solved in practice. And after that

the algorithms have to be implemented efficiently. Very often something is lost in each

stage:

◮ The model is not a perfect representation of the reality, i. e., some aspects had to

be left out.

◮ The algorithms are not able to solve the model in general, e. g., the problem might

be NP-hard.

◮ Not the perfect algorithm was implemented, but only a heuristic.

From now on we assume that the model resulting from step one is an // model.

Under these assumptions many tools are available to make steps two and three easier.

We will try to provide a short classification here: For  problems efficient algorithms

like the barrier method are available. Also simplex type algorithms have proven to be fast

in practice for a long time. Both of these algorithms can, given enough memory and

computing power, solve problems up to several million variables and side constraints.

Sometimes only an approximation of the optimal solution of a linear program is

needed and algorithms like Lagrange Relaxation or Dual Ascent provide fast solutions.

In general, Branch-and-Bound type algorithms are the most successful ones to solve

(mixed) integer programming problems. Depending on the problem there are many

possibilities for upper and lower bounding. The most successful general technique by

now is to solve the  relaxation of the problem to gain lower bounds.

While many combinatorial problems like shortest path, or min-cost flow can in prin-

ciple also be solved as a linear program, special algorithms are available that are often

extremely fast in practice.

1 This is a rather strong assumption as it turned out in every single project we conducted that the prepara-

tion of the input data was an, if not the, major obstacle.

Introduction 

Analyze Real-

world Problem

Identify

Modeling Goal

Build Mathe-

matical Model

Identify

Data Sources

Collect &

Analyze Data

Choose Solution

Algorithm

Translate Model

to Solver Input

Translate Data

to Solver Input

Construct

Derived Data

Run Solver

Analyze Output

Write

Result Report

Interpret

Result Report

Figure .: Modeling cycle according to Schichl ()

Now, how can we apply this vast toolbox? There are four principle ways to go, but of

course transitions between these are smooth and all kinds of combinations are possible:

◮ Use a mathematical workbench like  or .

◮ Use a modeling language to convert the theoretical model to a computer usable

representation and employ an out-of-the-box general solver to find solutions.

◮ Use a framework that already has many general algorithms available and only

implement problem specific parts, e. g., separators or upper bounding.

◮ Develop everything yourself, maybe making use of libraries that provide high-

performance implementations of specific algorithms.

If we look at Figure . we get a rough idea how to rate each method. The point marked

TP is the level of effect that is typically reached with each method, i. e., while it is possible

to outperform the framework approach by do-it-yourself, this is usually not the case.

.. Mathematical workbench

This is the easiest approach, provided that the user is familiar with the workbench he

wants to use. The time needed to get used to a specific workbench can be considerable.

If this hurdle is overcome, everything needed is already built-in.

2 http://www.mathworks.com
3 http://www.wolfram.com

 Rapid Mathematical Programming

Effort

Effect Do−it−yourself

Workbench

Modeling Language

Framework

TP

Figure .: “Effort vs. effect”

On the other hand this is also the most restricted approach. The performance of the

built-in solvers is usually not state-of-the-art. And if anything of the built-in function-

ality is missing or not good enough, not much can be done.

.. Modeling Language with out-of-the-box solver

This is the most flexible approach on the modeling side. It is very easy to get used to and

provides nearly immediate results. No serious programming is required and it is very

easy to test different modeling approaches. It is the only approach that allows easily to

switch between different state-of-the-art solver engines.

On the downside we have considerable algorithmical restrictions regarding the so-

lution process. No real separation of inequalities or problem specific upper bounding

is possible. And if the out-of-the-box solver is not able to solve the problem, the model

has to be changed to contrive an easier problem.

.. Framework

Frameworks are the most economic way to implement sophisticated high-performance

problem solvers. Many high-performance building bricks are readily available and lots

of general tasks are prebuilt. It is a very flexible approach and will lead for most projects

to the best performing result in the end.

Unfortunately frameworks usually require the user to adopt the view of the world

as seen from its designers, which can lead to some startup delay. And, what is even

more important, today‘s frameworks are so vendor specific that it is nearly impossible

to transfer an implementation built with one framework to another. If a framework

Introduction 

was chosen, you have to stick to it. And if you need something the framework does

not provide there might be no good way to get it. In general using self-written lower

bounding algorithms might prove difficult with many frameworks.

.. Doing it all yourself

Nothing is impossible in this approach of course, except maybe a quick success. For

most problems, this is tedious, error prone and requires the reimplementation of many

well-known but sophisticated structures. Of course some problems benefit heavily from

specific implementations.

Two problem classes stand out in this regard: (i) Extremely large problems; if we

want to “boldly go where no man has gone before”, frameworks might prove too re-

strictive to handle the special issues that arise, see Applegate et al. (). (ii) Problems

where most of the time is spent in specific algorithms for lower and upper bounding

and where branching is not an important issue, e. g. Steiner trees in graphs.

In fact, the approach using a modeling language is so fast, it should be used as a

fast prototype before engaging in the effort needed by the other approaches. With the

steady progress in solver capabilities (Bixby et al., , Bixby, ) many problems

can already be solved at this stage. If not, it is a very nice way to make a proof of concept

and to investigate different modeling approaches on smaller instances.

. What’s next?

The next chapter will introduce mathematical modeling languages in general and the

Z modeling language in particular. We will continue in Chapter  and show how

Z is implemented and how we try to make sure the number of bugs in the code

will decrease strictly monotone in time. Beginning with Chapter  we will describe our

successes and problems at some real-world projects. Especially Chapter  will show how

crucial it is to assess the quality of the data. Models for the problems involved will be

discussed for all projects. Finally, in Chapter , we will “revisit” a well-known hard

combinatorial problem, namely the Steiner tree packing problem in graphs. We will

use a known, but up to now not practically used, formulation to model the classical

switchbox-routing problem combined with via-minimization.

If not otherwise stated, all computations were performed on a Dell Precision 

workstation with a . gigahertz -  and  gigabytes of . The 

rating for this kind of computer is listed as SPECint =  and SPECfp = .

4 http://www.spec.org

Part I

Design and Implementation



Chapter 

The Zimpl Modeling Language

When someone says:

“I want a programming language in which I need

only say what I wish done,”

give him a lollipop.

— fortune()

. Introduction

Consider the following linear program:

min 2x + 3y

subject to x + y 6 6

x, y > 0

The standard format used to feed such a problem into a solver is called .  in-

vented it for the Mathematical Programming System/ (Kallrath, a, Spielberg,

) in the sixties. Nearly all available  and  solvers can read this format. While

 is a nice format to punch into a punch card and at least a reasonable format to read

for a computer, it is quite unreadable for humans. For instance, the  file of the above

linear program looks as shown in Figure ..

For this reason the development of tools to generate  files from human readable

problem descriptions started soon after the invention of the  format, as described by

Kallrath (b), which also contains information on the history of modeling languages

and a comprehensive survey on the current state of the art.

Beginning in the eighties algebraic modeling languages like  (Bisschop and

Meeraus, , Bussieck and Meeraus, ) and  (Fourer et al., , a) were

developed. With these tools it became possible to state an  in near mathematical

notation and have it automatically translated into  format or directly fed into the



 Design and Implementation

1 NAME ex1 . mps

2 ROWS

3 N OBJECTIV

4 L c1

5 COLUMNS

6 x OBJECTIV 2

7 x c1 1

8 y OBJECTIV 3

9 y c1 1

10 RHS

11 RHS c1 6

12 BOUNDS

13 LO BND x 0

14 LO BND y 0

15 ENDATA

Figure .:  file format example

appropriate solver. For example, a linear program like

min
∑

i∈I cixi

subject to
∑

i∈I xi 6 6

xi > 0 for all i ∈ I

can be written in  as

set I;

param c {I};
var x {i in I} >= 0;
minimize cost: sum {i in I} c[i] * x[i];

subject to cons: sum {i in I} x[i] <= 6;

So, if  could do this in  why would one bother to write a new program to

do the same in ? The reason lies in the fact that all major modeling languages

are commercial products. None of these languages is available as source code for fur-

ther development. None can be given to colleagues or used in classes, apart from very

limited “student editions”. Usually only a limited number of operating systems and ar-

chitectures is supported, sometimes only Microsoft Windows. None will run on any

non- architecture  system. In Table . we have listed all modeling languages

for linear and mixed integer programs described in Kallrath (b).

The situation has improved since  when the development of Z started. In

 at least one other open source modeling system is available, namely the  -

 language, which implements a subset of the  language and is part of the 

linear programming kit.

1 Three entries from the proceedings are omitted: , the  Optimization Subroutine Library (also

named: Optimization Solutions and Library), because  does not include a modeling language and the

product is discontinued. The - language for global optimization problems because it is no longer devel-

oped or maintained. Finally  is omitted, because it is a modeling language for nonlinear programs with

automatic differentiation, which is beyond our scope.

The Z Modeling Language 

N
am

e
U

R
L

So
lv

e
r

St
at

e







A
d

va
n

ce
d

In
te

g
ra

te
d

M
u

lt
i-

d
im

e
n

si
o

n
al

M
o

d
e

lin
g

So
ft

w
ar

e
w

w
w

.a
im

m
s.

co
m

o
p

e
n

co
m

m
e

rc
ia

l







A
M

o
d

e
lin

g
La

n
g

u
ag

e
fo

r
M

at
h

e
m

at
ic

al
P

ro
g

ra
m

m
in

g
w

w
w

.a
m

p
l.c

o
m

o
p

e
n

co
m

m
e

rc
ia

l







G
e

n
e

ra
lA

lg
e

b
ra

ic
M

o
d

e
lin

g
Sy

st
e

m
w

w
w

.g
am

s.
co

m
o

p
e

n
co

m
m

e
rc

ia
l







Li
n

g
o

w
w

w
.li

n
d

o
.c

o
m

fi
xe

d
co

m
m

e
rc

ia
l





(L

in
e

ar
|L

o
g

ic
al

|L
it

e
ra

te
)

P
ro

g
ra

m
m

in
g

La
n

g
u

ag
e

w
w

w
.v

ir
tu

al
-o

p
ti

m
a.

co
m

o
p

e
n

co
m

m
e

rc
ia

l








M

ix
e

d
In

te
g

e
r

N
o

n
-l

in
e

ar
O

p
ti

m
iz

e
r

ti
ta

n
.p

ri
n

ce
to

n
.e

d
u

/M
IN

O
P

T
o

p
e

n
m

ix
e

d







M
o

se
l

w
w

w
.d

as
h

o
p

ti
m

iz
at

io
n

.c
o

m
fi

xe
d

co
m

m
e

rc
ia

l





M

at
h

e
m

at
ic

al
P

ro
g

ra
m

m
in

g
La

n
g

u
ag

e
w

w
w

.m
ax

im
al

so
ft

w
ar

e.
co

m
o

p
e

n
co

m
m

e
rc

ia
l







O
m

n
i

w
w

w
.h

av
er

ly
.c

o
m

o
p

e
n

co
m

m
e

rc
ia

l





O

p
ti

m
iz

at
io

n
P

ro
g

ra
m

m
in

g
La

n
g

u
ag

e
w

w
w

.il
o

g
.c

o
m

fi
xe

d
co

m
m

e
rc

ia
l





-


G

N
U

M
at

h
e

m
at

ic
al

P
ro

g
ra

m
m

in
g

La
n

g
u

ag
e

w
w

w
.g

n
u

.o
rg

/s
o

ft
w

ar
e/

g
lp

k
fi

xe
d

fr
e

e







Z
u

se
In

st
it

u
te

M
at

h
e

m
at

ic
al

P
ro

g
ra

m
m

in
g

La
n

g
u

ag
e

w
w

w
.z

ib
.d

e/
ko

ch
/z

im
p

l
o

p
e

n
fr

e
e

T
ab

le
.

:
M

o
d

el
in

g
la

n
gu

ag
es

 Design and Implementation

The current trend in commercial modeling languages is to further integrate features

like data base query tools, solvers, report generators, and graphical user interfaces. To

date the freely available modeling languages are no match in this regard. Z imple-

ments maybe twenty percent of the functionality of . Nevertheless, having perhaps

the most important twenty percent proved to be sufficient for many real-world projects,

as we will see in the second part of this thesis.

According to Cunningham and Schrage (), the languages shown in Table . can

be separated into two classes, namely the independent modeling languages, which do not

rely on a specific solver and the solver modeling languages, which are deeply integrated

with a specific solver. The latter tend to be “real” programming languages which allow

the implementation of cut separation and column generation schemes.

Integrating a solver is a major problem for all independent modeling languages be-

cause it either requires recompilation or a plug-in architecture. Z does not rely on

any specific solver. In fact Z does not integrate with any solver at all, instead it

writes an  file which any solver can read. In this regard Z could be seen as an

advanced matrix generator. On the other hand it is possible to combine Z with the

solver by the use of  pipes, which eliminates the need to write (possibly very large)

 files to disk.

Unique features in Zimpl

What makes Z special is the use of rational arithmetic. With a few noted exceptions

all computations in Z are done with infinite precision rational arithmetic, ensuring

that no rounding errors can occur.

What benefits does this have? Usually, after generating the problem, either the

modeling language (Fourer and Gay, , ), or the solver will apply some so-called

preprocessing or presolving to reduce the size of the problem. When implemented with

limited precision floating-point arithmetic, it is not too unlikely that problems on the

edge of feasibility or with ill-scaled constraints do not give the same results after pre-

solving as solving the unaltered problem. To give a simple contrived example, consider

the following linear program:

min x

subject to 10−14x − 10−14y > 0

x + y > 4

x, y > 0

 . reports x = 0 and y = 4 as optimal “solution”, even though the  is infeasi-

ble. The reason is presumably that  removes all coefficients whose absolute value

is smaller than 10−13. In contrast, the preprocessing in Z performs only mathema-

tically valid transformations.

There are more problems with numerics in optimization. Virtually all solvers use

floating-point arithmetic and have various tolerances that influence the algorithm. Nu-

2 http://www.ilog.com/products/cplex

The Z Modeling Language 

merical inaccuracy lurks everywhere and strictly speaking there is no proof that any of

the solutions is correct. Here is another example. Solving

max x + 2y

subject to x + y 6 0.0000001

y > 0.0000002

x > 0

with  results in x = y = 0, which is again infeasible. The  presolving algo-

rithm completely eliminates the problem and declares it feasible. We get the same result

even if presolving is turned off, which is not surprising since the feasibility tolerance

within  defaults to 10−6. But it becomes clear that nested occurrences of fixable

variables might change the feasibility of a problem.

In Koch () the results of  on the   collection were checked with

, a program that again uses rational arithmetic to check feasibility and opti-

mality of  bases. In several cases the  bases computed by the  and 

 solvers where either non-optimal or in one case even (slightly) infeasible. We con-

ducted a similar experiment with the  mixed integer programming instances from

-. Using six  solvers, namely  version ., - Optimizer

release ., the current development version of  as of September , 

 version ..,  version . and _  version ., bases for the  re-

laxation of the -instances were computed. Default settings were used in all cases,

except for  and  where the presolving was disabled and _ where the

following settings were used: –bfp libbfp_LUSOL.so -s -si -se.

The results can be seen in Table .; listed are all instances, where at least two pro-

grams did not succeed in finding a feasible and optimal solution. Optimal means no

variable has negative reduced costs. Columns labeled Feas. indicate whether the com-

puted basis was feasible. Columns labeled Opti. indicate whether the basis was optimal.√
stands for yes, no is represented by ⊗. A — is shown in case no basis was computed

by the program because of algorithmic or numerical failures or exceeding two hours of

computing time. In one case a singular basis was produced.

 can compute an approximation κ of the condition number of the basis. The

column labeled C lists ⌊log10 κ⌋, e. g., 5.8 · 106 is shown as 6. With a few exceptions

the condition number estimates of the instances in the table are the highest ones in

the whole -. The geometric mean for all  instances is .. Even though

it is certainly possible to produce optimal feasible solutions for at least some of the

problematic instances by using different solver settings, it is clear that non-optimal or

infeasible solutions are relatively common, especially on numerically difficult instances.

3 http://www.zib.de/koch/perplex
4 http://miplib.zib.de
5 http://www.ilog.com/products/cplex
6 http://www.dashoptimization.com
7 http://www.zib.de/Optimization/Software/Soplex
8 http://www.coin-or.org
9 http://www.gnu.org/software/glpk

10 http://groups.yahoo.com/group/lp_solve

 Design and Implementation

C
P

LEX
X

P
re

ss
So

P
le

x
C

lp
G

LP
K

lp
_

so
lve

In
stan

ce
Fe

as.
O

p
ti.

Fe
as.

O
p

ti.
Fe

as.
O

p
ti.

Fe
as.

O
p

ti.
Fe

as.
O

p
ti.

Fe
as.

O
p

ti.
C

arki0
0

1
√

⊗
√

⊗
√

⊗
√

⊗
√

⊗
√

⊗
7

atlan
ta-ip

√
√

√
⊗

√
⊗

√
⊗

√
⊗

√
⊗

6

d
an

o
3

m
ip

√
√

√
⊗

√
⊗

√
√

√
√

√
√

7

h
arp

2
√

√
√

⊗
√

√
√

√
√

√
√

⊗
5

m
o

m
e

n
tu

m
1

√
√

⊗
⊗

√
√

√
√

√
√

√
⊗

6

m
o

m
e

n
tu

m
2

⊗
⊗

⊗
⊗

√
⊗

⊗
√

√
√

√
⊗

7

m
o

m
e

n
tu

m
3

⊗
⊗

⊗
⊗

⊗
⊗

⊗
√

⊗
√

—
7

m
sc9

8
-ip

√
⊗

⊗
⊗

√
⊗

√
⊗

√
⊗

—
4

m
zzv1

1
√

√
⊗

⊗
√

√
√

√
√

√
—

5

q
iu

⊗
√

⊗
√

⊗
√

⊗
√

√
√

√
√

4

ro
ll3

0
0

0
√

√
—

√
√

√
√

√
√

√
√

6

stp
3

d
√

√
√

√
√

√
√

√
—

—
6

T
ab

le
.:

R
esu

lts
o

f
so

lvin
g

th
e

ro
o

t
relaxatio

n
o

f
in

stan
ces

fro
m







-




The Z Modeling Language 

Generate LP

from Z Model
Presolve

Scale to fit into

floating-point range

Solve with floating-

point Solver. Write Basis

Unscale Unpresolve Verify Solution

Figure .: Computing exact  solutions

Now in combination with Z it will be possible to model a problem, apply pre-

solving and scale the constraint matrix to maximize the usable precision of the floating-

point arithmetic, all using rational arithmetic. After writing the resulting linear pro-

gram both as a restricted precision -file, and in a format that allows unlimited pre-

cision, the -file can be used by a standard  solver to compute a (hopefully) optimal

 basis. This basis together with the unlimited precision description of the  can be

used to unscale and undo the presolving again using rational arithmetic. Finally -

 can verify the feasibility and optimality of the solution and compute the precise

values of the decision variables. Figure . gives an overview.

There is no guarantee that the floating-point  solver is able to find a feasible or

optimal basis at all. Currently we only have heuristic remedies in this case. One is to

change the thresholds within the solver, e. g., decreasing the feasibility tolerance. An-

other is to use a solver that employs -bit instead of the usual -bit floating-point

arithmetic. Preliminary computational experiments with a special -bit version of

 (Wunderling, ) are promising in this regard. A more general solution is to

extend  to use the basis supplied by the floating-point solver as a starting point

and proceed with an all-rational-arithmetic simplex algorithm.

In the next three sections, we will show how to run Z, describe the language in

detail and give short examples on how to model some classic combinatorial problems

like the traveling salesman or the n-queens problem.

 Design and Implementation

. Invocation

In order to run Z on a model given in the file ex1.zpl type the command:

zimpl ex1.zpl

In general terms the command is:

zimpl [options] <input-files>

It is possible to give more than one input file. They are read one after the other as if

they were all one big file. If any error occurs while processing, Z prints out an error

message and aborts. In case everything goes well, the results are written into two or

more files, depending on the specified options.

-t format Selects the output format. Can be either lp, which is default, or mps, or

hum, which is only human readable.

-o name Sets the base-name for the output files.

Defaults to the name of the first input file with its path and extension

stripped off.

-F filter The output is piped through a filter. A %s in the string is replaced by the

output filename. For example -F "gzip -c >%s.gz" would compress

all the output files.

-n cform Select the format for the generation of constraint names. Can be cm,

which will number them 1 . . . n with a ‘c’ in front. cn will use the name

supplied in the subto statement and number them 1 . . . n within the

statement. cf will use the name given with the subto, then a 1 . . . n

number like in cm and then append all the local variables from the forall

statements.

-v 1..5 Set the verbosity level. 0 is quiet, 1 is default, 2 is verbose, 3 and 4 are

chatter, and 5 is debug.

-D name=val Sets the parameter name to the specified value. This is equivalent with

having this line in the Z program: param name:=val.

-b Enables bison debug output.

-f Enables flex debug output.

-h Prints a help message.

-m Writes a CPLEX mst (Mip STart) file.

-O Try to reduce the generated LP by doing some presolve analysis.

-r Writes a CPLEX ord branching order file.

-V Prints the version number.

Table .: Z options

The first output file is the problem generated from the model in either  ,

, or a “human readable” format, with extensions .lp, .mps, or .hum, respectively.

The next one is the table file, which has the extension .tbl. The table file lists all variable

and constraint names used in the model and their corresponding names in the problem

The Z Modeling Language 

file. The reason for this name translation is the limitation of the length of names in the

 format to eight characters. Also the  format restricts the length of names. The

precise limit is depending on the version.  . has a limit of  characters, and

ignores silently the rest of the name, while  . has a limit of  characters, but

will for some commands only show the first  characters in the output.

A complete list of all options understood by Z can be found in Table .. A

typical invocation of Z is for example:

zimpl -o solveme -t mps data.zpl model.zpl

This reads the files data.zpl and model.zpl as input and produces as output the files

solveme.mps and solveme.tbl. Note that in case -output is specified for a maxi-

mization problem, the objective function will be inverted, because the  format has

no provision for stating the sense of the objective function. The default is to assume

maximization.

. Format

Each -file consists of six types of statements:

◮ Sets

◮ Parameters

◮ Variables

◮ Objective

◮ Constraints

◮ Function definitions

Each statement ends with a semicolon. Everything from a hash-sign #, provided it is

not part of a string, to the end of the line is treated as a comment and is ignored. If a

line starts with the word include followed by a filename in double quotation marks,

then this file is read and processed instead of the line.

.. Expressions

Z works on its lowest level with two types of data: Strings and numbers. Wherever

a number or string is required it is also possible to use a parameter of the corresponding

value type. In most cases expressions are allowed instead of just a number or a string.

The precedence of operators is the usual one, but parentheses can always be used to

specify the evaluation order explicitly.

Numeric expressions

A number in Z can be given in the usual format, e. g. as , -. or .e-. Numeric

expressions consist of numbers, numeric valued parameters, and any of the operators

 Design and Implementation

and functions listed in Table .. Additionally the functions shown in Table . can

be used. Note that those functions are only computed with normal double precision

floating-point arithmetic and therefore have limited accuracy.

a∧b, a**b a to the power of b ab

a+b addition a + b

a-b subtraction a − b

a*b multiplication a · b
a/b division a/b

a mod b modulo a mod b

abs(a) absolute value |a|

sgn(a) sign x > 0 ⇒ 1, x < 0 ⇒ −1, else 0

floor(a) round down ⌊a⌋
ceil(a) round up ⌈a⌉
a! factorial a!

min(S) minimum of a set mins∈S

max(S) maximum of a set maxs∈S

min(a,b,c,...,n) minimum of a list min(a, b, c, . . . , n)

max(a,b,c,...,n) maximum of a list max(a, b, c, . . . , n)

card(S) cardinality of a set |S|

ord(A,n,c) ordinal c-th component of the n-th

element of set A.

if a then b

else c end
conditional

{

b, if a = true

c, if a = false

Table .: Rational arithmetic functions

sqrt(a) square root
√

a

log(a) logarithm to base 10 log
10

a

ln(a) natural logarithm ln a

exp(a) exponential function ea

Table .: Double precision functions

String expressions

A string is delimited by double quotation marks ", e. g. "Hallo Keiken".

Variant expressions

The following is either a numeric or a string expression, depending on whether expres-

sion is a string or a numeric expression:

if boolean-expression then expression else expression end

The Z Modeling Language 

The same is true for the ord(set, tuple-number, component-number) function, which

evaluates to a specific element of a set (details about sets are covered below).

Boolean expressions

These evaluate either to true or to false. For numbers and strings the relational operators

<, <=, ==, !=, >=, and > are defined. Combinations of Boolean expressions with

and, or, and xor  and negation with not are possible. The expression tuple in set-

expression (explained in the next section) can be used to test set membership of a tuple.

.. Sets

Sets consist of tuples. Each tuple can only be once in a set. The sets in Z are all

ordered, but there is no particular order of the tuples. Sets are delimited by braces, {

and }, respectively. Tuples consist of components. The components are either numbers

or strings. The components are ordered. All tuples of a specific set have the same num-

ber of components. The type of the n-th component for all tuples of a set must be the

same, i. e., they have to be either all numbers or all strings. The definition of a tuple is

enclosed in angle brackets < and >, e. g. <1,2,"x">. The components are separated

by commas. If tuples are one-dimensional, it is possible to omit the tuple delimiters in

a list of elements, but in this case they must be omitted from all tuples in the definition,

e. g. {1,2,3 } is valid while {1,2,<3> } is not.

Sets can be defined with the set statement. It consists of the keyword set, the name

of the set, an assignment operator := and a valid set expression.

Sets are referenced by the use of a template tuple, consisting of placeholders, which

are replaced by the values of the components of the respective tuple. For example, a set S

consisting of two-dimensional tuples could be referenced by <a,b> in S. If any of the

placeholders are actual values, only those tuples matching these values will be extracted.

For example, <1,b> in S will only get those tuples whose first component is 1. Please

note that if one of the placeholders is the name of an already defined parameter, set or

variable, it will be substituted. This will result either in an error or an actual value.

Examples

set A := { 1, 2, 3 };

set B := { "hi", "ha", "ho" };
set C := { <1,2,"x">, <6,5,"y">, <787,12.6,"oh"> };

For set expressions the functions and operators given in Table . are defined.

An example for the use of the if boolean-expression then set-expression else set-

expression end can be found on page  together with the examples for indexed sets.

11 a xor b := a ∧ ¬b ∨ ¬a ∧ b

 Design and Implementation

Examples

set D := A cross B;

set E := { 6 to 9 } union A without { 2, 3 };
set F := { 1 to 9 } * { 10 to 19 } * { "A", "B" };

set G := proj(F, <3,1>);
will give: { <"A",1>, <"A",2"> ... <"B",9> }

A*B,

A cross B
cross product {(x, y) | x ∈ A ∧ y ∈ B}

A+B,

A union B
union {x | x ∈ A ∨ x ∈ B}

A inter B intersection {x | x ∈ A ∧ x ∈ B}

A\B, A-B,

A without B
difference {x | x ∈ A ∧ x 6∈ B}

A symdiff B symmetric difference {x | (x ∈ A ∧ x 6∈ B) ∨ (x ∈ B ∧ x 6∈ A)}

{n..m}, generate,

{n to m by s} (default s = 1)
{x | x = n + is 6 m, i ∈ N0, x, n, m, s ∈ Z}

proj(A, t) projection The new set will consist of n-tuples, with

t = (e1, . . . , en) the i-th component being the ei-th com-

ponent of A.

if a then b

else c end
conditional

{

b, if a = true

c, if a = false

Table .: Set related functions

Conditional sets

It is possible to restrict a set to tuples that satisfy a Boolean expression. The expression

given by the with clause is evaluated for each tuple in the set and only tuples for which

the expression evaluates to true are included in the new set.

Examples

set F := { <i,j> in Q with i > j and i < 5 };

set A := { "a", "b", "c" };
set B := { 1, 2, 3 };

set V := { <a,2> in A*B with a == "a" or a == "b" };
will give: { <"a",2>, <"b",2> }

Indexed sets

It is possible to index one set with another set resulting in a set of sets. Indexed sets are

accessed by adding the index of the set in brackets [and], like S[7]. Table . lists the

available functions. There are three possibilities how to assign to an indexed set:

The Z Modeling Language 

◮ The assignment expression is a list of comma-separated pairs, consisting of a tuple

from the index set and a set expression to assign.

◮ If an index tuple is given as part of the index, e. g. <i> in I, the assignment is

evaluated for each value of index tuple.

◮ By use of a function that returns an indexed set.

Examples

set I := { 1..3 };

set A[I] := <1> {"a","b"}, <2> {"c","e"}, <3> {"f"};
set B[<i> in I] := { 3 * i };

set P[] := powerset(I);
set J := indexset(P);
set S[] := subset(I, 2);

set K[<i> in I] := if i mod 2 == 0 then { i } else { -i } end;

powerset(A) generates all subsets of A {X | X ⊆ A}

subset(A,n) generates all subsets of A

with n elements {X | X ⊆ A ∧ |X| = n}

indexset(A) the index set of A {1 . . . |A|}

Table .: Indexed set functions

.. Parameters

Parameters can be declared with or without an index set. Without indexing a parameter

is just a single value, which is either a number or a string. For indexed parameters there

is one value for each member of the set. It is possible to declare a default value.

Parameters are declared in the following way: The keyword param is followed by the

name of the parameter optionally followed by the index set. Then after the assignment

sign comes a list of pairs. The first element of each pair is a tuple from the index set,

while the second element is the value of the parameter for this index.

Examples

set A := { 12 .. 30 };
set C := { <1,2,"x">, <6,5,"y">, <3,7,"z" };

param q := 5;
param u[A] := <13> 17, <17> 29, <23> 12 default 99;

param w[C] := <1,2,"x"> 1/2, <6,5,"y"> 2/3;
param x[<i> in { 1 .. 8 } with i mod 2 == 0] := 3 * i;

Assignments need not to be complete. In the example, no value is given for index

<3,7,"z"> of parameter w. This is correct as long as it is never referenced.

 Design and Implementation

Parameter tables

It is possible to initialize multi-dimensional indexed parameters from tables. This is

especially useful for two-dimensional parameters. The data is put in a table structure

with | signs on each margin. Then a headline with column indices has to be added,

and one index for each row of the table is needed. The column index has to be one-

dimensional, but the row index can be multi-dimensional. The complete index for the

entry is built by appending the column index to the row index. The entries are separated

by commas. Any valid expression is allowed here. As can be seen in the third example

below, it is possible to add a list of entries after the table.

Examples

set I := { 1 .. 10 };
set J := { "a", "b", "c", "x", "y", "z" };

param h[I*J] := | "a", "c", "x", "z" |
|1| 12, 17, 99, 23 |

|3| 4, 3,-17, 66*5.5 |
|5| 2/3, -.4, 3, abs(-4)|

|9| 1, 2, 0, 3 | default -99;

param g[I*I*I] := | 1, 2, 3 |
|1,3| 0, 0, 1 |

|2,1| 1, 0, 1 |;

param k[I*I] := | 7, 8, 9 |
|4| 89, 67, 55 |
|5| 12, 13, 14 |, <1,2> 17, <3,4> 99;

The last example is equivalent to:

param k[I*I] := <4,7> 89, <4,8> 67, <4,9> 44, <5,7> 12,
<5,8> 13, <5,9> 14, <1,2> 17, <3,4> 99;

.. Variables

Like parameters, variables can be indexed. A variable has to be one out of three possible

types: Continuous (called real), binary or integer. The default type is real. Variables may

have lower and upper bounds. Defaults are zero as lower and infinity as upper bound.

Binary variables are always bounded between zero and one. It is possible to compute

the value of the lower or upper bounds depending on the index of the variable (see the

last declaration in the example). Bounds can also be set to infinity and -infinity.

The Z Modeling Language 

Examples

var x1;

var x2 binary;
var y[A] real >= 2 <= 18;

var z[<a,b> in C] integer
>= a * 10 <= if b <= 3 then p[b] else 10 end;

.. Objective

There must be at most one objective statement in a model. The objective can be either

minimize or maximize. Following the keyword is a name, a colon : and then a linear

term expressing the objective function.

Example

minimize cost: 12 * x1 -4.4 * x2
+ sum <a> in A : u[a] * y[a]

+ sum <a,b,c> in C with a in E and b > 3 : -a/2 * z[a,b,c];
maximize profit: sum <i> in I : c[i] * x[i];

.. Constraints

The general format for a constraint is:

subto name: term sense term

Alternatively it is also possible to define ranged constraints, which have the form:

name: expr sense term sense expr

name can be any name starting with a letter. term is defined as in the objective. sense

is one of <=, >= and ==. In case of ranged constraints both senses have to be equal

and may not be ==. expr is any valid expression that evaluates to a number. Many

constraints can be generated with one statement by the use of the forall instruction,

as shown below.

Examples

subto time: 3 * x1 + 4 * x2 <= 7;

subto space: 50 >= sum <a> in A: 2 * u[a] * y[a] >= 5;
subto weird: forall <a> in A: sum <a,b,c> in C: z[a,b,c] == 55;

subto c21: 6 * (sum <i> in A: x[i] + sum <j> in B : y[j]) >= 2;
subto c40: x[1] == a[1] + 2 * sum <i> in A do 2*a[i]*x[i]*3 + 4;

.. Details on sum and forall

The general forms are:

forall index do term and sum index do term

 Design and Implementation

It is possible to nest several forall instructions. The general form of index is:

tuple in set with boolean-expression

It is allowed to write a colon : instead of do and a vertical bar | instead of with. The

number of components in the tuple and in the members of the set must match. The

with part of an index is optional. The set can be any expression giving a set.

Examples

forall <i,j> in X cross { 1 to 5 } without { <2,3> }
with i > 5 and j < 2 do

sum <i,j,k> in X cross { 1 to 3 } cross Z do
p[i] * q[j] * w[j,k] >= if i == 2 then 17 else 53;

Note that in the example i and j are set by the forall instruction. So they are fixed in

all invocations of sum.

.. Details on if in constraints

It is possible to put two variants of a constraint into an if-statement. The same applies

for terms. A forall statement inside the result part of an if is also possible.

Examples

subto c1: forall <i> in I do

if (i mod 2 == 0) then 3 * x[i] >= 4
else -2 * y[i] <= 3 end;

subto c2: sum <i> in I :

if (i mod 2 == 0) then 3 * x[i] else -2 * y[i] end <= 3;

.. Initializing sets and parameters from a file

It is possible to load the values for a set or a parameter from a file. The syntax is:

read filename as template [skip n] [use n] [fs s] [comment s]

filename is the name of the file to read. template is a string with a template for the

tuples to generate. Each input line from the file is split into fields. The splitting is done

according to the following rules: Whenever a space, tab, comma, semicolon or double

colon is encountered a new field is started. Text that is enclosed in double quotes is not

split and the quotes are always removed. When a field is split all space and tab characters

around the splitting point are removed. If the split is due to a comma, semicolon or

double colon, each occurrence of these characters starts a new field.

The Z Modeling Language 

Examples

All these lines have three fields:

Hallo;12;3
Moin 7 2

"Hallo, Peter"; "Nice to meet you" 77
,,2

For each component of the tuple, the number of the field to use for the value is given,

followed by either n if the field should be interpreted as a number or s for a string. After

the template some optional modifiers can be given. The order does not matter. skip

n instructs to skip the first n lines of the file. use n limits the number of lines to use

to n. comment s sets a list of characters that start comments in the file. Each line is

ended when any of the comment characters is found. When a file is read, empty lines

are skipped and not counted for the use clause. They are counted for the skip clause.

Examples

set P := { read "nodes.txt" as "<1s>" };

nodes.txt:
Hamburg → <"Hamburg">

München → <"München">

Berlin → <"Berlin">

set Q := { read "blabla.txt" as "<1s,5n,2n>" skip 1 use 2 };

blabla.txt:
Name;Nr;X;Y;No → skip

Hamburg;12;x;y;7 → <"Hamburg",,>

Bremen;4;x;y;5 → <"Bremen,,>

Berlin;2;x;y;8 → skip

param cost[P] := read "cost.txt" as "<1s> 2n" comment "#";

cost.txt:
Name Price → skip

Hamburg 1000 → <"Hamburg"> 

München 1200 → <"München"> 

Berlin 1400 → <"Berlin"> 

param cost[Q] := read "haha.txt" as "<3s,1n,2n> 4s";

haha.txt:

1:2:ab:con1 → <"ab",,> "con"

2:3:bc:con2 → <"bc",,> "con"

4:5:de:con3 → <"de",,> "con"

 Design and Implementation

As with table format input, it is possible to add a list of tuples or parameter entries after

a read statement.

Examples

set A := { read "test.txt" as "<2n>", <5>, <6> };
param winniepoh[X] :=

read "values.txt" as "<1n,2n> 3n", <1,2> 17, <3,4> 29;

.. Function definitions

It is possible to define functions within Z. The value a function returns has to be

either a number, a string or a set. The arguments of a function can only be numbers or

strings, but within the function definition it is possible to access all otherwise declared

sets, parameters and variables.

The definition of a function has to start with defnumb, defstrg or defset, de-

pending on the return value. Then follows the name of the function and a list of argu-

ment names put in parentheses. Next is an assignment operator := and a valid expres-

sion or set expression.

Examples

defnumb dist(a,b) := sqrt(a*a + b*b);
defstrg huehott(a) := if a < 0 then "hue" else "hott" end;

defset bigger(i) := { <j> in K with j > i };

.. Extended constraints

Z has the possibility to generate systems of constraints that mimic conditional con-

straints. The general syntax is as follows (note that the else part is optional):

vif boolean-constraint then constraint [else constraint] end

where boolean-constraint consists of a linear expression involving variables. All these

variables have to be bounded integer or binary variables. It is not possible to use any

continuous variables or integer variables with infinite bounds in a boolean-constraint.

All comparison operators (<, 6, ==, !=, >, >) are allowed. Also combination of sev-

eral terms with and, or, and xor and negation with not is possible. The conditional

constraints (those which follow after then or else) may include bounded continu-

ous variables. Be aware that using this construct will lead to the generation of several

additional constraints and variables.

Examples

var x[I] integer >= 0 <= 20;
subto c1: vif 3 * x[1] + x[2] != 7

then sum <i> in I : y[i] <= 17

The Z Modeling Language 

else sum <k> in K : z[k] >= 5 end;
subto c2: vif x[1] == 1 and x[2] > 5 then x[3] == 7 end;

subto c3: forall <i> in I with i < max(I) :
vif x[i] >= 2 then x[i + 1] <= 4 end;

.. Extended functions

It is possible to use special functions on terms with variables that will automatically be

converted into a system of inequalities. The arguments of these functions have to be

linear terms consisting of bounded integer or binary variables. At the moment only the

function vabs(t) that computes the absolute value of the term t is implemented, but

functions like the minimum or the maximum of two terms, or the sign of a term can be

implemented in a similar manner. Again, using this construct will lead to the generation

of several additional constraints and variables.

Examples

var x[I] integer >= -5 <= 5;
subto c1: vabs(sum <i> in I : x[i]) <= 15;

subto c2: vif vabs(x[1] + x[2]) > 2 then x[3] == 2 end;

.. The do print and do check commands

The do command is special. It has two possible incarnations: print and check. print

will print to the standard output stream whatever numerical, string, Boolean or set

expression, or tuple follows it. This can be used for example to check if a set has the

expected members, or if some computation has the anticipated result. check always

precedes a Boolean expression. If this expression does not evaluate to true, the program

is aborted with an appropriate error message. This can be used to assert that specific

conditions are met. It is possible to use a forall clause before a print or check

statement.

Examples

set I := { 1..10 };

do print I;
do forall <i> in I with i > 5 do print sqrt(i);

do forall <p> in P do check sum <p,i> in PI : 1 >= 1;

. Modeling examples

In this section we show some examples of well-known problems translated into Z

format.

 Design and Implementation

.. The diet problem

This is the first example in Chvátal (, Chapter , page ). It is a classic so-called diet

problem, see for example Dantzig () about its implications in practice.

Given a set of foods F and a set of nutrients N, we have a table πfn of the amount

of nutrient n in food f. Now Πn defines how much intake of each nutrient is needed.

∆f denotes for each food the maximum number of servings acceptable. Given prices cf

for each food, we have to find a selection of foods that obeys the restrictions and has

minimal cost. An integer variable xf is introduced for each f ∈ F indicating the number

of servings of food f. Integer variables are used, because only complete servings can be

obtained, i. e., half an egg is not an option. The problem may be stated as:

min
∑

f∈F

cfxf subject to

∑

f∈F

πfnxf > Πn for all n ∈ N

0 6 xf 6 ∆f for all f ∈ F

xf ∈ N0 for all f ∈ F (.)

This translates into Z as follows:

1 s e t Food : = { " Oatmeal " , " C h i c ken " , " Eggs " ,

2 " M i l k " , " P i e " , " Por k " } ;

3 s e t N u t r i e n t s : = { " E n er gy " , " P r o t e i n " , " C al c i u m " } ;

4 s e t A t t r : = N u t r i e n t s + { " S e r v i n g s " , " P r i c e " } ;

5

6 param needed [N u t r i e n t s] : =

7 < " E n er gy " > 2 0 0 0 , < " P r o t e i n " > 5 5 , < " C al c i u m " > 8 0 0 ;

8

9 param data [Food * A t t r] : =

10 | " S e r v i n g s " , " E n er gy " , " P r o t e i n " , " C al c i u m " , " P r i c e " |

11 | " Oatmeal " | 4 , 1 1 0 , 4 , 2 , 3 |

12 | " C h i c ken " | 3 , 2 0 5 , 3 2 , 1 2 , 2 4 |

13 | " Eggs " | 2 , 1 6 0 , 1 3 , 5 4 , 1 3 |

14 | " M i l k " | 8 , 1 6 0 , 8 , 2 8 4 , 9 |

15 | " P i e " | 2 , 4 2 0 , 4 , 2 2 , 2 0 |

16 | " Por k " | 2 , 2 6 0 , 1 4 , 8 0 , 1 9 | ;

17 # (k c a l) (g) (mg) (c e n t s)

18

19 v a r x [< f > i n Food] i n t e g e r > = 0 < = data [f , " S e r v i n g s "] ;

20

21 mi n i mi ze c o s t : sum < f > i n Food : data [f , " P r i c e "] * x [f] ;

22

23 su b to need : f o r a l l < n > i n N u t r i e n t s do

24 sum < f > i n Food : data [f , n] * x [f] > = needed [n] ;

The cheapest meal satisfying all requirements costs  cents and consists of four servings

of oatmeal, five servings of milk and two servings of pie.

The Z Modeling Language 

.. The traveling salesman problem

In this example we show how to generate an exponential description of the symmetric

traveling salesman problem () as given for example in Schrijver (, Section .).

Let G = (V, E) be a complete graph, with V being the set of cities and E being the set

of links between the cities. Introducing binary variables xij for each (i, j) ∈ E indicating

if edge (i, j) is part of the tour, the  can be written as:

min
∑

(i,j)∈E

dijxij subject to

∑

(i,j)∈δv

xij = 2 for all v ∈ V

∑

(i,j)∈E(U)

xij 6 |U| − 1 for all U ⊆ V, ∅ 6= U 6= V (.)

xij ∈ {0, 1} for all (i, j) ∈ E

The data is read in from a file that gives the number of the city and the x and y coordi-
nates. Distances between cities are assumed Euclidean. For example:

City X Y
Berlin 5251 1340
Frankfurt 5011 864
Leipzig 5133 1237
Heidelberg 4941 867
Karlsruhe 4901 840
Hamburg 5356 998
Bayreuth 4993 1159
Trier 4974 668
Hannover 5237 972

Stuttgart 4874 909
Passau 4856 1344
Augsburg 4833 1089
Koblenz 5033 759
Dortmund 5148 741
Bochum 5145 728
Duisburg 5142 679
Wuppertal 5124 715
Essen 5145 701
Jena 5093 1158

The formulation in Z follows below. Please note that P[] holds all subsets of the

cities. As a result  cities is about as far as one can get with this approach. Information

on how to solve much larger instances can be found on the  website.

1 s e t V : = { r ead " t s p . dat " as "<1 s >" comment " # " } ;

2 s e t E : = { < i , j > i n V * V w i th i < j } ;

3 s e t P [] : = p ow er set (V) ;

4 s e t K : = i n d e x s e t (P) ;

5 param px [V] : = r ead " t s p . dat " as "<1 s > 2 n " comment " # " ;

6 param py [V] : = r ead " t s p . dat " as "<1 s > 3 n " comment " # " ;

7 defnumb d i s t (a , b) : = s q r t ((px [a]−px [b]) ^ 2 + (py [a]−py [b]) ^ 2) ;

8

9 v a r x [E] b i n a r y ;

10

11 mi n i mi ze c o s t : sum < i , j > i n E : d i s t (i , j) * x [i , j] ;

12

13 su b to two_connected : f o r a l l < v > i n V do

14 (sum < v , j > i n E : x [v , j]) + (sum < i , v > i n E : x [i , v]) = = 2 ;

12 http://www.tsp.gatech.edu

 Design and Implementation

15

16 su b to n o_su b tou r :

17 f o r a l l < k > i n K w i th

18 c a r d (P [k]) > 2 and c a r d (P [k]) < c a r d (V) − 2 do

19 sum < i , j > i n E w i th < i > i n P [k] and < j > i n P [k] : x [i , j]

20 <= c a r d (P [k]) − 1 ;

The resulting LP has  variables, , constraints, and ,, non-zero entries in

the constraint matrix, giving an -file size of  .  solves this to optimality

without branching in less than a minute.

An optimal tour for the data above is Berlin, Hamburg, Hannover, Dortmund, Bo-

chum, Wuppertal, Essen, Duisburg, Trier, Koblenz, Frankfurt, Heidelberg, Karlsruhe,

Stuttgart, Augsburg, Passau, Bayreuth, Jena, Leipzig, Berlin.

.. The capacitated facility location problem

Here we give a formulation of the capacitated facility location problem. It may also be

considered as a kind of bin packing problem with packing costs and variable sized bins,

or as a cutting stock problem with cutting costs.

Given a set of possible plants P to build, and a set of stores S with a certain demand

δs that has to be satisfied, we have to decide which plant should serve which store. We

have costs cp for building plant p and cps for transporting the goods from plant p to

store s. Each plant has only a limited capacity κp. We insist that each store is served by

exactly one plant. Of course we are looking for the cheapest solution:

min
∑

p∈P

cpzp +
∑

p∈P,s∈S

cpszps subject to

∑

p∈P

xps = 1 for all s ∈ S (.)

xps 6 zp for all s ∈ S, p ∈ P (.)
∑

s∈S

δsxps 6 κp for all p ∈ P (.)

xps, zp ∈ {0, 1} for all p ∈ P, s ∈ S

We use binary variables zp, which are set to one, if and only if plant p is to be built.

Additionally we have binary variables xps, which are set to one if and only if plant p

serves shop s. Equation (.) demands that each store is assigned to exactly one plant.

Inequality (.) makes sure that a plant that serves a shop is built. Inequality (.) assures

that the shops are served by a plant which does not exceed its capacity. Putting this into

Z yields the program shown on the next page. The optimal solution for the instance

described by the program is to build plants A and C. Stores , , and  are served by plant

A and the others by plant C. The total cost is .

13 Only  simplex iterations are needed to reach the optimal solution.

The Z Modeling Language 

1 s e t PLANTS : = { " A " , " B " , " C " , "D" } ;

2 s e t STORES : = { 1 . . 9 } ;

3 s e t PS : = PLANTS * STORES ;

4

5 # How much does i t c o s t to b u i l d a p l a n t and what c a p a c i t y

6 # w i l l i t then have ?

7 param b u i l d i n g [PLANTS] : = < " A " > 5 0 0 , < " B " > 6 0 0 , < " C " > 7 0 0 , < "D" > 8 0 0 ;

8 param c a p a c i t y [PLANTS] : = < " A " > 4 0 , < " B " > 5 5 , < " C " > 7 3 , < "D" > 9 0 ;

9

10 # The demand o f each s t o r e

11 param demand [STORES] : = < 1 > 1 0 , < 2 > 1 4 ,

12 < 3 > 1 7 , < 4 > 8 ,

13 <5> 9 , < 6 > 1 2 ,

14 < 7 > 1 1 , < 8 > 1 5 ,

15 < 9 > 1 6 ;

16

17 # T r a n s p o r t a t i o n c o s t from each p l a n t to each s t o r e

18 param t r a n s p o r t [PS] : =

19 | 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 |

20 | " A " | 5 5 , 4 , 1 7 , 3 3 , 4 7 , 9 8 , 1 9 , 1 0 , 6 |

21 | " B " | 4 2 , 1 2 , 4 , 2 3 , 1 6 , 7 8 , 4 7 , 9 , 8 2 |

22 | " C " | 1 7 , 3 4 , 6 5 , 2 5 , 7 , 6 7 , 4 5 , 1 3 , 5 4 |

23 | "D" | 6 0 , 8 , 7 9 , 2 4 , 2 8 , 1 9 , 6 2 , 1 8 , 4 5 | ;

24

25 v a r x [PS] b i n a r y ; # I s p l a n t p s u p p l y i n g s t o r e s ?

26 v a r z [PLANTS] b i n a r y ; # I s p l a n t p b u i l t ?

27

28 # We want i t cheap

29 mi n i mi ze c o s t : sum < p > i n PLANTS : b u i l d i n g [p] * z [p]

30 + sum < p , s > i n PS : t r a n s p o r t [p , s] * x [p , s] ;

31

32 # Each s t o r e i s s u p p l i e d by e x a c t l y one p l a n t

33 su b to a s s i g n :

34 f o r a l l < s > i n STORES do

35 sum < p > i n PLANTS : x [p , s] = = 1 ;

36

37 # To be a b l e to s u p p l y a s t o r e , a p l a n t must be b u i l t

38 su b to b u i l d :

39 f o r a l l < p , s > i n PS do

40 x [p , s] < = z [p] ;

41

42 # The p l a n t must be a b l e to meet th e demands from a l l s t o r e s

43 # t h a t a r e a s s i g n e d to i t

44 su b to l i m i t :

45 f o r a l l < p > i n PLANTS do

46 sum < s > i n S : demand [s] * x [p , s] < = c a p a c i t y [p] ;

 Design and Implementation

.. The n-queens problem

The problem is to place n queens on a n × n chessboard so that no two queens are on

the same row, column or diagonal. The n-queens problem is a classic combinatorial

search problem often used to test the performance of algorithms that solve satisfiability

problems. Note though, that there are algorithms available which need linear time in

practise, like, for example, those of Sosič and Gu (). We will show four different

models for the problem and compare their performance.

The integer model

The first formulation uses one general integer variable for each row of the board. Each

variable can assume the value of a column, i. e., we have n variables with bounds 1 . . . n.

Next we use the vabs extended function to model an all different constraint on the

variables (see constraint c). This makes sure that no queen is located on the same col-

umn than any other queen. The second constraint (c) is used to block all the diagonals

of a queen by demanding that the absolute value of the row distance and the column

distance of each pair of queens are different. We model a 6= b by abs(a − b) > 1.

Note that this formulation only works if a queen can be placed in each row, i. e., if

the size of the board is at least 4 × 4.

1 param queens : = 8 ;

2

3 s e t C : = { 1 . . queens } ;

4 s e t P : = { < i , j > i n C * C w i th i < j } ;

5

6 v a r x [C] i n t e g e r > = 1 < = queens ;

7

8 su b to c1 : f o r a l l < i , j > i n P do vabs (x [i] − x [j]) > = 1 ;

9 su b to c2 : f o r a l l < i , j > i n P do

10 vabs (vabs (x [i] − x [j]) − abs (i − j)) > = 1 ;

The following table shows the performance of the model. Since the problem is modeled

as a pure satisfiability problem, the solution time depends only on how long it takes to

find a feasible solution. The columns titled Vars, Cons, and NZ denote the number

of variables, constraints and non-zero entries in the constraint matrix of the generated

integer program. Nodes lists the number of branch-and-bound nodes evaluated by the

solver, and time gives the solution time in  seconds.

Queens Vars Cons NZ Nodes Time [s]

8 344 392 951 1,324 <1

12 804 924 2,243 122,394 120

16 1,456 1,680 4,079 >1 mill. >1,700

14 Which is, in fact, rather random.

The Z Modeling Language 

As we can see, between  and  queens is the maximum instance size we can expect to

solve with this model. Neither changing the  parameters to aggressive cut genera-

tion nor setting emphasis on integer feasibility improves the performance significantly.

The binary models

Another approach to model the problem is to have one binary variable for each square

of the board. The variable is one if and only if a queen is on this square and we maximize

the number of queens on the board.

For each square we compute in advance which other squares are blocked if a queen

is placed on this particular square. Then the extended vif constraint is used to set the

variables of the blocked squares to zero if a queen is placed.

1 param columns : = 8 ;

2

3 s e t C : = { 1 . . columns } ;

4 s e t CxC : = C * C ;

5

6 s e t TABU [< i , j > i n CxC] : = { <m, n > i n CxC w i th (m ! = i or n ! = j)

7 and (m = = i or n = = j or abs (m − i) = = abs (n − j)) } ;

8

9 v a r x [CxC] b i n a r y ;

10

11 maximize queens : sum < i , j > i n CxC : x [i , j] ;

12

13 su b to c1 : f o r a l l < i , j > i n CxC do v i f x [i , j] = = 1 then

14 sum <m, n > i n TABU [i , j] : x [m, n] < = 0 end ;

Using extended formulations can make the models more comprehensible. For example,

replacing constraint c in line  with an equivalent one that does not use vif as shown

below, leads to a formulation that is much harder to understand.

13 su b to c2 : f o r a l l < i , j > i n CxC do

14 c a r d (TABU [i , j]) * x [i , j]

15 + sum <m, n > i n TABU [i , j] : x [m, n] < = c a r d (TABU [i , j]) ;

After the application of the  presolve procedure both formulations result in iden-

tical integer programs. The performance of the model is shown in the following table. S

indicates the  settings used: Either (D)efault, (C)uts, or (F)easibility . Root Node

indicates the objective function value of the  relaxation of the root node.

15 Cuts: mip cuts all 2 and mip strategy probing 3.

16 Feasibility: mip cuts all -1 and mip emph 1

 Design and Implementation

Queens S Vars Cons NZ Root Node Nodes Time [s]

8 D 384 448 2,352 13.4301 241 <1

C 8.0000 0 <1

12 D 864 1,008 7,208 23.4463 20,911 4

C 12.0000 0 <1

16 D 1,536 1,792 16,224 35.1807 281,030 1,662

C 16.0000 54 8

24 C 3,456 4,032 51,856 24.0000 38 42

32 C 6,144 7,168 119,488 56.4756 >5,500 >2,000

This approach solves instances with more than  queens. The use of aggressive cut

generation improves the upper bound on the objective function significantly, though it

can be observed that for values of n larger than   is not able to deduce the trivial

upper bound of n. If we use the following formulation instead of constraint c, this

changes:

13 su b to c3 : f o r a l l < i , j > i n CxC do

14 f o r a l l <m, n > i n TABU [i , j] do x [i , j] + x [m, n] < = 1 ;

As shown in the table below, the optimal upper bound on the objective function is

always found in the root node. This leads to a similar situation as in the integer formu-

lation, i. e., the solution time depends mainly on the time it needs to find the optimal

solution. While reducing the number of branch-and-bound nodes evaluated, aggressive

cut generation increases the total solution time.

With this approach instances up to  queens can be solved. At this point the integer

program gets too large to be generated. Even though the  presolve routine is able

to aggregate the constraints again, Z needs too much memory to generate the .

The column labeled Pres. NZ lists the number of non-zero entries after the presolve

procedure.

Pres. Root Time

Queens S Vars Cons NZ NZ Node Nodes [s]

16 D 256 12,640 25,280 1,594 16.0 0 <1

32 D 1,024 105,152 210,304 6,060 32.0 58 5

64 D 4,096 857,472 1,714,944 23,970 64.0 110 60

64 C 64.0 30 89

96 D 9,216 2,912,320 5,824,640 53,829 96.0 70 193

96 C 96.0 30 410

96 F 96.0 69 66

17 For the  queens instance the optimal solution is found after  nodes, but the upper bound is still

..

The Z Modeling Language 

Finally, we will try the following set packing formulation:

13 su b to row : f o r a l l < i > i n C do

14 sum < i , j > i n CxC : x [i , j] < = 1 ;

15

16 su b to c o l : f o r a l l < j > i n C do

17 sum < i , j > i n CxC : x [i , j] < = 1 ;

18

19 su b to diag_row_do : f o r a l l < i > i n C do

20 sum <m, n > i n CxC w i th m − i = = n − 1 : x [m, n] < = 1 ;

21

22 su b to diag_row_up : f o r a l l < i > i n C do

23 sum <m, n > i n CxC w i th m − i = = 1 − n : x [m, n] < = 1 ;

24

25 su b to d i a g _ c o l _ d o : f o r a l l < j > i n C do

26 sum <m, n > i n CxC w i th m − 1 = = n − j : x [m, n] < = 1 ;

27

28 su b to d i a g _ c o l _ u p : f o r a l l < j > i n C do

29 sum <m, n > i n CxC w i th c a r d (C) − m = = n − j : x [m, n] < = 1 ;

Here again, the upper bound on the objective function is always optimal. The size of the

generated  is even smaller than that of the former model after presolve. The results for

different instances size are shown in the following table:

Queens S Vars Cons NZ Root Node Nodes Time [s]

64 D 4,096 384 16,512 64.0 0 <1

96 D 9,216 576 37,056 96.0 1680 331

96 C 96.0 1200 338

96 F 96.0 121 15

128 D 16,384 768 65,792 128.0 >7000 >3600

128 F 128.0 309 90

In case of the  queens instance with default settings, a solution with  queens is

found after  branch-and-bound nodes, but  was not able to find the optimal

solution within an hour. From the performance of the Feasible setting it can be pre-

sumed that generating cuts is not beneficial for this model.

 Design and Implementation

. Further developments

Z is under active development. The following extensions are planned in the future:

◮ Improved presolving and postsolving. Up to now only basic presolving algo-

rithms are implemented. Many more are known, e. g., Brearley et al. (), Tom-

lin and Welch (, ), Bixby and Wagner (), Andersen and Andersen

(), Fourer and Gay (), Savelsbergh (), Gondzio (), Mészàros and

Suhl ().

◮ More extended functions, in particular vmin, vmax and vsgn.

◮ Direct use of Boolean constraints, like, for example, subto c1: a and b, with

a and b being binary variables.

◮ Additional output formats, for example, -output according to Fourer et al.

(b) and an interchange format with  (Koch, ).

◮ Automatic LATEX output of the model like in  (Hürlimann, ).

◮ The possibility to specify more than one objective function. This can be useful for

example for highly degenerate problems, like those in Chapter . One objective

function is an illegitimate perturbed one and the other is the original one.

◮ More input/data-reading routines for multi-dimensional parameters.

◮ Incorporation of semi-continuous variables.

◮ More convenient back-translation of solver output into the original namespace,

possibly some kind of report generator.

◮ A C- to make it possible to embed Z models into programs.

Furthermore limited experiments with extremely large problems (more than  million

variables) suggest that improved storage schemes for repetitive data like for example

lower bounds might be useful.

Chapter 

Implementing Zimpl

As soon as we started programming, we found to our surprise that it

wasn’t as easy to get programs right as we had thought. Debugging had to

be discovered. I can remember the exact instant when I realized that a

large part of my life from then on was going to be spent in finding mistakes

in my own programs.

— Maurice Wilkes discovers debugging, 

Debugging is twice as hard as writing the code in the first place.

Therefore, if you write the code as cleverly as possible, you are,

by definition, not smart enough to debug it.

— Brian W. Kernighan

Beware of bugs in the above code;

I have only proved it correct, not tried it.

— Donald Knuth

In this chapter, we will give an overview on the implementation of Z, describe

some features like the set implementation and the extended constraints in more detail,

and discuss some of the design decisions taken. We will try not only to describe what

we have done, but also how and why we have done it.

. Notes on software engineering

Much of the experience gained by building, maintaining, and porting mathematical

software for several years influenced the software engineering practices used when im-

plementing Z.

For a broader view on the subject we would like to refer to the literature, notably the

-year anniversary edition of Brooks (), which additionally includes as chapter 

1 e. g.  (Wunderling, ),  (Martin, ), and  (Koch, ).



 Design and Implementation

the essay “No Silver Bullet” which sums up much of the results on the topic in the last 

years. For general guidelines on good programming practice we recommend Kernighan

and Pike (), Bentley (, ).

What are the properties good software should have?

◮ Correctness

◮ Maintainability

◮ Extensibility

◮ Reusability

◮ Portability

◮ Efficiency

Correctness is about a program doing what it is intended to do. In a mathematical

environment the intention of a program and the algorithms are usually clear and well

specified. While any attempts to derive automatic formal proofs of correctness for non-

trivial programs failed in practice, there is by means of the assert facility some support

for runtime checks of preconditions, postconditions, and invariants in C/C++. Other

languages as for example Eiffel (Meyer, ) have far more elaborate mechanisms in

this regard. C and C++ both have the property that it is not only very easy for the pro-

grammer to introduce errors, but also that these errors are very likely to go unnoticed

until disaster strikes, e. g. the program crashes. Examples are out of bound array ac-

cesses or even string handling. Errors like these can easily happen in C. C++ on the

other hand is a highly complex language, which allows for extremely involved errors.

The vast amount of literature on this subject literally speaks volumes (see e. g. Meyers,

, , Sutter, , , Dewhurst, ). Consequently there is also a wealth of

tools available to support the programmer finding these errors. We will introduce some

of them in Section ...

Maintainability is about how easy it is later on to understand the code and fix errors

when they are found. The main means to maintainability is to structure programs in

a way which allows to conceal the effect of any change in the program to a small and

easy to locate area of code. For example, in a program that only uses global variables

and computed goto’s it will be very hard to make sure a change will only affect the right

thing. Modular programming aims at concentrating code that conceptually belongs

together at a single place, while structured programming strives at making the execution

paths of a program easier to understand. Adding to this, object-oriented programming

tries to hide the actual data and implementation in objects behind interfaces used to

communicate with these objects. In theory this would allow to make sure that no change

in the object, which does not change the interface has any influence on the rest of the

program.

Extensibility is about how easy further functionality can be incorporated in a pro-

gram. Programs that are easy to maintain tend also to be extensible, provided the design

Implementing Z 

of the program is broad enough to embrace the extension. In this sense extensibility is

mainly a design property.

Reusability is about how easy the more general parts of a program can be reused

in other projects. One of the initial promises of object-oriented programming was to

considerably increase the amount of reusable code. As became evident, this did not

happen. One reason may be the approximately three times higher effort it needs to

produce a reusable component (Brooks, , Chapter ). Another question is how

much software is reusable in principle. It is not obvious, which software, apart from

some general data structures, i. e., lists, trees, etc., and some well-known algorithms,

e. g. sorting and some utility functions, is likely to be reused.

Portability is about how easy a program can be compiled and run on a different plat-

form. This depends usually on three topics. First, how standard conformant is the code

of the program? Second, how standard conformant are the compilers and third, how

portable are any libraries and needed utilities like for example parser generators, etc.?

The second point is a serious problem in C++ before and since the standardization in

. There are interrelations between the first and the second point, as all program-

ming languages have features, which tend to differ more often between compilers than

others. Using such features heavily in a program is calling for trouble. The third point

is especially important, because it is the most common single reason for insuperable

porting problems. Using a library like, for example, the Microsoft Foundation Classes

makes it virtually impossible to port a program to any non Windows platform.

Efficiency is about how fast the program is running. This is foremost a question of

choosing the right algorithms. It is to distinguish between the speed of the program on

the intended set of inputs and on a general input of size n. Depending on the runtime

complexity of the algorithms employed, a program may well run fast on the intended

inputs, but may scale badly in case of much larger inputs. The choice of programming

language and the implementation of the algorithms itself seldom imposes a factor of

more than , onto the running time of a program.

We tried to address all of the above points in Z. Assert statements are extensively

used to state preconditions, postconditions, and invariants. One out of six statements in

the code is an assertion. It should be noted that assertions also act as a “life” comment

in the code. In contrast to real comments, asserts are always correct, since they are

verified at runtime.

In order to improve maintainability most data objects in Z are encapsulated

and only accessible via their interfaces. This also helps to make the program easier to

extend, as for example the complete implementation of sets could be replaced with only

minor changes in the rest of the program. The use of parser and lexical analyzer gen-

erators makes it easier to extend the language. The encapsulation also made it possible

2 “always” here means “for the checked cases”.

 Design and Implementation

to reuse the code dealing with storage and processing of the generated linear integer

program from .

System CPU OS Compiler

PC Pentium-4 Linux/i386 2.6.5 GNU C 3.4.1

PC Pentium-4 Linux/i386 2.6.5 Intel C 8.0

PC Athlon Linux/i386 2.4.21 GNU C 2.95.3

PC Pentium-4 Windows-XP GNU C 3.3.1

UP2000+ Alpha EV67 Tru64 5.1B Compaq C V6.5-207

IBM p690 Power4 AIX 5.1 IBM Visual Age 6

SUN Ultra10 UltraSparc-IIi Solaris 7 Forte 7 C 5.4

HP 9000/785 PA-RISC 8500 HP-UX 11.00 HP C B.11.11.04

Onyx 3000 MIPS R12000 IRIX 6.5 MIPSpro 7.41

Table .: Platforms Z compiles and runs on

Regarding portability Table . lists all platforms on which we have compiled and

tested Z. Additionally users have reported successful builds on Linux/ and -

/. It should be noted that the Windows- version was built using a cross-compiler

on Linux and the MinGW toolkit.

To make Z efficient we tried to use the proper algorithms and, as we will see

later, succeeded in considerably improving the running time of Z on larger in-

puts. The use of C as programming language assures that, using the same algorithms,

not much can be gained in terms of execution speed by the use of another language

(Kernighan and Pike, , page ).

. Zimpl overview

Z is an interpreter. Each statement is first parsed and translated into a parse tree

consisting of code nodes. Then the resulting code tree for the statement is traversed,

thereby executing the statement. The Z main-loop works as follows:

while(input available)
begin

read_next_statement
parse_statement_into_code_tree
execute_code_tree

end

An alternative to this tree walking evaluation is the implementation of a virtual machine,

like for example a stack machine (Kernighan and Pike, ). But since there is no need

to store the parsed (compiled) input, there seem to be no particular advantages of taking

the other approach.

3 http://www.mingw.org

Implementing Z 

Each node in the code tree has the following structure:

t y p e d e f s t r u c t s t a t e m e n t Stmt ;

t y p e d e f enum code_type CodeType ;

t y p e d e f union c ode_val u e CodeValue ;

t y p e d e f s t r u c t code_node CodeNode ;

t y p e d e f CodeNode * (* I n s t) (CodeNode * s e l f) ;

s t r u c t code_node

{

I n s t e v a l ;

CodeType typ e ;

CodeValue v a l u e ;

CodeNode * c h i l d [MAX_CHILDS] ;

c o n s t Stmt * stmt ;

i n t column ;

} ;

Inst is a pointer to a C-function that takes this code node as an argument. The func-

tion evaluates to the value of the node, which is of type type. child contains the

arguments of the function, which in turn are also code nodes. Finally statement and

column identify the position in the input line this code node stems from. This is used

in case of errors to localize the error in the input.

If inst is executed, it will fill value as a result. To obtain the arguments needed

for inst, all valid code nodes in child will be executed. This leads to a recursion that

traverses the code tree after the execution of the root node and sets all value fields in

the tree. The code tree resulting from the input param eps:=5*7;. is drawn in

Figure .. The inst functions often have side effects, e. g., they define sets, parameters,

or constraints that persist after the execution of the statement has finished and are not

part of result.

. The parser

We will not give an introduction into formal language parsing, but only note a few

details about the Z grammar which by all standards is quite simple (to parse). The

Z grammar itself is listed in Appendix B. on page .

.. BISON as parser generator

The input is broken into tokens with a lexical analyzer generated by , a replace-

ment of the  tool  (Lesk, ). The resulting token stream is fed to the parser

which is generated from a grammar description with  , an upward compat-

ible replacement of  (“Yet Another Compiler Compiler”, Johnson, ).  is

a general-purpose parser generator that converts a grammar description for a ()

context-free grammar into a C program to parse that grammar.

4 http://sourceforge.net/projects/lex
5 http://www.gnu.org/software/bison
6 One token Look Ahead Left Recursive, see for example Aho et al. (), Holub ().

 Design and Implementation

CodeType: Void

Inst: newsym_para1

CodeType: Name

CodeValue: “eps”

CodeType: List

Inst: entry_list_new

CodeType: Entry

Inst: entry_new

CodeType: Tuple

Inst: tuple_empty

CodeType: Number

Inst: expr_mul

CodeType: Number

CodeValue: 5

CodeType: Number

CodeValue: 7

CodeType: IdxSet

Inst: idxset_pseudo_new

CodeType: Bool

Inst: bool_true

Figure .: Tree of code-nodes

() means apart from other things that the parser only looks one token ahead,

when deciding what to do. This means the following grammar, describing a declaration

with two optional arguments, is ambiguous to the parser:

%token DECL NUMB STRG

%%

stmt : DECL STRG p ar 1 p ar 2 ;

p ar 1 : / * empty * / | ’ , ’ NUMB ;

p ar 2 : / * empty * / | ’ , ’ STRG ;

After getting a comma the parser cannot decide whether it belongs to par1 or par2,

because the parser lacks the lookahead to see if a NUMB or a STRG is next.

The solution to these kind of problems are either to reformulate the grammar, e. g.,

to enumerate all combinations, or handle the problem later in the parse tree, e. g., drop

the differentiation between NUMB and STRG at this point in the grammar and handle the

difference when evaluating the tree.

By the standards of computer science  or  are rather ancient tools. They

have even been standardized as part of  . (.). There are newer tools to

generate parsers, like for example , , and .  even allows

7 http://dparser.sourceforge.net
8 http://www.antlr.org
9 http://www.hwaci.com/sw/lemon

Implementing Z 

ambiguous grammars. The reason why we still used  to implement Z is that

 is a very mature and well-known program, i. e., has few bugs, is freely available on

practically all platforms, is standard conformant, and will remain available and main-

tained for the foreseeable future. Additionally, there is a decent amount of literature on

how to use it, like Schreiner and Friedman (), Levine et al. (). Since Z has

no elaborate demands on its grammar,  seemed to be the right tool. But up to now

there is no indication whether this choice was fortunate or not.

.. Reserved words

Every language designer has to decide how keywords should be handled. There are

basically three possibilities:

◮ Use reserved words, like e. g. C. This makes parsing and error detection easy, but

keywords can clash with user chosen names.

◮ Use separate namespaces for variables, sets, and parameters, for example, by pre-

fixing them with $, #, and &, like e. g. . Again parsing and error detection is

easy, but the code looks ugly.

◮ Do not use reserved words and decide from the grammar what is a keyword, like

e. g. /. In this case there are no restrictions on the names the user chooses, but

parsing and error detection gets a lot more difficult. Sometimes even for the user,

as IF IF==THEN THEN THEN ELSE ELSE END would be legal.

We decided to reserve the names of the keywords, but it might be an idea to use a prefix

for built-in functions like ’abs’ because they make the majority of the reserved words

(Z has  reserved words,  of them stemming from built-in functions). Addition-

ally, there is a number of reserved words that can be easily distinguished from names

just by their position in the input. set, for example, is only allowed at the start of a line,

a position where never any user chosen name is feasible.

.. Type checking

An important decision is whether the parser checks the types of operands and argu-

ments or if this is deferred until the value is actually needed within a function.

Type checking within the parser

◮ All functions can assume that their arguments are of the expected type.

◮ All cases have to be explicitly handled in the parser.

◮ It is only possible to decide on the type not on the value of a token, e. g. division

by zero cannot be handled in this way.

◮ The parser performs all the error reporting, i. e., the localization of the errors is

rather accurate, but the parser cannot report much about the error itself.

10 The portability of the generated code is more important than the portability of the generator itself.

 Design and Implementation

Type checking at runtime

◮ The parser gets simpler and more orthogonal.

◮ All information on type and value is available.

◮ All cases have to be handled in every function at execution time.

◮ It is more difficult to precisely locate the position of an error.

In Z a mixed approach is used. Constant numbers and strings are the only types

not distinguished within the parser. All functions have to make sure that they either

get what they need, or that they perform the right operation depending on the types

of their arguments. Since only two rather distinct types are involved, the case handling

within the functions remains simple. On the other hand, the parser gets considerably

smaller and simpler, especially for the handling of components of tuples, which can be

of either type.

The Z parser is very restrictive and will reject most invalid constructions. To

make it possible for the parser to detect wrong argument and operator types, Boolean

expressions, set expression, and especially all expressions involving decision variables

are handled separately in the parser. This also simplifies and speeds up the argument

processing within the functions. As can be seen in the grammar (page ), distinguish-

ing between expressions with and without decision variables leads to a slightly involved

construction for variable expressions (vexpr). This makes it rather difficult to assure

the correctness of the parser, especially regarding precedence between operators.

Symbol table lookup

One problem with letting the parser handle type checking is that while tokenizing the

input, the type for named entities like parameters has to be known.

In Z it is only valid to use named entities like a set or a parameter after they

have been defined. This allows to lookup any names already in the lexical analyzer and

to determine their type. As an extra benefit, any name has only to be looked up once in

the analyzer and not again when executing the function.

. Implementation of sets

Since all repetitive operations in Z are done over sets, the implementation of sets

has a severe impact on the performance. A set is a collection of objects. The only

required property of a set is the possibility to ask, whether some object is a member of

the set or not. This has an important consequence regarding the implementation of a

set data structure: Each element can only be in a set once. For the implementation this

means in order to add an object to a set, we have to know whether it is already a member

of the set.

These requirements fit very well with the properties of the hash table data structure,

see for example Knuth (b, chapter .) or Aho and Ullman (, chapter .). The

Implementing Z 

average time needed to insert or to find an element in a hash table is O(1+ n/B), where

n is the number of elements in the table and B is the size of the table. This shows

immediately the biggest disadvantage of a hash table, namely that its size B has to be

set in advance and its performance drops as n approaches and exceeds B. On the other

hand, if n stays very small compared to B, a lot of memory is wasted.

Internally, sets in Z are ordered sets of n-tuples, i. e., each member of a set

has the same number of components and a distinct index. We denote the index i ∈
{1, . . . , |A|} of an element a ∈ A of an ordered set A by σ(a) = i. For a n-tuple t

we denote by ti, i ∈ {1, . . . , n} the i-th component of t. Given a set A of n-tuples, an

ordered set of indices K ⊆ {k | k ∈ {1, . . . , n}} and a |K|-tuple p, we define a slice(A,K, p)

as {a ∈ A | ak = pσ(k) for all k ∈ K}.

To store the cross product of two sets we have basically two possibilities: Either

we factor the product, i. e., we explicitly generate and store all members of the cross

product, or we record the two operand sets and generate the elements on demand. The

latter approach has two advantages: It needs less memory and it allows to speed up the

iteration over a slice of the set.

Sets within Z are implemented as an abstract virtual base class with the fol-

lowing data members:

s t r u c t set_h ead {

i n t r e f c ; / * r e f e r e n c e count * /

i n t dim ; / * dimension o f t u p l e s * /

i n t members ; / * number o f s e t members * /

S etTyp e typ e ; / * Type o f th e s e t * /

} ;

Since within a Z program once created sets never change, it is possible to imple-

ment the copy operation on sets by the use of a reference counter.

At present, four different derivate implementations for sets are used. Two types of

singleton sets, namely list-sets which store singletons, either in a hash table or as a list,

and range-sets, which store sets of numbers described by begin, end, and interval. More

precisely, a range-set for parameters b, e, i ∈ Z is defined as range(b, e, i) = {x ∈ Z |

x = b + ni, n ∈ N0, b 6 x 6 e}.

s t r u c t s e t _ l i s t {

SetHead head ; / * head . dim = = 1 * /

Elem * * member ; / * head . members h o l d s th e number o f el emen ts * /

Hash * hash ; / * Hash t a b l e f o r members * /

} ;

11 There exist some improved algorithms which overcome at least part of these problems, see, for example,

Pagh and Rodler ().

12 Since Z is programmed in C this is implemented “by hand”.

13 The memory overhead of hash tables starts to be a problem if excessive numbers of sets are created, e. g.,

due to the construction of a powerset. In these cases a more condensed storage is needed, sacrificing some

performance when looking for an element. For this reason our implementation does not create hash tables

for sets which have less than twelve elements. Sequential search is employed to find an element in these cases.

 Design and Implementation

s t r u c t s e t _ r a n g e {

SetHead head ; / * head . dim = = 1 * /

i n t begin ; / * F i r s t number * /

i n t end ; / * The l a s t number i s < = end * /

i n t s t e p ; / * I n t e r v a l * /

} ;

Further, we have two types of composite sets, namely product-sets which represent the

cross-product of two sets, and multi-sets which represent a subset of the cross-product

of n-list-sets.

s t r u c t s e t _ p r o d {

SetHead head ; / * head . dim > 1 * /

S e t * s e t _ a ; / * A from A * B * /

S e t * s e t _ b ; / * B from A * B * /

} ;

s t r u c t s e t _ m u l t i {

SetHead head ; / * head . dim > 1 * /

S e t * * s e t ; / * head . dim h o l d s number o f i n v o l v e d s e t s * /

i n t * s u b s e t ; / * L i s t members , s i z e head . members * head . dim * /

i n t * * o r d e r ; / * A l l o r d e r s , s i z e head . dim , head . members * /

} ;

For a product-set not more than references to the two involved sets, which can be of any

type, are stored. Since multi-sets reference only singleton list-sets, head.dim equals

the number of involved list-sets. subset is a list holding for each component of each

present member the index of the component in the list-set. order holds indices of

the subset list sorted by each component. While not much of an improvement from a

theoretical point of view, practically this allows us a much faster computation of slices.

Initially all sets are built from elements that are supplied as part of the data. This

can happen in three possible ways:

◮ The data is a list of singleton elements. In this case a list-set is created to store the

elements.

◮ The data is a list of n-tuples (n > 1). In this case n list-sets are built from the n

projections of the elements to a single component. Next a multi-set is constructed

to index the available elements by referencing the list-sets.

◮ The data is given as a range. In this case a range-set storing begin, end, and interval

is created.

After initial sets are built from data, further sets can result from various set operations.

Building the cross-product of two sets is done by creating a cross-set, which is, regarding

both running time and memory requirements, an O(1) operation. The rest of the set

operators like union or intersection are implemented by building a list of the resulting

elements and then generating an appropriate multi-set.

Implementing Z 

. Implementation of hashing

Hashing is used in Z to look up singleton elements of sets and the names of vari-

ables, parameters and sets. We now give some details and statistics on the hash functions

employed.

A hash function h(A) → {0, . . . ,N − 1} is a mapping of a set A into a bounded

interval of integers. Usually |A| ≫ N and h is not injective. The case h(a) = h(b) for

a 6= b, is called a collision. According to Knuth (b, page ) a good hash function

should satisfy two requirements: Its computation should be very fast and it should min-

imize collisions. The first property is machine-dependent, and the second property is

data-dependent.

We compare five hash functions for strings. As a test-set we use variable names

as they are typically generated within Z: x#1,. . . ,x#n. The implementations have

always the same function hull:

1 u n si gn ed i n t s t r _ h a s h 1 (c o n s t c h a r * s)

2 {

3 u n si gn ed i n t sum = 0 , i ;

4

5 / * i n s e r t computing l oop h er e * /

6

7 r e t u r n sum % TA BLE _S I Z E ;

8 }

The following hash algorithms were inserted at line  in the above routine:

) for (i = 0; i < strlen (s), i ++) sum = sum + s[i];

This is sometimes found in textbooks as a “simple” hash function for strings.

) for (i = 0; i < strlen (s), i ++) sum = sum * 32 + s[i];

This is the hash function given in Sedgewick (, page ).

) for (i = 0; i < strlen (s), i ++) sum = sum * 31 + s[i];

This one can be found in Kernighan and Pike (, page ).

) for (i = 0; i < strlen (s), i ++) sum = DISPERSE(sum + s[i]);

In this case a linear congruence generator (see, e. g., Press et al., ) is used.

DISPERSE(x) is defined as 1664525U * x + 1013904223U.

) for (i = strlen (s) − 1; i >= 0; i−−) sum = DISPERSE(sum + s[i]);

This is equal to the former, but the characters are processed in reverse order.

In case of a collision, the entry is added to a linked list of entries with the same hash

value. This is called separate chaining and has the advantage of not limiting the number

of entries that fit into the hash table.

We tested the performance for n = 103, 104, 105, 106, and 107. The size of the hash

table itself (TABLE_SIZE) was always set to ,,. The results are listed in Table ..

Average chain length is the average length of non-empty chains. Maximum chain length

gives the length of the longest chain built from the input. Note that an average chain

length of . for n = 107 entries is about ,, / ,, which indicates

that the distribution of hash values is symmetric.

 Design and Implementation

n = 1,000 10,000 100,000 1,000,000 10,000,000

Algorithm 1 (simple sum)

Average chain length 18.5 111.1 740.733 5,291 40,650.4

Maximum chain length 70 615 5,520 50,412 468,448

Algorithm 2 (spread 32)

Average chain length 1 1 1.1238 1.859 10.0771

Maximum chain length 1 1 2 7 31

Algorithm 3 (spread 31)

Average chain length 1 1 1.00422 1.4038 9.99997

Maximum chain length 1 1 2 4 20

Algorithm 4 (randomize)

Average chain length 1 1.00807 1.04945 1.57894 9.99997

Maximum chain length 1 2 3 6 23

Algorithm 5 (reverse randomize)

Average chain length 1 1 1.0111 1.44194 9.99997

Maximum chain length 1 1 2 6 20

Table .: Performance of hash functions (table-size = ,,)

We also tested the , word dictionary from /usr/share/dict/words. The

results are basically the same: () and () give similar good performance, and () works

very badly.

Up to this test, we employed algorithm () within Z, but this changed as a result

of the test, since evidently algorithm () performs significantly better and is faster. In

the current version of Z the algorithm to decide the size of a hash table works as

follows: From a list of primes, find the first prime greater than two times the maximum

number of entries in the hash table. The test revealed that for algorithms (), (), and

() the chain length for % of the non-empty chains is three or less if the number of

entries equals the size of the hash table. It seems therefore appropriate to no longer

double the anticipated number of entries before deciding the size of the table.

. Arithmetic

In this section we give some information about floating-point and rational arithmetic

to make it easier to understand the benefits and drawbacks resulting from using rational

arithmetic within Z.

.. Floating-point arithmetic

The general representation of a floating-point number with p digits is:

±(d0 + d1β−1 + . . . + dp−1β−(p−1))βe

Implementing Z 

where β ∈ N is the basis, e ∈ Z is the exponent, and 0 6 di < β for 0 6 i < p
are the digits. If d0 6= 0 we call the number normalized. Today’s computers usually
use binary floating-point arithmetic according to the   standard. This means,
double precision numbers, for example, are  bits wide using the following layout:

S EEEEEEEEEEE DD
0 1 11 12 63

where S is the sign of the number, the E’s are the exponent and the D’s contain the digits

of the mantissa. Obviously β = 2 for a binary number. Storing the number normalized,

gains one digit, since we know that the first digit will be a one, so we do not need to store

it. This means we have p = 53. The disadvantage of normalized numbers is that they

cannot represent zero. So the exponents zero and , are reserved to indicate “special”

values like zero and infinity. We get the value of a binary floating-point number by

building

v = (−1)S2(E−1023)(1.D)

where 1.D represents the binary number created by prefixing the D’s with an implicit

leading one and a binary point.

Note that numbers like for example . have no finite representation as binary-point

number. Rounding can result from arithmetic operations, e. g., /=., which is

represented as .. Since the size of the exponent is limited, overflows

and underflows can happen as the result of arithmetic operations. Absorption is also

possible, i. e., a + b = a for b 6= 0. Finally, the subtraction between very similar

operands can lead to nearly random results.

Table . lists the parameters for typical floating-point numbers. The last column

gives the smallest number ǫ for which 1 + ǫ > 1 is true.

Precision Bits Bytes p e Max/Min 1 + ǫ > 1

Single 32 4 24 8 ≈ 10±38 ≈ 1.1920 · 10−7

Double 64 8 53 11 ≈ 10±308 ≈ 2.2204 · 10−16

Extended 80 6 64 15 ≈ 10±4932 ≈ 1.0842 · 10−19

Quad 128 16 113 15 ≈ 10±4932 ≈ 1.9259 · 10−34

Table .: Standard floating-point format parameters

The program shown in Figure . can be used to measure the number of mantissa

digits p for different data types. One would expect identical output for lines  and ,

and for  and , and for  and . Table . shows the reality. The reason for these

seemingly strange results is the following: The length of the floating-point registers of

the  and - s differ from the length of the corresponding memory storage

locations for the respective data types. - ’s, for example, have  bit registers,

i. e., use extended precision internally for all computations. Whenever the contents

of a register has to be written to memory, it is truncated to the specified precision.

14 http://standards.ieee.org

 Design and Implementation

1 # i n c l u d e < s t d i o . h>

2

3 f l o a t s f [2 5 6] ;

4 double sd [2 5 6] ;

5 l on g double s l [2 5 6] ;

6

7 v o i d c o m p u t e _ m a n t i s s a _ b i t s (v o i d)

8 {

9 f l o a t a f , e f ;

10 double ad , ed ;

11 l on g double a l , e l ;

12 i n t n ;

13

14 a f = e f = 1 . 0 ; n = 0 ;

15 do { e f / = 2 . 0 ; s f [n] = a f + e f ; n + + ; } w h i l e (s f [n − 1] > a f) ;

16 p r i n t f (" f (%3d) p=%d % . 1 6 e \ n " , s i z e o f (a f) * 8 , n , 2 . 0 * e f) ;

17

18 a f = e f = 1 . 0 ; n = 0 ;

19 do { e f / = 2 . 0 ; n + + ; } w h i l e (a f + e f > a f) ;

20 p r i n t f (" f (%3d) p=%d % . 1 6 e \ n " , s i z e o f (a f) * 8 , n , 2 . 0 * e f) ;

21

22 ad = ed = 1 . 0 ; n = 0 ;

23 do { ed / = 2 . 0 ; sd [n] = ad + ed ; n + + ; } w h i l e (sd [n − 1] > ad) ;

24 p r i n t f (" d(%3d) p=%d % . 1 6 e \ n " , s i z e o f (ad) * 8 , n , 2 . 0 * ed) ;

25

26 ad = ed = 1 . 0 ; n = 0 ;

27 do { ed / = 2 . 0 ; n + + ; } w h i l e (ad + ed > ad) ;

28 p r i n t f (" d(%3d) p=%d % . 1 6 e \ n " , s i z e o f (ad) * 8 , n , 2 . 0 * ed) ;

29

30 a l = e l = 1 . 0 L ; n = 0 ;

31 do { e l / = 2 . 0 L ; s l [n] = a l + e l ; n + + ; } w h i l e (s l [n − 1] > a l) ;

32 p r i n t f (" l (%3d) p=%d % . 1 6 Le \ n " , s i z e o f (a l) * 8 , n , 2 . 0 L * e l) ;

33

34 a l = e l = 1 . 0 L ; n = 0 ;

35 do { e l / = 2 . 0 L ; n + + ; } w h i l e (a l + e l > a l) ;

36 p r i n t f (" l (%3d) p=%d % . 1 6 Le \ n " , s i z e o f (a l) * 8 , n , 2 . 0 L * e l) ;

37 }

Figure .: C-function to determine floating-point precision

Which registers are written to memory at which point of the computation is entirely

dependent on the compiler.

The results in the last two rows of Table . highlight what is generally true for

floating-point calculations, namely that the order in which operations are carried out

can change the result of a floating-point calculation. This means that floating-point

arithmetic is neither associative nor distributive. Two mathematically equivalent for-

mulas may not produce the same numerical output, and one may be substantially more

accurate than the other.

15 Of course, knowing the restrictions of the architectures, it is possible to derive programs like the one in

Figure . that forces the compilers to generate code that writes the register contents to memory.

Implementing Z 

System long

float double double

Source line 16 20 24 28 32 36

Alpha EV67 24 24 53 53 113 113

UltraSPARC-IIi 24 24 53 53 113 113

PA-RISC 8500 24 24 53 53 113 113

POWER4 24 53 53 53 53 53

IA-32 24 64 53 64 64 64

Table .: Mantissa bits p in floating-point computations

More details about floating-point numbers can be found among others in “What ev-

ery computer scientist should know about floating-point arithmetic” (Goldberg, ),

in Knuth (a), and in the Internet.

.. Rational arithmetic

Unlimited precision rational arithmetic has two severe inherent drawbacks:

◮ “Unlimited precision” also means unlimited time and space requirements.

◮ Rational arithmetic cannot compute non-rational functions, e. g. square roots.

Apart from these principle problems, rational arithmetic needs considerable more time

and space even for limited precision computations. When verifying optimal simplex

bases with  (Koch, ), , bits were needed to store the objective function

value for the linear program maros-r from the  (Gay, ). This corresponds to

more than , decimal digits (nominator and denominator together). Performing

a single factorization of the basis and solving the equation system took approximately

between  and  times longer than doing a similar operation in double precision

floating-point arithmetic.

The reason for this slowdown is not only the increased size of the numbers involved:

Since each number is stored as a numerator/denominator pair common factors have to

be handled. According to the  manual it is believed that casting out common factors

at each stage of a calculation is best in general. A  is an O(n2) operation, so it’s better

to do a few small ones immediately than to delay and have to perform a  on a big

number later.

Within Z, the  Multiple Precision Arithmetic Library () is used for all

rational arithmetic. For more information on how to implement rational arithmetic

see, for example, the  website or Knuth (a). If the computation of non-rational

functions is requested in a Z program, the operations are performed with double

precision floating-point arithmetic.

16 e. g. http://en.wikipedia.org/wiki/Floating_point,

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html
17 http://www.swox.com/gmp

 Design and Implementation

. Extended modeling

In this section we describe how what we call extended constraints and functions are mod-

eled. Information on this topic can be found, for example, in Williams and Brailsford

(), Plastria (), or at the  website.

Given a bounded integer variable lx 6 x 6 ux, lx, x, ux ∈ Z, we introduce two

additional binary variables b+ and b− as indicators for whether x is positive or negative,

i. e., b+ = 1 if and only if x > 0 and b− = 1 if and only if x < 0. In case of x = 0, both

b+ and b− equals zero. Further we introduce two non-negative variables x+ and x−

which hold the positive and negative portion of x. We can formulate this as an integer

program:

x+ − x− = x

b+ 6 x+ 6 max(0, ux)b+

b− 6 x− 6 | min(0, lx)|b−

b+ + b− 6 1

b+, b− ∈ {0, 1}

(.)

Theorem . The polyhedron described by the linear relaxation of system (.) has only

integral vertices.

Proof. For fixed lx and ux we can write the relaxation of (.) as

(1) x+ −λb+ 6 0

(2) x+ −b+ > 0

(3) b+ 6 1

(4) x− −µb− 6 0

(5) x− −b− > 0

(6) b− 6 1

(7) b+ +b− 6 1

with λ, µ ∈ N0. For λ = 0 ()-() result in x+ = b+ = 0 and correspondingly for µ = 0

()-() become x− = b− = 0. For λ = 1 ()-() degenerate to b+ = x+ 6 1 and for

µ = 1 the same happens for ()-(). For λ > 2 the polyhedron described by ()-() has

only vertices at (x+, b+) = (0, 0), (1, 1), and (λ, 1). Figure . shows an example.

Inequalities ()-() are similar for µ > 2. The only connection between the two

systems is through (). We need four equalities to describe a vertex. Taking two from

()-() and two from ()-() will lead to an integral point because there is no connection.

Any combination of () together with () and () has obviously no point of intersection.

Given () together with either () or (), (b+, b−) is set to either (1, 0) or (0, 1) and

x+ and x− have to be integral. This leaves () with three choices from (), (), (),

and (). For λ, µ > 2 any combination of () and (), or () and () has only point

(x+, b+) = (0, 0) or (x−, b−) = (0, 0), respectively, as intersection, forcing integral

values for the other variables.

18 http://www.gams.com/modlib/libhtml/absmip.htm

Implementing Z 

(2)b+

x+

(3)

1 2 3

1

(1) λ = 2

(1) λ = 3

Figure .: Polyhedron defined by ()-()

Using system (.) the following functions and relations can be modeled using x =

v − w, v,w ∈ Z with lx = lv − uw and ux = uv − lw whenever two operands are

involved:

abs(x) = x+ + x−

sgn(x) = b+ − b−

min(v,w) = w − x−

max(v,w) = x+ + w

v 6= w ⇔ b+ + b− = 1

v = w ⇔ b+ + b− = 0

v 6 w ⇔ b+ = 0

v < w ⇔ b− = 1

v > w ⇔ b− = 0

v > w ⇔ b+ = 1

As an example we will show the proof of the correctness of sign function sgn(x) =

b+ − b−. Proofs for the other functions and relations are similar.

sgn(x) = 1 ⇔ x > 0 ⇒ x+ > 0 ⇒ b+ = 1 ⇒ b− = 0, and b+ − b− = 1

sgn(x) = −1 ⇔ x < 0 ⇒ x− > 0 ⇒ b− = 1 ⇒ b+ = 0, and b+ − b− = −1

sgn(x) = 0 ⇔ x = 0 ⇒ x+ = x− = 0 ⇒ b+ = b− = 0, and b+ − b− = 0

Variations

For the functions min, max, and abs where neither b+ nor b− is part of the result, one of

the two variables can be replaced by the complement of the other. Also the restrictions

b+ 6 x+ and b− 6 x− can be dropped from (.).

If x is non-negative, system (.) can be simplified to b+ 6 x 6 uxb+ with b+ ∈
{0, 1}, x+ = x, x− = 0, and b− = 0. The same arguments apply if x is non-positive.

As mentioned earlier, nearly all  solvers use feasibility, optimality, and integrality

tolerances. In practice, it might be necessary to define a zero tolerance, equal or greater

than the integrality tolerance of the solver and augment (.) accordingly.

 Design and Implementation

.. Boolean operations on binary variables

In the following we show how to compute a binary variable a as the result of a Boolean

operation on two binary variables b and c. Note that the polyhedra defined by the

linear relaxations of these inequalities have solely integral vertices, as can be checked

with .

a = b and c

a − b 6 0

a − c 6 0

a − b − c > −1

(.)

a = b or c

a − b > 0

a − c > 0

a − b − c 6 0

a = not b

a + b = 1

a = b xor c

a − b − c 6 0

a − b + c > 0

a + b − c > 0

a + b + c 6 2

or alternatively by introducing an additional binary variable d:

a + b + c = 2d

Note, that the polyhedron of the linear relaxation of this alternative formulation has

non-integral vertices, e. g., a = b = 0, c = 1, and d = 0.5.

.. Conditional execution

Given a Boolean variable r and a bounded constraint x =
∑

aixi 6 b with

U =
∑

ai<0

ailxi
+

∑

ai>0

aiuxi

We want the constraint to be active if and only if r = 1. We can model this by defining

a “big” M = U − b and writing:

x + Mr 6 U (.)

19 http://www.zib.de/Optimization/Software/Porta

Implementing Z 

Proof. In case r = 1 (.) becomes x + U − b 6 U which is equivalent to x 6 b. In case

r = 0 we obtain x 6 U which is true by definition.

The formulation for x =
∑

aixi > b with L =
∑

ai<0 aiuxi
+

∑

ai>0 ailxi
can

be obtained from (.) by exchanging U for L and changing less-or-equal to greater-or-

equal. To model conditional equality constraints, both a less-or-equal and a greater-or-

equal formulation have to be used.

. The history of Zimpl

After we have seen how specific components are implemented, we want to give a short

history of the Z development. Table . lists all Z-versions so far, their release

dates, the total number of code lines (including comments and empty lines) and the

most important change of the respective version. As can be seen from the table, the

size of the source code has roughly doubled since the first release. It is also evident that

Z is not a big project by any standards. But as we will see in the next sections,

quality assurance and testing even for a project of this moderate size is an arduous task.

Version Date LOC Ex1 [s] Ex2 [s]

1.00 Oct 2001 10,748 34 2,713 Initial release

1.01 Oct 2001 10,396 34 2,647 Bug fixes

1.02 Jul 2002 10,887 34 2,687 Constraint attributes

1.03 Jul 2002 11,423 50 4,114 Nested forall

1.04 Oct 2002 11,986 50 4,145 General enhancements

1.05 Mar 2003 12,166 44 4,127 Indexed sets, powersets

2.00 Sep 2003 17,578 67 6,093 Rational arithmetic

2.01 Oct 2003 19,287 71 6,093 Extended functions

2.02 May 2004 22,414 2 12 New set implementation

Table .: Comparison of Z versions.

Columns Ex and Ex give the result of a comparison of the time needed by the dif-

ferent Z versions to process a slightly modified version of the set covering model

listed in Appendix C. on page . The most important constraint in the model is

subto c1: forall <p> in P do sum <s,p> in SP : x[s] >= 1; .

The sizes of the sets are for ex: |P|=, and |SP| = , and for ex: |P|=, and

|SP|=,. The slowdown from the use of rational arithmetic evident in the table is

due to the increased setup and storage requirements, since no arithmetic is performed.

Obviously other changes done since version . have had a similar impact on processing

time. The most visible improvement is the new set implementation described in this

chapter. For all previous versions the execution of ex took about  times longer than

the execution of ex. With version . the factor is down to six, which is about the

difference in size of the two examples.

20 The changes were necessary to make it compatible with all versions.

 Design and Implementation

. Quality assurance and testing

Z has now been maintained and extended for about four years. Coming back to our

initial questions about correctness and maintainability we will describe how we tried to

make sure that new features work as anticipated and that the total number of errors in

the code is strictly monotonously decreasing.

The call graph of a program run is a directed graph obtained by making a node for

each function and connecting two nodes by an arc, if the first function calls the second.

A directed path between two nodes in the call graph represents a path of control flow in

the program that starts at the first function and reaches the second one. Note that there

is no representation for iteration in the call graph, while recursion is represented by a

directed circle in the graph.

Figure . shows about one third of the call graph generated by a run of the n-

queens problem in Section ... It is immediately clear from the picture that proving

the correctness of the program is a difficult to nearly impossible task. But even though,

we strive at least to minimize the number of errors. A key issue in this regard is to make

sure that fixing bugs does not introduce new ones.

.. Regression tests

One of the most important tools in maintaining a program are (automated) regression

tests. In fact there is a trend to actually start programming with building a test-suite for

the intended features (Beck, , ). Having a test-suite the program has to pass

diminishes the chances that a modification breaks working features unnoticed. Since the

tests have to be extended for each new feature, those are tested as well. If a bug is found

in a program, the tests used to reproduce the problem can be added to the test-suite to

make sure that the bug cannot reappear unnoticed.

Test coverage

How do we know if we have a sufficient amount of tests? An easy measure is the per-

centage of statements the test-suite covers, i. e., the percentage of all statements that get

executed during the tests. Tools like for example , ++, or -

can do this for C/C++ code. It was a revealing exercise to contrive test-cases for all error

messages Z can produce. As it turned out, some errors could not occur, while other

error conditions did not produce a message. Currently the Z test-suite consists of

 tests for error and warning messages and eleven bigger feature tests. As we will see

later on, in Table ., we reach % of the statements. There are several reasons for the

21 Tanenbaum (, page ) about /: . . . and contained thousands upon thousands of bugs, which neces-

sitated a continuous stream of new releases in an attempt to correct them. Each new release fixed some bugs and

introduced new ones, so the number of bugs probably remained constant in time.

22 http://gcc.gnu.org
23 http://www.parasoft.com
24 http://www.ibm.com/software/rational

Implementing Z 

add_stmt

prog_add_stmt

stmt_new

code_eval

i_bool_lt

i_bound_new

i_elem_list_add

i_elem_list_new

i_entry

i_entry_list_new

i_idxset_new

i_idxset_pseudo_new

i_newsym_para1

i_newsym_set1

i_newsym_var

i_set_cross

i_set_idxset

i_set_range

i_subto

i_symbol_deref

i_tuple_empty

i_tuple_new

i_bool_ge

elem_new_name

list_add_elem

list_copy

list_new_elem

entry_new_numb

list_new_entry

tuple_cmp

tuple_copy

idxset_new

set_get_dim

str_new

tuple_get_dim

tuple_new

tuple_set_elem

set_pseudo_new

entry_get_tuple

entry_copy

list_get_elems

list_get_entry

list_is_entrylist

set_from_idxset

set_get_members

set_lookup

symbol_add_entry

symbol_new

entry_new_set

idxset_get_tuple

local_drop_frame

local_install_tuple

set_iter_init

set_iter_next

entry_new_var

tuple_tostr

set_prod_new

set_range_new

set_copy

entry_get_numb

entry_get_set

symbol_get_type

symbol_lookup_entry

elem_copy

list_get_elem

new_elem

elem_new_numb

entry_cmp

set_list_copy

set_multi_copy

set_prod_copy

set_pseudo_copy

set_range_copy

hash_add_elem_idx

elem_hash

hash_add_entry

tuple_hash

hash_add_tuple

hash_has_entry

hash_has_tuple

hash_lookup_entry

list_add_data

list_new

list_get_data

list_add_tuple

list_new_tuple

idxset_get_lexpr

idxset_get_set

idxset_is_unrestricted

set_new_from_list

set_pseudo_lookup_idx

entry_get_type

hash_new

elem_get_name

elem_get_type

local_new

local_new_frame

tuple_get_elem

iter_init

set_prod_iter_init

set_range_iter_init

iter_next

set_prod_iter_next

set_range_iter_next

elem_tostr

list_get_tuple

main

prog_execute

prog_load

stmt_execute

stmt_parse

get_line

parse_stmt

stmt_get_text

set_multi_new_from_list

list_is_elemlist

list_is_tuplelist

set_iter_reset set_range_iter_reset

set_list_add_elem

set_list_new

order_cmp

subset_cmp

Figure .: Part of the call graph from the n-queens problem in Section ..

 Design and Implementation

missing %. First we have some error conditions like “out of memory” which are dif-

ficult to test. Then there is a number of small functions that are not executed at all by

the tests. Several of them are not part of the regular program but testing and debugging

aids. And finally there are some functions for which testing should be improved.

.. Software metrics

Besides test coverage, it would be useful to have measures or “metrics” which help to

locate areas in the program which are difficult to test and maintain, and which are likely

to cause trouble. Practically all books on software metrics start with the famous quote

from Lord Kelvin, given in 

When you can measure what you are speaking about, and express it in

numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meager and

unsatisfactory kind.

This is because it points out the major problem with the properties we said a good pro-

gram should have. With the exception of efficiency they are very difficult to measure.

Considerable research has been done in the last  years to find methods to measure cor-

rectness and maintainability of software. While many methods have been proposed,

from a practical point of view no measures have been found that work in general, i. e.,

allow the comparison of unrelated code and work despite the programmers knowing

about being measured. On the other hand, careful use of metrics can provide useful

insights, as any anomalies in the statistics are indicators for possible problems.

Popular metrics are for example lines of code and the cyclomatic complexity number

(Watson and McCabe, ). Further information on software metrics can be found,

for example, in Shepperd (), Kan ().

Lines of code () might seem to be a very primitive way to measure anything mean-

ingful about a program. Interestingly, none of the more elaborate metrics mentioned in

the literature are significantly more successful in general. The rule of thumb is that the

size of a function should not exceed about  lines of code. If a function is substantially

bigger than this, it may be hard to understand, difficult to test and is likely to be error

prone.

The cyclomatic complexity number () is the minimum number of tests that can, in

(linear) combination, generate all possible paths through a function. Functions with a

high cyclomatic complexity have many possible paths of control flow and therefore are

difficult to test. Watson and McCabe () suggest limiting the cyclomatic complexity

to ten and advice strongly against numbers above .

25 See for example Zuse () for a survey.

26 This is not entirely correct, as iterating is not taken into account.

Implementing Z 

.. Statistics

Table . gives the total account for the source code statistics.  is the total number

of lines of code within functions. Stmt. is the total number of code statements, i. e.,

in C basically the number of semicolons. Calls is the total number of function calls.

CC is the sum of the cyclomatic complexity numbers of all functions. Ass. is the total

number of assert statements. Cover is the percentage of statements that is executed by

the regression tests. We use ∅ to indicate an average.

Zimpl statistics LOC Stmt. Calls CC Ass. Cover

684 functions, total 11369 7520 4398 1972 1255 86%

∅ per function 16.6 11.0 6.4 2.9 1.8

∅ statements per 0.7 1.7 3.8 6

PerPlex statistics for comparison

∅ per function 23.6 16.1 7.9 5.1 1.9

∅ statements per 0.7 2.0 3.1 8

Table .: Total account of Z source code statistics

We have also computed the corresponding numbers for . While it shares

some code with Z, its purpose is completely different. The  code basi-

cally involves an -factorization and routines to solve the resulting triangular system of

equations.  is currently not maintained and extended very much. Even though,

the numbers are quite similar. There seems to be some evidence, also from other sam-

ples that given similar source code formatting, the ratio between  and statements is

nearly constant.

Tables . gives the account accumulated for each source module. The first column

names the module. #F is the number of functions defined in the module. Next are

per function the average number of lines of code, statements, function calls, cyclomatic

complexity and asserts. The detailed numbers for each function can be found in Ap-

pendix B. starting on page .

From the tables we can see that ratpresolve.c needs more testing which might get

difficult, because the functions have above average size which is also reflected in a high

cyclomatic complexity number.

We should note that it is possible to find substantially different numbers in other

codes. Routines reaching a cyclomatic complexity of  in just  lines of code are

possible. This means the routine is practically impossible to test completely.

.. Program checking tools

Since, as we mentioned earlier, the C and C++ programming languages make it quite

easy to write flawed programs, tools are available to check programs for errors. They can

be mainly divided into two groups: Static source code checkers and dynamic runtime

checkers.

 Design and Implementation

Module #F ∅ Lines ∅ Stmt. ∅ Calls ∅ Cycl. ∅ Ass. Cover %

bound.c 6 7.3 3.7 2.2 2.2 1.3 100

code.c 82 8.1 4.3 2.7 1.5 0.9 85

conname.c 5 13.8 8.6 4.0 2.4 2.0 100

define.c 10 7.7 4.7 1.7 1.4 1.5 100

elem.c 18 12.6 7.7 2.7 2.2 2.0 93

entry.c 15 10.5 6.2 2.9 1.7 2.1 92

gmpmisc.c 10 15.3 10.3 3.8 2.9 0.7 80

hash.c 11 16.5 12.8 3.9 3.3 2.8 79

idxset.c 9 6.9 3.9 2.9 1.1 1.3 75

inst.c 100 23.4 16.2 12.8 3.0 1.4 93

iread.c 8 45.1 31.1 17.1 7.8 1.8 89

list.c 23 9.8 5.9 2.7 1.9 1.6 90

load.c 3 35.7 25.3 8.3 10.7 2.7 78

local.c 7 16.6 11.1 4.3 3.3 1.4 90

numbgmp.c 48 9.9 6.2 4.4 1.5 1.5 84

prog.c 7 10.4 7.0 3.9 1.9 1.6 79

rathumwrite.c 5 44.0 28.6 14.0 10.8 2.2 79

ratlpfwrite.c 3 57.7 40.7 21.0 15.7 2.7 89

ratlpstore.c 66 14.8 10.2 3.0 2.7 3.0 76

ratmpswrite.c 3 58.3 36.7 20.0 12.0 3.0 91

ratmstwrite.c 1 27.0 23.0 9.0 7.0 4.0 95

ratordwrite.c 1 34.0 28.0 11.0 9.0 4.0 89

ratpresolve.c 5 83.2 48.2 26.2 18.6 3.4 51

rdefpar.c 16 8.6 4.7 2.0 1.6 1.4 56

set4.c 30 16.2 10.4 6.8 2.8 1.7 93

setempty.c 12 8.2 4.8 2.1 1.5 1.8 76

setlist.c 18 14.2 9.3 4.4 2.9 2.7 98

setmulti.c 16 25.6 17.4 5.1 4.9 4.1 95

setprod.c 13 15.6 11.0 5.1 2.9 2.8 93

setpseudo.c 12 8.8 5.2 2.2 1.8 1.8 86

setrange.c 14 14.2 8.5 3.7 2.8 1.9 91

source.c 1 31.0 24.0 3.0 5.0 6.0 100

stmt.c 9 9.7 5.0 3.1 1.9 1.4 82

strstore.c 4 8.5 5.5 1.2 1.5 0.8 100

symbol.c 17 10.9 7.3 3.7 2.1 2.2 66

term.c 18 15.1 10.9 6.8 2.2 2.4 88

tuple.c 12 13.2 9.3 3.8 2.8 2.3 82

vinst.c 20 39.4 28.8 28.4 4.8 1.8 87

xlpglue.c 19 11.9 7.2 4.6 1.8 1.3 91

zimpl.c 7 49.6 34.6 16.7 10.4 1.6 74

∅ per function 684 16.6 11.0 6.4 2.9 1.8

Table .: Statistics by function

Implementing Z 

Source code checkers

The first of these tools was the   program (Darwin, ), which verifies the

source code of a program against standard libraries, checks the code for non-portable

constructs, and tests the programming against some tried and true guidelines. Extended

versions of  are still available, for example, as part of the   developer kit.

Since current C and C++ compilers can perform many of the original tasks of

, enhanced versions were developed with more and deeper analyzing capabilities.

 can check source code for security vulnerabilities and coding mistakes.

For Z we used , a commercially available enhanced lint which,

additionally to the “normal” capabilities of lint-like programs, can also track values

throughout the code to detect initialization and value misuse problems, can check user-

defined semantics for function arguments and return values, and can check the flow

of control for possibly uninitialized variables. It unveils all kinds of unused variables,

macros, typedefs, classes, members, declarations, etc., across the entire program. Apart

from finding bugs and inconsistencies,  has proven to be an invaluable tool

for increasing the portability of programs.

Runtime checkers

These programs mainly try to find memory access errors. They are somehow linked to

the program in question and check the behavior of the code at runtime. This makes

them very suitable to be part of the regression tests as a run of the test-suite can be

used to check the innocuousness of the program. It is clear that to make these tests

meaningful, the test-suite needs high coverage.

++ is a commercial tool that instruments the source code to check memory

accesses.  is another commercial tool, which does the same by instrumenting

the object code. Finally  is an open source tool that by using a special mode

of operation of the Intel IA- processors can virtualize part of the environment the

program runs in. This together with the interception of shared library calls allows -

 to check fully optimized programs without changing them, a feature that made

the integration of  into the Z regression tests easy.

Further reading

Although advertised as Microsoft’s techniques for developing bug-free C programs Maguire

() lists important techniques for writing good software. Apart from good advice and

interesting stories van der Linden () has nice discussions on the design decisions

made in C and C++. Finally, reading Libes () can give illuminative insights even for

experienced programmers.

27 http://lclint.cs.virginia.edu
28 http://www.gimpel.com
29 http://www.parasoft.com
30 http://www.ibm.com/software/rational
31 http://valgrind.kde.org

Part II

Applications



Chapter 

Facility Location Problems in

Telecommunications

In order to ask a question you must already know most of the answer.

— Robert Sheckley, Ask a foolish question, 

This chapter is a digest of the experiences from three projects: The access network planning

for the German Gigabit-Wissenschaftsnetz G-WiN conducted together with the DFN

(Verein zur Förderung eines Deutschen Forschungsnetzes e.V.), the mobile switching center

location planning project conducted together with e·plus, and the fixed network switching

center location planning project conducted together with Telekom Austria. Note that all

data shown reflects the state of affairs at the time of the projects which took place between

 and .

I wish to thank Gertraud Hoffmann and Marcus Pattloch from DFN, Erhard Winter from

e·plus, Robert Totz from Telekom Austria, my colleagues Andreas Bley, Alexander Martin,

Adrian Zymolka, and especially Roland Wessäly who apart from his scientific

contributions helped to calm stormy waters.

In this chapter we will show some real-world examples of how to apply the model-

ing toolbox introduced in the previous chapters. The real-world objects we deal with are

quite different, but we will see how they can be mapped to essentially the same mathe-

matical model.

First a mathematical model for the hierarchical multicommodity capacitated facility

location problem is introduced. Then we will present for each project how we adapted

the model to its specific requirements, how we dealt with peculiarities, and note special

problems that result from the decisions made in the projects. Since these are case studies

we do not try to completely cover the subjects, but give illustrated “how did we do it”

stories with some notes on details that deserve attention.

Please keep in mind that we are talking about real projects with industrial partners.

In a perfect world (for an applied mathematician) complete and consistent data is al-



 Applications

ready available at the start of a project, together with the best solution the engineers

could find so far. Then for an all greenfield situation a new solution can be computed

that is comparable but % (Dueck, ) better.

In the real world there is no data to begin with. Then after a long time there is

some questionable and inconsistent data. We prepare first solutions, discuss them with

the practitioners and modify the model, the data and our attitude. Sometimes parts

of solutions are fixed in between and others are reoptimized again. Comparisons with

other solutions often do not make sense, because either there are no other solutions

(), the planning goals are not the same (e·plus), or the objective is varying (T

A). In this sense the following are success stories, because they succeeded even

when the goals were afloat.

. Traffic

Telecommunication networks are about transmitting information. There are several

ways to describe the amount of transmissions or traffic present in a network. In digital

networks bits per second (bit/s) is used to describe the data rate of a transmission. For

example, to transmit a single () voice call we need a connection capable of  kbit/s.

We call this a  kbit/s channel.

Leased connections are usually priced according to their maximum transmission

rate. Depending on the technology only certain rates might be available. Typical rates

are  kbit/s,  Mbit/s,  Mbit/s,  Mbit/s,  Mbit/s, and . Gbit/s.

Voice traffic is often measured in Erlang, which is defined as 1 Erlang := (utilization

time) / (length of time interval). For example, a customer talking  minutes on the

phone within one hour, generates a traffic of . Erlang. The unit and therefore the

amount of traffic depends on the length of the time interval. In all our projects, the

time interval used was  minutes. Usually those  minutes during a day are chosen

which bear the maximum amount of traffic. We call this the peak hour or busy hour.

Assuming the calls arrive according to a Poisson process with average arrival rate

λ and further assuming that the call duration process is exponentially distributed with

parameter µ, the probability pc that a call cannot be handled with c available channels

can be computed as

pc =

ρc

c!
∑c

i=0
ρi

i!

with ρ =
λ

µ
. (.)

We call pc the blocking probability. Let us consider an example. Suppose the capacity of

a link with call arrival rate of λ = 720 calls/hour and an average call duration of 1/µ = 3

1 Note that the total traffic in the network is used to determine the peak hour. As a result parts of the network

can have higher traffic at other times. Depending on the kind of the network the time in the day and the

amount of traffic might heavily fluctuate from day to day. While, for example, voice telephone networks tend

to be rather stable in this regard, imagine researchers from the particle accelerator in Hamburg transmitting

gigabytes of measurement data after each experiment to storage facilities of the participating institutions at

other locations.

Facility Location Problems in Telecommunications 

minutes/call should be determined. The resulting demand is ρ = λ/µ = 720 ·3/60 = 36

Erlang. Given  channels, the blocking probability p30 ≈ 0.23.

Table . lists the number of  kbit/s channels needed to handle traffic demands

given in Erlang depending on the required blocking probability. The highest channel

per Erlang ratio can be observed for low traffic demands. The ratio changes reciprocally

proportional to the blocking probability and also to the traffic demand.

Blocking Traffic in Erlang

probability 20 30 40 60 80 100 150 200 300 400 500 1,000

1% 30 42 53 75 96 117 170 221 324 426 527 1,031

5% 26 36 47 67 86 105 154 202 298 394 489 966

10% 23 32 43 62 80 97 188 242 279 370 458 909

Table .: Number of  kbit/s channels depending on traffic in Erlang

For more detailed information on these topics, see Brockmeyer et al. (), Qiao

and Qiao (), Wessäly ().

.. Erlang linearization

In our discussions with practitioners we heard a lot about Erlang curves and so-called

bundling gains, which take place when several channels are combined. Admittedly equa-

tion . does not look the least linear. Nevertheless, for practical purposes, the function

ec, mapping Erlang to channels, can be approximated with sufficient accuracy by a lin-

ear function ẽc, given that the traffic in question is above ten Erlang and the blocking

probability is below %.

Figures .a and .b compare ec and a linear approximation for % and % blocking

probability, respectively. Figures .c and .d show the relative approximation error,

i. e., |ec(x) − ẽc(x)|/ec(x). The interesting structure of the error figures results from ec

being a staircase function, since channels are not fractional. In the cases shown, the error

of the approximation is always below %. The apparent diverging of the approximation

in Figure .b results from minimizing the maximum relative error when choosing the

parameters for the approximation function.

If it is possible to further limit the range of the approximation the results are even

better. For example, with % blocking probability the maximum error for the interval

 to  Erlang is about .%, and for the interval  to , Erlang it is only .%.

We conclude with the observation that for practical relevant blocking probabilities

(6 %) and for traffic demands (> Erlang) as they occur in the backbones of voice

networks, a linear approximation of the numbers of channels needed is acceptable. Fur-

ther, it can be concluded from the point of intersection of the approximated function

with the y-axis that bundling two groups of channels saves approximately about ten

channels. (Note that the origin is not drawn in the figures.)

 Applications

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70 80 90 100

C
h
a
n
n
e
ls

Erlang

Precise Erlangs
Approximation

(a) Linear approximation

ẽc = 1.1315ρ + 7, for ρ = 10, . . . , 100

Erlang with pc = 0.01

0

100

200

300

400

500

600

700

800

900

1000

10 100 200 300 400 500 600 700 800 900 1000
C

h
a
n
n
e
ls

Erlang

Precise Erlangs
Approximation

(b) Linear approximation

ẽc = 0.98525ρ + 5.5625, for

ρ = 10, . . . , 1000 Erlang with pc = 0.05

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 e

rr
o
r

[%
]

Erlang

(c) Relative error of linear approximation

0

0.5

1

1.5

2

2.5

3

10 100 200 300 400 500 600 700 800 900 1000

R
e
la

ti
v
e
 e

rr
o
r

[%
]

Erlang

(d) Relative error of linear approximation

Figure .: Linear approximation of the Erlang to channel function

.. Switching network vs. transport network

The switching network consists of the logical links between nodes in a network, while

the transport network consists of the physical links. Switching networks as we describe

them in this chapter are hierarchical, essentially tree-like, networks. Transport networks

in contrast are usually meshed networks.

The interrelation between the amount of traffic in the switching network and the

amount of traffic in the corresponding transport network is a complex one. Nearly

all aspects of the network, like routing, protocols, and connection types, are different

between the switching and the transport network. Details can be found, for example,

in Wessäly (). It is the transport network where real costs for physical installations

arise. Since the ties to the switching network are so vague, it is very difficult to associate

meaningful costs with links in the switching network. We will discuss this in greater

detail specifically for the projects.

Facility Location Problems in Telecommunications 

. A linear mixed integer model for hierarchical multi-

commodity capacitated facility location problems

Given a layered directed graph G = (V,A) with N hierarchy-levels L = {1, . . . ,N}. The

nodes are partitioned into layers as V1, . . . , VN, with Vm ∩ Vn = ∅ for all m,n ∈ L,

m 6= n, and V =
⋃

n∈L Vn. Without loss of generality we will assume |VN| = 1 and

denote r ∈ VN as the root. The nodes are connected with arcs A ⊆ {(u, v) | u ∈ Vn, v ∈
Vn+1, and n,n + 1 ∈ L}. Figure . shows an example with N = 4.

We are looking for a tree that connects all level one nodes with the root. Since G

is layered this means that each level one node has to be connected to exactly one level

two node. These in turn have to be connected to exactly one level three node and so on.

This is essentially the problem of finding a Steiner tree in a graph (see also chapter )

with root r and V1 as terminal set. The red arcs in Figure . mark a possible solution.

All nodes from level one and level N are always part of the solution.

V V V V
2 41 3

r

Figure .: Layered graph with N = 4

For each node v ∈ V and each arc (u, v) ∈ A we introduce a binary variable yv and

xuv, respectively. Each yv and each xuv is equal to one if and only if the node or arc is

active, i. e., is part of the solution. This leads to the following formulation:

yv = 1 for all v ∈ V1 (.)

xuv 6 yv for all (u, v) ∈ A (.)
∑

(v,w)∈A

xvw = yv for all v ∈ V \ {r} (.)

Note that (.) implies xvw 6 yv and that for r ∈ VN the above system implies yr = 1.

2 This can always be achieved by introducing a single node in an additional layer which is connected to all

nodes of the previous layer.

 Applications

Commodities

For each node v ∈ V and each d ∈ D of a set of commodities (resources), a demand

δd
v > 0 is given, specifying the demand which has to be routed from each node v ∈ V to

the root node r ∈ VN. This can be modeled by introducing a non-negative continuous

variable fd
uv, (u, v) ∈ A denoting the amount of flow of commodity d ∈ D from node

u to v:

δd
v + βd

v

∑

(u,v)∈A

fd
uv =

∑

(v,w)∈A

fd
vw for all v ∈ V \ {r}, d ∈ D (.)

βd
v > 0 is a “compression” factor, i. e., all incoming flow into node v of commodity d can

be compressed (or enlarged) by βd
v . We will see some applications for this factor later

on. If we assume all βd
v to be equal within each layer, the total amount of flow of each

commodity reaching the root will be constant. Note that for any v ∈ V1 equation (.)

reduces to δd
v =

∑

(v,w)∈A fd
vw.

For each arc (u, v) ∈ A the flow of commodity d ∈ D given by fd
uv has an upper

bound ρd
uv > 0. Since flow is allowed only on active arcs, i. e.,

ρd
uvxuv > fd

uv for all (u, v) ∈ A,d ∈ D , (.)

the upper bound does not only limit the capacity of the arcs, but due to (.) also the

capacity of node u, since the flow going into u has to leave on a single arc. Note that for

all nodes v ∈ V1 with δd
v > 0 for any d ∈ D equation (.) is redundant due to (.)

and (.).

Configurations

For each node v ∈ V a set of configurations Sv is defined. Associated with each configu-

ration s ∈ Sv is a capacity κd
s for each commodity d ∈ D. We introduce binary variables

zvs for each s ∈ Sv and each v ∈ V . A variable zvs is one if and only if configuration

s is selected for node v. For each active node a configuration with sufficient capacity to

handle the incoming flow is required:

∑

s∈Sv

zvs = yv for all v ∈ V (.)

δd
v + βd

v

∑

(u,v)∈A

fd
uv 6

∑

s∈Sv

κd
s zvs for all v ∈ V, d ∈ D (.)

Of course, for all level one nodes the configuration can be fixed in advance, since there

is no incoming flow apart from δd
v .

Sometimes only links with discrete capacities out of a set Kd of potential capacities

regarding a certain commodity d ∈ D are possible. This can be modeled by introducing

binary variables x̄dk
uv for each commodity d ∈ D, each link capacity k ∈ Kd and for each

Facility Location Problems in Telecommunications 

link (u, v) ∈ A and adding the following constraints:

∑

k∈Kd

x̄dk
uv = xuv for all (u, v) ∈ A,d ∈ D (.)

∑

k∈Kd

k x̄dk
uv > fd

uv for all (u, v) ∈ A,d ∈ D (.)

Equation (.) ensures that for each active arc exactly one of the possible capacities is

chosen. Inequality (.) makes sure that the link has sufficient capacity. Note that

depending on the particular problem simplifications are possible, especially regarding

(.) and (.), and (.), (.) and (.).

Configurations, as all types of (hard) capacity constraints, can lead to instable solu-

tions, i. e., solutions that vary considerably upon small changes of the input data. Fig-

ure . shows an example. Given are three nodes c, d, and e with demands δv = 5, 10,

12, respectively. The two serving nodes A and B have a fixed capacity of 15 and 16, re-

spectively. The costs for connecting the demand nodes with the serving nodes is drawn

along the connections. Figure .a shows the optimal solution when minimizing con-

nection costs. Now, an increase in the demand of node d by one results in the solution

shown in Figure .b, that is, changing a single demand by a small amount leads to a

completely different solution. This is highly undesirable, since, as we will see in the next

sections, the input data is usually inaccurate.

1

2

1

2

1

1

Ac

d

e B

5

10

12 16

15

(a) Optimal solution

1

1

2

1

2

1

Ac

d

e B

5 15

1612

11

(b) After a small change

Figure .: Instable solution

Apart from being unstable, solutions where nodes are not connected to the cheap-

est available higher level node just look wrong to the practitioners. To prevent this,

inequalities like

xuv 6 1 − yw ∀(u, v) ∈ A,w ∈ V with cuv > cuw

can be introduced, where cuv for (u, v) ∈ A denotes the costs associated with a connec-

tion between node u and node v.

 Applications

Objective function

The objective is to minimize the total cost of the solution, i. e.,

min
∑

v∈V

(

yv +
∑

s∈Sv

zs

)

+
∑

(u,v)∈A

(

xuv +
∑

d∈D

(

fd
uv +

∑

k∈Kd

x̄dk
uv

)

)

with appropriate objective function coefficients for all variables.

Literature

The capacitated facility location problem is well studied and of considerable impor-

tance in practice. As we mentioned before, it can also be seen as a capacitated Steiner

arborescense problem, or as a partitioning or clustering problem. Many variations are

possible. As a result a vast amount of literature on the problem, variations, subprob-

lems, and relaxations has been published. See, for example, Balakrishnan et al. (),

Hall (), Mirchandani (), Bienstock and Günlück (), Aardal et al. (),

Ferreira et al. (, ), Park et al. (), Holmberg and Yuan (), Ortega and

Wolsey (), Gamvros and Golden (), Bley (). It should be noted that the

majority of the publications is not related to real-world projects.

. Planning the access network for the G-WiN

In  we got involved into the planning of what should become Germany’s largest 

network, the Gigabit Research Network G-WiN operated by the . All major universi-

ties and research facilities were to be connected. The network was planned to handle up

to   traffic per hour in its first year. An annual increase rate of . was anticipated,

leading to a planned capacity of about ,  in .

Since the  is not itself a carrier, i. e., does not own any fiber channels, a call for

bids had to be issued to find the cheapest carrier for the network. European law requires

that any call for bids exactly specifies what the participants are bidding on. This means

the  had to come up with a network design before calling for bids.

As a result it was decided to design some kind of sensible network and hope the

participants of the bid were able to implement it cheaply. The network should consist

of  backbone nodes. Ten of these backbone nodes should become interconnected core

nodes, while the other  backbone nodes should be connected pairwise to a core node.

We will see later on in Section . that the decision to have ten core nodes was probably

the most important one in the whole process. For information on the design of the

network connecting the core nodes see Bley and Koch (), Bley et al. ().

In this case no distinction between transport network and switching network was

necessary, as the bid was for the logical or virtual network as specified by the . The

mapping of logical to physical connections was left to the provider of the link. As a

result no pricing information for installing links between the nodes was available before

the bid. It was decided to use costs according to those of the predecessor network B-WiN,

but scale them by some factor to anticipate declining prices. Bee-line distances between

Facility Location Problems in Telecommunications 

the locations were used as link distances. Since the hardware to be installed at the nodes

was either unknown, not yet available from the vendors, or depending on the carrier,

no real costs or capacities were known.

The initial problem for the access network was given as follows: Having  nodes

from which  are potential backbone nodes, select  backbone nodes and connect each of

the remaining nodes to them.

Note that selecting the ten core nodes was not part of the problem. Connections to

backbone nodes had to have one of the following discrete capacities:  kbit/s,  Mbit/s,

 Mbit/s,  Mbit/s, . Gbit/s, or  Gbit/s. Initially clients demanding  kbit/s were

not considered and none of the clients needed more than  Mbit/s. The associated

cost function is shown in Figure .. Additionally Figure . visualizes for each location

the demand for the peak traffic hour.

10

100

1000

10000

100000

0 20 40 60 80 100 120 140 160 180 200

C
o

s
t

p
e

r
M

B
it
s
/s

 [
E

u
ro

]

Distance [km]

2 MBits/s
34 MBits/s

155 MBits/s
622 MBits/s

Figure .: Cost depending on the distance per Mbit/s

Since the hardware installed at the backbone nodes has to operate  hours, seven

days a week, places with suitable maintenance, air conditioning and uninterruptible

power supplies are required. While  of the sites were capable in principle to host the

hardware, some were preferred. We modeled this by decreasing the cost for the preferred

nodes by a small margin.

But even for the preferred locations, the conditions for hosting the equipment had

to be negotiated. This led to iterated solutions with consecutively more and more fixed

sites. In the end the problem degenerated to a pure assignment problem. For the same

reasons the selection of the core nodes was done at . Finally we also added the

 kbit/s clients to the problem, bringing the total number of locations to .

We said in the beginning that the annual increase in traffic was to be taken into ac-

 Applications

Figure .: Demands of G-WiN locations

count. Since the increase was given as a linear factor on all traffic, the only change could

be due to the discretization of the link capacities. But it turned out that the resulting

differences were negligible.

Modeling

We modeled the problem with three layers and discrete link capacities between the back-

bone and the core nodes. Using this model, we compare our original solution to a less

restricted one, where the optimization can decide where to place the core nodes.

V1 is the set of all demand nodes. Potential backbone nodes are split into a client

part, carrying the demand and belonging to V1 and a backbone part belonging to V2.

The set of potential core nodes is denoted V3. While the three sets are disjunctive, their

elements might refer to the same physical locations. The function σ(v), v ∈ V1∪V2∪V3

maps nodes to their corresponding location.

The set of arcs is defined as A ⊆ (V1 × V2) ∪ (V2 × V3). The variables are defined

similarly to Section .; in particular xuv, (u, v) ∈ A ∩ (V1 × V2) are binary variables

denoting which connections are active, x̄k
vw, (v,w) ∈ A ∩ (V2 × V3), k ∈ K are binary

variables denoting which capacity is used for a link between a backbone and a core node.

Facility Location Problems in Telecommunications 

In addition to the binary variables yv, v ∈ V2, denoting the active backbone nodes, a

second set of binary variables ȳw, w ∈ V3, denoting the active core nodes is introduced.

Since only a single commodity is present, the commodity index d ∈ D is dropped. The

following model describes the problem setting:
∑

(u,v)∈A

xuv = 1 for all u ∈ V1 (.)

xuv 6 yv for all u ∈ V1, (u, v) ∈ A (.)
∑

(v,w)∈A

∑

k∈K

x̄k
vw = yv for all v ∈ V2 (.)

∑

k∈K

x̄k
vw 6 ȳw for all v ∈ V2, (v,w) ∈ A (.)

∑

(v,w)∈A

∑

k∈K

kx̄k
vw >

∑

(u,v)∈A

δuxuv for all v ∈ V2 (.)

ȳw 6 yv for all v ∈ V2, w ∈ V3, σ(v) = σ(w) (.)
∑

w∈V3

ȳw = 10 (.)

∑

(v,w)∈A

∑

k∈K

x̄k
vw = 3ȳw for all w ∈ V3 (.)

Note that (.) results from combining (.) with (.). Inequality (.) corresponds

to (.), while (.) is a combination of (.) and (.), and (.) is a combination of

(.) and (.). Inequality (.) is a simplified form of (.). Inequality (.) ensures

that only chosen backbone nodes can become core nodes. The number of core nodes

is fixed to ten by equation (.). Finally, equation (.) fixes the number of backbone

nodes to , with the additional requirement that one of every three backbone nodes

has to become a core node with two other backbone nodes attached to it. The objective

function is

min
∑

v∈V2

cvyv +
∑

w∈V3

cwȳw +
∑

(u,v)∈A
u∈V1

cuvxuv +
∑

(v,w)∈A
v∈V2

∑

k∈K

ck
vwx̄k

vw

with cv, v ∈ V2 denoting the cost for selecting v as backbone node and cw, w ∈ V3

denoting the cost for selecting node w as core node. The cost for connecting demand

node u ∈ V1 to backbone node v ∈ V2 is given as cuv and the cost for connecting

backbone node v ∈ V2 to core node w ∈ V3 with capacity k ∈ K is denoted by ck
vw.

The corresponding Z program can be found in Appendix C. on page .

We call this the normal scenario. We also examined a relaxed scenario, where equa-

tions (.) and (.) are removed. Referring to the original scenario means the solution

used in the project.

Results

 nodes were considered.  nodes were potential backbone nodes, including 

preferred ones, giving them a small bonus in the objective function. Only connections

 Applications

between demand nodes and backbone nodes of less than  kilometers were allowed.

Backbone nodes that were attached to core nodes had to be at least  kilometer apart

from the core node. The cost for opening a backbone node was set to . Opening

a core node again involved a cost of , or  for a preferred node. The resulting

integer program for the normal scenario has , binary variables, , constraints

and , non-zero entries in the constraint matrix.

Scenario Gap [%] Time [h] BB Core Objective

Normal 7.12 18 30 10 67,593

Relaxed 0.28 3 16 15 58,022

Original —  —  29 10 67,741

Table .: G-WiN solution

Table . lists the results for the different scenarios. Gap shows the optimality gap

of the solution. Time is the approximate  time spent by  . for solving the

instance. BB and Core give the number of backbone and core nodes, respectively. Objec-

tive lists the objective function value for the scenarios. The cost for the original scenario

is almost equal to the cost for the normal scenario, indicating that given the number of

backbone and core nodes is fixed in advance, the original solution is less than % off

the optimum.

Figure . shows images of the results. Backbone nodes are marked as green cir-

cles, core nodes are drawn as red triangles. The picture indicates that the cost for the

backbone to core node links was set too high to make them pay off. While the relaxed

scenario seems to incur the least cost, keep in mind that we have not included any costs

for the core network and that the objective value for the relaxed scenario is only %

smaller than for the original one.

Epilogue

The bid for the carrier was won by the German Telekom.

At least one of the persons involved in the design and planning of the network had

to retire with a mental breakdown.

By now the G-WiN is running very successfully for more than four years and has

been reconfigured and upgraded several times. Between  and  we investigated

the profitability of introducing a third layer of backbone nodes and discovered some

potential candidates.

3 No gap and time are given for the original scenario, because it was interactively refined by selecting

backbone nodes until all decisions were taken. The selection of the core nodes was done by the .

Facility Location Problems in Telecommunications 

1
0
0
 k

m

K
oöl

n

F
ra

nk
fu

rt

H
an

no
ve

r

E
rla

ng
en

K
ai

se
rs

la
ut

er
n

K
ar

ls
ru

he

M
uün

ch
en

G
oöt

tin
ge

n

B
er

lin

W
uür

zb
ur

g

(a
)

N
o

rm
al

1
0

0
 k

m

Le
ip

zi
g

S
tu

ttg
ar

tH
an

no
ve

r

K
oöln

F
ra

nk
fu

rt

E
ss

en

H
am

bu
rg

E
rla

ng
en

M
u� nc

he
n

B
er

lin

(b
)

O
ri

gi
n

al

1
0

0
 k

m

D
or

tm
un

d

H
ei

de
lb

er
g

R
eg

en
sb

ur
g

D
re

sd
en

H
an

no
ve

r

H
am

bu
rg

S
tu

ttg
ar

t

M
u� nc

he
n

E
rla

ng
en

F
ra

nk
fu

rt

Le
ip

zi
g

B
er

lin

K
oöln

Ilm
en

au

(c
)

R
el

ax
ed

F
ig

u
re


.

:
R

es
u

lt
s

fo
r

th
e

G
-W

iN
ac

ce
ss

n
et

w
o

rk
p

la
n

n
in

g.

 Applications

. Planning mobile switching center locations

This project, which we conducted together with e·plus, examined the logical layout of

a part of a  network. The signal from a mobile is transmitted to an antenna that is

located at a Base Transceiver Station (). The  is connected to a Base Station Con-

troller (). The  manages the transmitter and receiver resources for the connected

base stations and controls the traffic between the base station and the Mobile Switching

Center (). The s are at the core of the network and interconnect all the s

via connections to the other s in the network. s are essentially computers that

can be built with different capacities. One resource limiting the capacity of a  is

the number of subscribers. Each , depending on the traffic it manages, takes up a

number of subscribers. The installation cost of a  depends on its subscriber capac-

ity. The connection costs between a  and an  depend on the data rate of the link.

Since e·plus owned only part of its transport network and leased links on demand, it was

difficult to associate costs to links in a combinatorial way. The price for each new link

had to be individually investigated. As a result we tried different cost functions within

the project, either similar in appearance to the one given in Figure ., or just a linear

function depending on the capacity and the distance.

We can state the problem as follows: Given a list of s, a list of potential  loca-

tions, and a list of possible  configurations, decide where to place s and for each 

to which  it should be connected. Choose a suitable configuration for each .

Model

The problem can be formulated using a simplification of the model given in Section .:

∑

(v,w)∈A

xvw = 1 for all v ∈ V1

∑

s∈Sv

zvs = 1 for all v ∈ V2 (.)

∑

(u,v)∈A

δuxuv 6
∑

s∈Sv

κszvs for all v ∈ V2

V1 is the set of s and V2 is the set of potential s. δu denotes for each  u ∈ V1

the number of associated subscribers. For each  v ∈ V2 the parameter κs, s ∈ Sv

denotes the number of subscribers which can be served by configuration s.

Note that (.) requires a “zero” configuration, i. e., there has to be exactly one

s ∈ Sv with κs = 0 for each v ∈ V2. This has the nice effect that already existing

configurations can be modeled this way. Instead of assigning the “building cost” to a

configuration, the cost involved with a particular change is used.

4 Technically, this is not entirely correct. Attached to each  is a Visitor Location Register (), a database

which actually imposes the restriction on the number of subscribers. For our purposes it suffices to view the

 as part of the .

Facility Location Problems in Telecommunications 

For the computational study described in the next section the following objective

function was used:

min
∑

(u,v)∈A

µ duv luv xuv +
∑

v∈V2

∑

s∈Sv

cvszvs

with µ being a predefined scaling factor, duv denoting the bee-line distance between

 u ∈ V1 and  v ∈ V2 in kilometers, and luv denoting the number of  kbit/s

channels needed for the traffic between u and v. The building cost for configuration

s ∈ Sv at node v ∈ V2 is denoted by cvs.

Results

We computed solutions for ten different scenarios. Table . lists the parameters that

are equal in all cases. The scenarios are partitioned into two groups. The number of

subscribers in the first group was . million, and . million in the second group. For

each group five solutions with different connection costs were computed, using µ =, ,

, , . The Z program used can be found in Appendix C. on page . All

runs were conducted with  . using default settings.

Number of BSCs |V1| 212

Number of potential MSCs |V2| 85

Maximum allowed BSC/MSC distance [km] 300

Minimum MSC capacity (subscribers) 50,000

Maximum MSC capacity (subscribers) 2,000,000

Number of different configurations |Sv | 14

Binary variables 10,255

Constraints 382

Non-zero entries in constraint matrix 20,425

CPLEX time limit 1 h

Table .: Scenario parameters

Table . and Figure . show the result for the scenarios. Gap lists the gap between

the primal solution and the best dual bound when either the time limit of one hour was

reached, or  ran out of memory. MSC is the number of s that serve s. ∅

util. is the geometric mean of the utilization of the s. Hardw. cost is the sum of

the cost of the  configurations (=
∑

v∈V2

∑

s∈Sv
cz

szs). Chan.×km is the sum of

the number of  kbit/s channels times the distance in kilometers needed to connect all

5 In one case it was necessary to lower the integrality tolerance from 10−5 to 10−8 . This is a scaling problem.

It probably could have been avoided if we had used multiples of thousand subscribers for the demands and

capacities.

It seemed that the default automatic setting for cut generation sometimes added more and often better cuts

than setting  explicitly to aggressive cut generation. For the . million user scenario with µ = 1, the

default setting generated   cover cuts,  clique cuts and  cover cuts increasing the  objective from

initially 2.3866 · 107 to 3.2148 · 107 . Branching , nodes only increased the lower bound further to

3.2655 · 107.

 Applications

s (=
∑

(u,v)∈A duvluvxuv). Total cost is the objective function value. All cost figures

given are divided by , and rounded to improve clarity.

The results are not surprising. The higher the connection costs the more s are

opened. Most of the results show the problem we mentioned above, that s got con-

nected to remote s to circumvent upgrading the nearer ones.

In an earlier similar study,  (Wessäly, ) was used in a subsequent step

to design and dimension the inter- transport network for each of the solutions. As

it turned out, the costs for the inter- network varied highly between the scenarios

and dominated the costs for the - network by a huge amount.

From this result we concluded that some interaction between the location planning

and the planning of the inter- backbone network is necessary. A possible solution

might be to assign costs to the connections between the V2 nodes (s) and a virtual

root. But since this corresponds to a star shaped backbone network it is not clear if it

is possible to find suitable costs that resemble a real backbone network somehow. An

integrated model, as presented in Bley et al. (), seems to be more promising here.

Gap ∅ util. Hardw. Chan. Total

µ Fig. [%] MSC [%] cost × km cost

3.4 million subscribers

1 4.7a 4.66 4 99.4 23,850 1,612 25,462

5 4.7b 3.74 7 99.0 25,884 772 29,744

10 4.7c 1.96 8 98.7 26,716 659 33,309

20 4.7d 0.00 12 98.6 29,335 486 39,059

100 4.7e 0.00 32 93.9 43,199 191 62,265

6.8 million subscribers

1 4.7f 2.78 5 99.8 46,202 1,987 48,189

5 4.7g 1.49 8 99.7 47,952 1,179 53,846

10 4.7h 0.30 11 99.6 49,636 926 58,897

20 4.7i 1.12 19 97.5 55,473 570 66,873

100 4.7j 0.13 40 96.7 72,200 250 97,199

Table .: Results of the  location planning

Epilogue

The model was implemented for e·plus using Microsoft  as a front- and backend,

in a chain  →Z → →awk→.

The implementation allowed also three tier models, e. g. --, or --

Data-center. Unfortunately at the time of installation, no data was available for these

models.

6 This can also happen if the instances are not solved to optimality. It is therefore necessary to post-process

solutions before presenting them to practitioners, making sure the solutions are at least two-optimal regarding

connection changes. Presenting visibly suboptimal solutions can have embarrassing results, even when the

links in question have a negligible influence on the total objective.

Facility Location Problems in Telecommunications 
1

0
0

 k
m

(a
)
µ

=
1

1
0

0
 k

m

(b
)
µ

=
5

1
0

0
 k

m

(c
)
µ

=
1
0

1
0

0
 k

m

(d
)
µ

=
2
0

1
0

0
 k

m

(e
)
µ

=
1
0
0

1
0

0
 k

m

(f
)
µ

=
1

1
0

0
 k

m

(g
)
µ

=
5

1
0

0
 k

m

(h
)
µ

=
1
0

1
0

0
 k

m

(i
)
µ

=
2
0

1
0

0
 k

m

(j
)
µ

=
1
0
0

F
ig

u
re


.

:
R

es
u

lt
s

fo
r

th
e




lo
ca

ti
o

n
p

la
n

n
in

g.
U

p
p

er
ro

w
.


m

il
li

o
n

su
b

sc
ri

b
er

s,
lo

w
er

ro
w


.

m
il

li
o

n
su

b
sc

ri
b

er
s

 Applications

. Planning fixed network switching center locations

Telephone networks are so-called circuit switched networks, i. e., if one terminal is call-

ing another terminal, the request is transmitted first to the appropriate switching cen-

ter, which, depending on the location of the destination terminal, selects (switches) the

route to the next switching center. This is repeated until the destination terminal is

reached. In a circuit switched network this route between the two terminals is created at

the beginning of the transmission and stays alive until the call is finished. The required

bandwidth remains reserved all of the time.

The switching network of the T A has a hierarchical design. Seven

Main Switching Centers () are the backbone of the network. On the level below are

about  Network Switching Centers (). Next are about  City Switching Centers

() and finally on the bottom level are about , Passive Switching Centers ().

The topology of the network is basically a tree apart from the s which are linked

directly to each other. All other switching centers have to be connected to a center on a

higher level than themselves.

s and s are so-called Full Switching Centers () because they are able to han-

dle internal traffic themselves, i. e., traffic that does not need to be routed higher up in

the hierarchy. In contrast to this s transfer all traffic to their respective .

One of the first decisions in the project was to reduce the hierarchy of the switching

network to three levels. Therefore, we drop the distinction between s and s and

speak only of s. Have a look at Figure .. The red circle is an . The green squares

are s and the black triangles mark s. The blue lines are the logical connections

between switching centers, while the gray lines show the physical transport network.

A B

C

K

Figure .: Switching network

7 Hauptvermittlungsstellen

8 Netzvermittlungsstellen

9 Ortsvermittlungsstellen

10 Unselbstständige Vermittlungsstellen

11 Vollvermittlungsstellen. Technically s are also full switching centers, but we will use the term only for

s and s.

Facility Location Problems in Telecommunications 

Due to technical advances the capacity of a single switching center has been vastly

increased in the last years. At the same time the cost for the transport network has

steadily declined. Since the operating costs for maintaining a location are high, a smaller

number of switching centers is desirable.

The goal of the project was: To develop planning scenarios for the reduction of the

number of full switching centers. For each switching center it is to decide, whether it should

be up- or downgraded and to which other center it should be connected.

Since this is not a green-field scenario, changing a switching center either way in-

duces some cost. It is to note that the switching centers are built by two different man-

ufacturers, i. e., they are not compatible below  level. Only switching centers of the

same manufacturer can be connected to each other.

.. Demands and capacities

The capacities of the switching centers are limited by the number of users connected

and by the amount of traffic to be switched.

There are three possible terminals connected to an :  (Plain Old Telephone

Service), -basic-rate (Integrated Services Digital Network), and -primary-rate.

Only  and -basic-rate draw from the restriction on the number of users of the

switching centers. Assigned to each terminal type is a typical amount of traffic in Erlang.

This is converted along the Erlang formula (see page ) to  kbit/s (voice) channels.

All traffic is assumed to be symmetric between the terminals.

As noted before, all non-passive switching centers can route internal traffic directly.

This can reduce the amount of traffic to the s and within the backbone. Finding an

optimal partitioning of the network to minimize the external traffic is NP-hard and

requires a complete end-to-end traffic matrix. Since end-to-end traffic demands were

not available in the project, it was not possible to precisely model this effect. But there is

quite accurate empirical knowledge on the percentage of external traffic for each region.

So it is possible to attach a fixed traffic reduction factor β (see Section ) to each  to

approximate the effect.

Another method to reduce the traffic in the higher levels of the hierarchy are direct-

bundle connections. These are short-cut connections from one full switching center to

another which only route the direct traffic between these two switching centers.

The question whether the installation of a direct-bundle connection justifies the

cost is difficult to decide. It is to be expected that the influence of the decision on the

transport network is rather small, since the data is likely to use a similar route in the

12 There was another restriction called Zoning Origins (Verzonende Ursprünge) of which each full switching

center had only a limited number. Since the whole subject was rather archaic and the numbers were somewhat

hard to compute precisely, it was decided later in the project to drop the restriction, even though it would have

fitted easily into the model.

13 Depending on how the problem is formulated, this is a variation of the partitioning or multi-cut problem.

Further information can be found for example in Garey and Johnson (), Grötschel and Wakabayashi

(), Chopra and Rao ()

14 Direktbündel

 Applications

transport network in either case. A direct-bundle needs more channels, e. g. to trans-

mit  Erlang with  % blocking probability  channels are needed, while in the route

through the hierarchy, where much more traffic is accumulated, for example, only 

channels are needed to transmit  Erlang. On the other hand, direct-bundles may

reduce the amount of hardware needed at the  level.

Given that linear costs are available for all links, it is easy to see for a single direct-

bundle connection whether it pays off or not. Since the hierarchical switching network

is needed anyhow, the cost for the direct-bundle can be computed and compared to

the savings in the hierarchical network. The only uncertainty comes from the question

whether the installation of several direct-bundle connections saves hardware cost in the

hierarchy. We did not pursue the matter of direct-bundle connections any further in the

project, because the question can be answered on demand for a single connection and

without a complete end-to-end traffic matrix only guesses about the amount of traffic

between two switching centers are possible.

To give an idea about the scenario, here are some numbers: More than three million

users are distributed about :: onto , -basic-rate, and -primary-rate

terminals. The traffic demand per terminal is about ., ., and . Erlang, respec-

tively. The total traffic is more than , Erlang. A  can serve about , users

and , channels. The capacity of an  is about ten times as big. These are average

numbers as switching centers can be configured in various ways.

.. Costs

Hardware costs for installing, changing, and operating switching centers are relatively

easy to determine. The biggest problems are:

◮ How to assess hardware that is already deployed and paid for?

◮ How to assess the depreciation of the purchase cost, if it is to be included at all?

◮ If different configurations for switching centers are possible, a price tag can be

assigned usually only to a complete setup.

From the above it becomes clear that there is no such thing as a “real cost” in a non

green-field scenario (and maybe not even then). But we can at least try to use prices

that fit the goal of our investigation.

As we mentioned in Section .. we have to distinguish between the transport net-

work and the switching network. The switching network is a logical network that cre-

ates the circuits between the terminals by building paths of logical connections between

switching centers. The transport network is the physical network below that transmits

the data. Now computing costs based on the traffic is difficult, because the transport

network already exists in this case and the relation between traffic demands and changes

in the switching network is not clear. Assuming that the transport network is able to

15 Given end-to-end traffic demands and a tool like  it would be possible to study the capacity

requirements of the transport networks for selected scenarios.

Facility Location Problems in Telecommunications 

cope with the traffic demand as induced by the current switching network and assum-

ing further that our “optimized” switching network does not require an extension of the

transport network, no real costs will occur. It follows, that the cost optimal switching

network has the minimum number of switching centers possible according to the ca-

pacity restrictions. The question where a switching center should be connected to could

be mostly neglected.

Nevertheless the transport network has a cost associated to it. Assuming that the

amount of voice calls is rather static, any excess capacity can be used for other services,

e. g., packet data services. As a result some cost function is needed, but can be arbitrarily

defined.

After some discussions T A supplied the cost function shown in Fig-

ure .. The basic idea is to pay a base price per channel for the existing fiber optic

cables. Since these cables need repeaters every  km, which induce operating costs, the

price is raised after  and  km. The reason for the higher price of the  to  con-

nections results from the higher infrastructure demands of these links due to the higher

capacities needed. Note that since we usually assume about % internal traffic, the

price for the  to  connection is multiplied with β = 0.7, making it in total cheaper

than the  to  connection for the same number of channels. We will see in Section 

that this cost function will lead to some unexpected results.

Cost per Distance in km

channel <45 <90 >90

uv to vv 3.30 4.95 6.60

vv to hv 3.50 5.25 7.00

0 20 40 60 80 100 120 140 160 180 200Distance
0

50
100

150
200

250
300

350
400

450

Channels

0

500

1000

1500

2000

2500

3000

Cost

Figure .: Cost function depending on distance and channels

Given the cost function, the question arises which distances to use. In the former

projects we always used bee-line distances, since the transport network was not owned

by the network operator and not much was known about it. In this project we had the

possibility to compute distances in the transport network. Regarding the rationale for

the cost function which involved repeaters in the fiber network, this seemed to allow a

much better estimate of the involved costs. Further on we will therefore indicate when

necessary whether bee-line or transport net distances are used.

16 This is admittedly a strange argument, since usually prices per unit go down with higher capacities. But

keep in mind that in case the already installed capacity is not sufficient, the placement of new fiber cables is

extremely expensive.

 Applications

.. Model

Again the model can be derived from the one described in Section .. The nodes in

the model are the switching centers. We call the set of all s U, the set of all potential

s V and the set of all potential s H. We denote the set of all switching centers by

W = U ∪ V ∪ H. Regarding the notation in Section ., we set V1 = U, V2 = V , and

V3 = H. While the sets U, V , and H are pairwise disjunctive, the locations associated

with the members of the sets may be the same. We introduce a function σ(w), w ∈ W

that maps a switching center to its location. If σ(u) = σ(v) for v,w ∈ W we call u and

v co-located. AUV ⊆ U × V denotes the set of all possible links between s and s,

AVH ⊆ V × H the set of all possible links between s and s. The set of all possible

links is denoted by A = AUV ∪ AVH.

Two types of commodities are used, i. e., D := {users, channels}. Demands δd
u, u ∈

U,d ∈ D are only given for s. For each  with demands, a co-located  with a

zero-cost link to the  is generated.

We introduce binary variables xij for each (i, j) ∈ A indicating active links. Further

we have binary variables yw, w ∈ V ∪ H, indicating active s in case w ∈ V , and

active s in case w ∈ H. Finally, continuous variables fd
vh 6 ρd

v , d ∈ D, (v, h) ∈ AVH

are used to represent the amount of commodity d requested by  v from  h. The

parameter ρd
v denotes the maximum capacity of commodity d that can be handled by

 v. Similarly parameter ρd
h, h ∈ H represents the maximum capacity of commodity

d that can be handled by  h. This leads to the following model:
∑

(u,v)∈AUV

xuv = 1 for all u ∈ U (.)

∑

(v,h)∈AVH

xvh = yv for all v ∈ V (.)

xuv 6 yv for all (u, v) ∈ AUV (.)

xvh 6 yh for all (v, h) ∈ AVH (.)
∑

(u,v)∈AUV

δd
uxuv =

∑

(v,h)∈AVH

fd
vh for all v ∈ V, d ∈ D (.)

ρd
hxvh > fd

vh for all (v, h) ∈ AVH, d ∈ D (.)
∑

vh∈AVH

βvfd
vh 6 ρd

h for all h ∈ H,d ∈ D (.)

Constraints (.) to (.) are equivalent to (.) to (.). Equation (.) is a simpli-

fication of (.) and (.) is similar to (.). Inequality (.) limits the capacity of the

s. Since the utilization of a  is dependent on the incoming demands, we have not

applied βv to (.), but to inequality (.) as it reduces the outgoing demands. It is

not necessary to explicitly limit the capacity of a , since
∑

(u,v)∈AUV

δd
uxuv 6 ρd

v for all v ∈ V

is implied by (.), (.), (.) and fd
vh 6 ρd

v .

Facility Location Problems in Telecommunications 

Regarding co-located switching centers two special requirements have to be ensured:

If a  is active, any co-located  has to be connected to it:

yv = xuv for all (u, v) ∈ AUV with σ(u) = σ(v)

Co-locating a  and an  is not allowed:

yv + yh 6 1 for all v ∈ V, h ∈ H with σ(v) = σ(h)

It should be noted that in the investigated scenarios all yh, h ∈ H were fixed to one,

since a reduction of the number of  was not considered.

.. Results

Austria has nine federal states: Burgenland, Carinthia, Lower Austria, Upper Austria,

Salzburg, Styria, Tyrol, Vorarlberg, and Vienna. This is reflected in the telecommunica-

tion network, since all equipment within each state is from the same manufacturer. An

exception is Vienna which has two main switching centers, one from each manufacturer.

The problem can be “naturally” decomposed into four regions which consist of Salz-

burg and Upper Austria, Tyrol and Vorarlberg, Carinthia and Styria, and as the biggest

one Vienna, Burgenland, and Lower Austria. Table . shows the number of switching

centers for each region.

Region HVs VVs UVs

Salzburg / Upper Austria 1 12 358

Tyrol / Vorarlberg 1 7 181

Carinthia / Styria 1 9 362

Vienna / Burgenland / Lower Austria 2 15 522

Table .: Size of computational regions

The implementation consists of a set of cooperating programs together with a Web-

interface (Figure .). After collecting the user input, the web-interface triggers the

other programs and displays the results. First tapre a pre-/post-processor for the var-

ious input files is started. It generates the input data for Z which in turn gener-

ates the mixed integer program which is solved by . After extracting the solution

tapre is run again to mix the solution with the input and generate result tables and

input data for  (Wessel and Smith, ) which renders maps with the results. Fig-

ure . charts the flow of the data. Figures ., ., ., and . show a graphical

representation of the results for the respective regions.

 is usually able to solve all scenarios to optimality in reasonable time. The

only exception was the Vienna, Burgenland and Lower Austria scenario which had an

optimality gap of .%. This is far below the accuracy of the data.

17 The solving time for facility location problems depends very much on the cost ratio between connections

and facilities. If the ratio is balanced, the problem can get very hard to solve computationally.

 Applications

12˚ 15˚

48˚

100 km

Figure .: Solution for regions Salzburg and Upper Austria

12˚ 15˚

48˚

100 km

Figure .: Solution for regions Tyrol and Vorarlberg

Facility Location Problems in Telecommunications 

12˚ 15˚

48˚

100 km

Figure .: Solution for regions Carinthia and Styria

12˚ 15˚

48˚

100 km

Figure .: Solution for regions Vienna, Burgenland, and Lower Austria

 Applications

Web-interface

controls

︷ ︸︸ ︷

tapre→ Z →  → awk→ tapre→ 

︸ ︷︷ ︸

displays

, , 

Figure .: Program structure

Unexpected results

After solving the scenarios we found that some solutions did not look as expected. We

will now present and investigate some cases of apparently strange results. What are

possible reasons for unexpected results?

◮ Anomalies in the data (e. g.  without demands)

◮ Differences between model and reality

◮ Reaching of capacity or cost thresholds

◮ The result is just different than expected

Example  Looking at Figure .a the following questions can be asked:

◮ Why is no  connected to B?

Since all s in question are less than  km away from B and C, the connection

costs are equal. Since C has enough capacity all the  just happen to be con-

nected to it.

◮ Why then are B and C both active?

Because the input data requires B and C to be active.

◮ Why are some s in the vicinity of C connected to A?

Because connecting them to C would increase the total length of the link from the

 to the .  to  connections are only a little cheaper than  to  links.

So the cost for first connecting to the more remote C does not pay off. As can be

seen in Figure .b this changes if instead of bee-line distances transport network

distances are used.

Facility Location Problems in Telecommunications 

A

B

C

(a) Bee-line distances

A

B

C

(b) Transport network distances

Figure .: Results with bee-line vs. transport network distances

F
G

A

E

D

Figure .: Unexpected result with transport network (not shown) distances

 Applications

Example  In this case we use transport network distances. If we look at Figure .

(note that E is the green marked  “behind” the red ), we could again pose some

questions about the shown result:

◮ Why is F connected to A instead of D?

◮ Would not E be better than A to connect F?

◮ Why is G connected to D, if F is not?

F demands  channels and has the following possibilities to connect to (the costs are

taken from Figure . on page ):

To Cost Total

D 30 * 4.95 = 148.5
A 30 * 6.60 = 198.0

E 30 * 6.60 = 198.0

Connecting F to D would save .. But the connection cost from A to the  would

increase (note that due to internal traffic, only  channels have to be connected to the

) as follows:

From HV-Distance Cost Total

A 29 km 3.5 * 21 = 73.5
D 291 km 7.0 * 21 = 147

- 49.5 = 97.5

So it is obviously cheaper to connect F to A. The connection to E has the same price

as connecting to A, because it is also less than  km away from the , so the result is

arbitrary. But why then is the same not true for G? G demands  channels and has the

following possibilities:

To Cost Total

D 26 * 3.3 = 85.8
A 26 * 6.6 = 171.6

E 26 * 6.6 = 171.6

Connecting G to D instead of A saves .. But again the connection cost from A to the

 would increase:

From Cost Total
A 3.5 * 18.2 = 63.7

D 7.0 * 18.2 = 127.40
- 85.8 = 41.6

As can be seen, it is still cheaper to connect G to D than to A. Again the cost for E would

be identical to A.

Facility Location Problems in Telecommunications 

Assessment

As we have seen, using stepwise increasing cost functions can be a major source of unex-

pected results. The same happens if thresholds for capacities are used. Another source

of problems are visualizations that do not completely represent the data, as shown here

with the transport network distances. It defies the intuition of the observer and makes

it considerably more difficult to convince people that the results are useful.

What can the solutions be used for?

◮ To assess the correctness of assumptions

(how many switching centers are needed?)

◮ To compare different scenarios

(what is the impact of capacity changes?)

◮ To make qualitative cost decisions

(which switching network is likely to be cheaper?)

◮ To verify the quality of the model

(are the assumptions and rules sound?)

◮ To estimate the potential for savings

(what would a green-field solution cost?)

What should the solutions not be used for?

◮ Compute quantitative cost results

◮ Use of the results without further consideration

Epilogue

Because the hardware is already paid for, only operating costs for the installed hardware

occurs. We could show as a result of the project that since refitting switching centers

involves additional costs, short-term changes do not pay off.

To the best of our knowledge nobody from the people involved at the start of the

project is still working for T A. The department itself was reorganized. It

is not known whether the software was ever used again after the installation at T

A in .

. Conclusion

We have shown in this chapter how to uniformly handle seemingly different problems.

Table . gives a summary of the diverse objects that were cast into the same model. As

can be seen, none of the projects stretched the abilities of the model to the limit. In fact,

most of the time in the projects was spent on assembling, checking, and correcting data,

to compile coherent data-sets that fit into the model.

 Applications

DFN e·plus T A

V1 nodes Client BSC UV

V2 nodes Backbone MSC VV

V3 nodes Core HV

Commodities subscribers channels

users

Configurations 10 per MSC

Link capacities discrete

Table .: Different names, same mathematics

We mentioned in the beginning “changing our attitude”. It took some time to un-

derstand that our foremost task is not to design networks, but to give decision support.

In all projects, the networks in question were virtual networks in an existing (mature)

infrastructure. It became more and more clear that the precise cost of changes cannot

be determined in general and for all possible combinations of changes, if changes on the

infrastructure are possible at all. So what we can do is to

◮ check whether a particular change looks promising,

◮ find areas which can probably be improved,

◮ insure decisions, i. e., provide lower bounds, and

◮ evaluate alternatives.

In our experience regarding facility location problems, real-world data and require-

ments produce rather restricted problem instances, in the sense that the results are often

predictable and that it is hard to find any realistic feasible solution that is much worse

than the optimum.

While this sounds as if our work was unnecessary, the opposite is the case. Precisely

the fact that the solutions are so inertial shows their usefulness. Given that the data we

based our computations on are often only predictions or forecasts and the cost functions

are only virtual approximations, highly fluxionary solutions indicate that any decisions

based on the results are questionable, because they depend largely on the assumptions

made.

The other experience we gained from these projects was that the ability to quickly

adapt the model is far more important than to solve the resulting instances to optimality.

This insight triggered the use of modeling languages and the development of Z.

Chapter 

MOMENTUM

A programmer is a person who passes as an exacting expert on the basis of

being able to turn out, after innumerable punching, an infinite series of

incomprehensive answers calculated with micrometric precisions from

vague assumptions based on debatable figures taken from inconclusive

documents and carried out on instruments of problematical accuracy by

persons of dubious reliability and questionable mentality for the avowed

purpose of annoying and confounding a hopelessly defenseless department

that was unfortunate enough to ask for the information in the first place.

—  Grid news magazine

This chapter introduces the  planning problem as it was faced by the work package-

team in the M project. I wish to thank all members of the project for the good

time and especially the WP- team for the collaboration. The results presented in this

chapter are joint work with my colleagues Andreas Eisenblätter and Hans-Florian Geerdes.

. UMTS radio interface planning

The Universal Mobile Telecommunication System () is a very complex one. We will

describe it in enough detail to explain our endeavor, but will refrain from giving a com-

prehensive and detailed outline, which can be found in Holma and Toskala ().

In general terms our task is to put up antennas in such a way that users get

service in most places, most of the time.

Antennas are put up at so-called sites, which usually host three or fewer antennas. The

antennas used are mostly sectorized, i. e., they have a main direction of radiation and a

1 Project IST-- was funded partly by the European Commission. For more information visit the

project’s web site at http://momentum.zib.de

2  has numerous possible, but seldom used, configurations and exceptions, which we will only some-

times hint at in footnotes.



 Applications

beam width. The area in which an antenna is likely to serve mobiles is called its cell.

For a user to have service at a given point two things are important: The point needs

to be in the coverage area of at least one cell and the cell has to have enough capacity left

to match the demands.

Azimuth

Downtilt

Height

Figure .: Antenna installation

This means, the network designer

has to answer the following questions:

Which sites should be chosen from

a limited set of possible candidates?

How many antennas should be in-

stalled at a specific site? Which types

of antennas should be used, and how

should the antennas be mounted, i. e.,

the height, azimuth, and tilt are to be

decided, as indicated in Figure ..

Some of these questions are easy

to answer: The usual number of an-

tennas at a site is three. Differ-

ent antenna types are possible, but

for maintenance and supplier reasons,

the choice is usually restricted. The

mounting height is often fixed due to

co-location with existing  antennas. There are two flavors of tilt, mechanical and

electrical. Electrical tilting is preferred, but the amount is restricted depending on the

antenna type. Mechanical tilting is apart from constructive obstacles always possible

and can be combined with the electrical tilt. This leaves three choices to make:

◮ Site selection

◮ Setting the azimuth

◮ Choosing electrical and mechanical tilt

There are further choices of course, like carriers, primary scrambling codes, processing

units, radio-resource-management parameters, etc. But as far as we are concerned, the

choices above are those that have the most severe implications for the cost and perform-

ance of the network.

These choices are similar to those for  systems like . While the answers we

give in Section . hold for most radio based telecommunication systems in principle,

we will show beginning with Section . what makes planning  different.

3 In some cases, sites have not only one, but several possible antenna locations, for example, the four corners

of a flat roof.

4 All antennas at a site can share the rest of the infrastructure, making it cheaper to have multiple antennas.

Omni-directional antennas are seldom used for . Two antennas would have an unfavorable transmission

pattern. More than three antennas per site are possible but uncommon.

5 For an explanation of carriers, codes, and radio-resource-management see Holma and Toskala ().

MOMENTUM 

In this chapter many effects on the strength of signals are measured in Decibel or dB,

which is a dimensionless logarithmic unit often used in telecommunication engineer-

ing. A short introduction can be found in Appendix A. on page .

. Coverage or how to predict pathloss

In  every antenna emits a constant power pilot signal. This is used by the mobiles to

measure which antenna is received best. We say a point in the planning area has (pilot)

coverage, if and only if the received strength of the pilot signal from at least one antenna

is over some threshold. This threshold depends on many factors. For example, to ensure

penetration inside buildings an additional loss of about  dB has to be assumed on top

of the outdoor requirements. The area in which the pilot signal of a specific antenna is

received best is called its best server area.

In order to compute the signal strength at some point, we have to predict the weak-

ening of the signal. If both sender and receiver are in an open area and have no obstacles

between them, this is comparatively easy. Unfortunately, these conditions are seldom

met in street canyons and predicting the so-called pathloss is an art in itself. The most

simple methods to predict pathloss are rules of thumb that include empirical factors

according to the target area, like the - model (see, e. g. Kürner, ):

L(d, he, hm, f) = 46.3 + 33.9 log f − 13.82 log he − a(hm, f)

+(44.9 − 6.55 log he) log d + Cm

with a(hm, f) = (1.1 log f − 0.7)hm − (1.56 log f − 0.8)

where d is the distance between base station and mobile, he is the effective height of

the base station, hm is the height of the mobile (all heights and distances measured in

meters), and f is the frequency of the signal in megahertz. Cm is a correction factor

depending on the density of the buildings.

At the other end, prediction models utilizing  building data and sophisticated ray

tracing methods are used to even incorporate the effects of refraction on buildings and

the like. As a result the quality of the prediction varies widely. Have a look at Figure .

(darker areas imply less pathloss). For further information on how to compute pathloss

predictions see, e. g., Geng and Wiesbeck (), Saunders (), Bertoni ().

In the pathloss predictions shown, the effects of a specific antenna are already in-

corporated. To do this, knowledge of the radiation properties of the antenna is needed.

Figure . shows the attenuation of the signal in relation to the horizontal and vertical

angle of radiation for a Kathrein   antenna.

6 There are several ways to compute the effective height. The simplest one is the so-called spot-height which

is defined as the difference between the height of the antenna and the ground height of the mobile.

7 Only prediction .d allows to distinguish between indoor and outdoor areas. For the other predictions

it is assumed that the mobile is located outdoors. This is the reason why the prediction in Figure .b looks

darker. It has less pathloss on average than .d.

8 http://www.kathrein.de
9 For the interpretation of the diagrams keep in mind that the diagrams are inverted. Antenna patterns

 Applications

In all predictions shown on this page the same antenna

with ◦ electrical tilt, ◦ mechanical tilt, and ◦ azimuth is used.

(a) Lisbon, spot-height - pre-

dictor with  m resolution height data

(b) Berlin, M predictor with  m

resolution height and clutter data

(c) Lisbon, M predictor with  m

resolution height, clutter and merged vec-

torized street data

(d) Berlin, e·plus predictor with  m resolu-

tion height, clutter, vectorized street and 

building data

Figure .: Pathloss predictions

MOMENTUM 

50

40

30

20

10

0

10

20

30

40

50

40 20 0 20 40 60 80

d
B

dB

Smoothed
Original

(a)  vertical

60

40

20

0

20

40

60

40 20 0 20 40 60 80

d
B

dB

(b)  horizontal

Figure .: Antenna diagrams

Several methods for interpolating the combined vertical and horizontal loss from

the vertical and horizontal antenna diagrams are known, see, e. g., Balanis (), Gil

et al. (). A specific problem is the high volatility that can be seen in the vertical

diagram (green drawing in Figure .a). Due to reflection, refraction, and spreading it

seems highly unlikely that this amount of volatility can be observed in practice. Unfor-

tunately, we were not able to confirm this assumption with measurements. Since using

an unsmoothed vertical diagram leads to some strange effects in the optimization pro-

cedures due to (probably artificial) details in the pathloss predictions, we decided to use

smoothed diagrams (red drawing in Figure .a).

To obtain the total end-to-end attenuation, we have to subtract some losses due to

the wiring and equipment. There is also a so-called bodyloss depending on the user, i. e.,

whether the mobile is attached to the ear or connected to a hands-free speaking system

in a car.

We have now covered most of the static aspects that determine the attenuation of the

signal. But there are also dynamic factors, like slow and fast fading, moving obstacles,

the season and several more. Since we have a static view of the problem and have to

make plans regardless of the season, we incorporate these effects by using additional

offsets to change the attenuation to either average or worst case levels.

describe the attenuation of the signal. Straight drawing would lead to the counterintuitive situation that the

strongest signal is sent in that direction that is nearest to the origin, i. e., the center of the diagram. So what is

drawn is  dB minus attenuation level at the specific angle. This leads to the expected interpretation that the

radiation is strongest where the points are most distant from the center.

10 Because the trees have different influence with and without foliage.

 Applications

.. How much freedom do the choices give us?

The question how accurate our pathloss predictions are is quite important, since most

planning approaches are based on it. A related question is how much influence our

planning choices have on the pathloss. Since we are not able to answer these questions

conclusively, we will shed some light on the fact that without calibration from measure-

ments in the target area, the results from pathloss predictions should be taken with a

(big) pinch of salt.

Assuming that we have a fixed ◦ angle between the sectors, the maximum dif-

ference in pathloss from changing the direction is about  dB (see Figure .). In the

M Berlin public scenario (Rakoczi et al., , Geerdes et al., ) the average

distance for each site to its nearest neighbor is  m. Figure . shows the distribution.

Figure . shows the difference in pathloss resulting from an unsmoothed vertical an-

tenna diagram for the beginning and end of a  m pixel in case of an antenna height

of  m and ◦ electrical tilt. As can be seen, for a pixel  m to  m away from the

antenna, the variation in pathloss alone from the changing angle to the antenna is about

 dB.

80

60

40

20

0

20

40

60

80

80 60 40 20 0 20 40 60 80

d
B

dB

Tripled K742212 diagram, no tilt

Figure .: Tripled horizontal  diagram

Figure . displays the minimum and maximum pathloss we can obtain by changing

the azimuth and electrical tilt. We assumed a ◦ angle between the three sectors and a

 antenna at  m height. The antenna allows between zero and eight degrees of

electrical tilt. The maximal pathloss difference is about  dB at  m, which means

that changing the tilt gives us another  dB in addition to the azimuth variations. Also

drawn is the isotropic - prediction, i. e., without taking the antenna into

account. Figures . and . visualize the change in pathloss due to changes in electrical

tilt and height, respectively.

We will come back to this topic in Section .., once we have introduced the most

important concepts in .

MOMENTUM 

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000

P
a

th
lo

s
s
 [

d
B

]

Distance [m]

Cost231-Hata Isotropic
K742214 Minimum
K742214 Maximum

Change Window

Figure .:

Pathloss change

depending on distance

(min/max)

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000

P
at

hl
os

s
[d

B
]

Distance [m]

electrical Tilt 0
2
4
6
8

Figure .:

Pathloss change

depending on tilt

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000

P
at

hl
os

s
[d

B
]

Distance [m]

Height 20m electrical tilt 2
Height 50m electrical tilt 2
Height 20m electrical tilt 8
Height 50m electrical tilt 8

Figure .:

Pathloss change

depending on

height and tilt

 Applications

200

400

600

800

1000

1200

1400

D
is

ta
nc

e
[m

]

Sites

Nearest Neighbour
Average (683)

Figure .: Site distances in Berlin

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400 1600 1800 2000
A

nt
en

na
 lo

ss
 [d

B
]

Distance [m]

K742212 with 8 degrees electrical tilt at 50 m height

Figure .: Discretization jitter

. Capacity or how to cope with interference

Up to this point we have not talked about how  works.  is a so-called Wide-

band Code Division Multiple Access () system. Wideband means instead of hav-

ing each transmitter using its own small frequency band, all transmitters use the same

broad band (carrier). There is no partitioning of the available frequency band into sev-

eral channels. All transmitters send on the same frequency band at the same time. To

make this work, a signal that usually could be send on a  kilohertz wide band is spread

to, say, five megahertz. This is done in a particular way that allows the receiver to sep-

arate this spreaded signal out of all the others provided that one condition is satisfied:

The ratio of the strength of the signal to separate against all the other signals

that interfere must exceed a specific threshold.

This means we have to know three things:

◮ How strong is the received signal?

◮ How strong is the total interference?

◮ Which signal-to-interference ratio is needed to receive data at a certain rate?

A few things to note:

◮ The needed ratio depends on the data rate of the transmission, because the higher

the data rate is, the more bandwidth is needed, and the less we can spread the

signal making it more difficult to separate.

◮ If we send a strong signal, somebody else receives strong interference.

◮ While the power of the pilot signal is constant, the powers from the mobile to

the base-station and vice-versa are adjusted  times per second. This is called

Fast Power Control and is done to maintain a power level just above the required

threshold, while compensating for changes in the received signal strength due to

all kind of effects like movement, change in interference, etc.

11 For all the details see Holma and Toskala ()

MOMENTUM 

We have to distinguish two situations: Transmissions from the mobile to the base-

station, the so-called uplink, and transmissions from the base-station to the mobile,

or downlink. Since  is mostly used in Frequency Division Duplex () mode, up-

link and downlink have separate frequency bands, i. e., they do not interfere with each

other. We assume that whenever a mobile is connected, it sends to and receives from a

single specific antenna. In reality, the situation is more complicated, since a mobile can

be linked to two or more antennas, a state called soft-handover.

.. The CIR inequality

We call a fixed setting consisting of antenna type, height, azimuth, electrical, and me-

chanical tilt at a specific site an installation. The set of all considered (possible) installa-

tions is denoted I. Members of this set are denoted by i.

Unlike pilot coverage, interference cannot be viewed independently of the traffic.

Assuming some given traffic distribution, we have traffic realizations in form of a set D

of snapshots. We denote members of D by d. Each snapshot consists of a set of mobiles

Md. The union of all mobiles is M := ∪d∈DMd and its members are denoted by m.

If we look at a specific mobile m, we do not expect it to send all the time. Depending

on the service used, the transmit activity factor differs. For example, when doing voice

telephony usually a factor of % is assumed, meaning that on average only one of

the two people involved speaks at the same time. With other services like  or

video streaming this factor can be highly asymmetric between uplink and downlink.

We denote the transmit activity factor of a mobile by α
↑
m for the uplink and α

↓
m for the

downlink.

The end-to-end attenuation between a mobile and an installation including all

offsets as described in the previous section is denoted by γ
↑
mi for the uplink and by γ

↓
im

for the downlink. As mentioned before, each mobile must reach a certain signal-to-

interference ratio in order to get service. For technical reasons this is called the Carrier-

to-Interference Ratio () target and denoted by µ
↑
m in uplink and by µ

↓
m in downlink.

The transmission power of a mobile m in uplink is denoted by p
↑
m. The received

signal strength at installation i is then γ
↑
mip

↑
m. If we denote the received background

noise at installation i by ηi, the complete  inequality for the uplink transmission for

a mobile m ∈ Md to installation i ∈ I reads:

γ
↑
mip

↑
m

ηi +
∑

n 6=m
n∈Md

γ
↑
niα

↑
np

↑
n

> µ↑
m .

Writing

p̄
↑
i := ηi +

∑

m∈Md

γ
↑
miα

↑
mp↑

m

12 If all involved antennas are at the same base-station this is called softer-handover. Combinations of soft-

handover and softer-handover can also occur.

13 Pathloss is in principle symmetric. Due to different equipment in uplink and downlink, e. g. mast-head

amplifiers, the end-to-end attenuation can be asymmetric.

 Applications

for the average total received power at installation i, this simplifies to

γ
↑
mip

↑
m

p̄
↑
i − γ

↑
miα

↑
mp

↑
m

> µ↑
m . (.)

The downlink case is a little more complicated, because we have two additional factors

to include. First of all, we have to take into account the pilot and common channels,

the transmission power of which we denote by p̂
↓
i and p̌

↓
i . Another  feature we

have not yet considered is downlink orthogonality. Each antenna selects orthogonal

transmission codes for the mobiles it serves, which then in theory do not mutually

interfere. However, due to reflections on the way, the signals partly lose this property,

and signals from other antennas do not have it at all. So, when summing up the in-

terference, the signals from the same cell are cushioned by an environment dependent

orthogonality factor ω̄im ∈ [0, 1], with ω̄im = 0 meaning perfect orthogonality and

ω̄im = 1 meaning no orthogonality. For notational convenience the interference from

other transmissions is denoted by

φ(m, i) =
∑

n∈Md

n 6=m

(

from same cell
︷ ︸︸ ︷

ω̄imγ
↓
imα↓

np
↓
in +

from other cells
︷ ︸︸ ︷
∑

j∈I
j6=i

γ
↓
jmα↓

np
↓
jn

)

.

Let φ̂(m, i) denote the interference from other pilot signals and φ̌(m, i) denote the

interference from the other common channels:

φ̂(m, i) =
∑

j∈I
j6=i

γ
↓
jmp̂

↓
j φ̌(m, i) =

∑

j∈I
j6=i

γ
↓
jmp̌

↓
j

Writing ηm for the noise value at mobile m, the  formula for the downlink reads:

γ
↓
imp

↓
im

φ(m, i) + ω̄imγ
↓
imp̂

↓
i

︸ ︷︷ ︸

own pilot signal

+φ̂(m, i) + φ̌(m, i) + ηm

> µ↓
m

Defining the total average output power of installation i as

p̄
↓
i :=

∑

m∈Md

α↓
mp

↓
im + p̂

↓
i + p̌

↓
i ,

we obtain the downlink version of the  equation for the transmission from installa-

tion i ∈ I to m ∈ Md:

γ
↓
imp

↓
im

ω̄imγ
↓
im

(

p̄
↓
i − α

↓
mp

↓
im

)

+
∑

j6=i γ
↓
jmp̄

↓
j + ηm

> µ↓
m (.)

The  inequalities (.) and (.) are central to understand . There is a similar

constraint for the pilot signal.

14 The number of these codes is limited. A base can run out of codes. In this case codes from a second set

(code tree) are used which are not completely orthogonal.

MOMENTUM 

.. Assumptions and simplifications

Next, we will try to give some insight into the consequences arising from (.) and (.).

In order to do so, some assumptions are made that do not hold for a live dynamic ,

but facilitate a more deterministic examination.

As noted before, the power from and to a mobile is adjusted  times a second in

. The bias in the control loops is to lower the power as much as possible, while

still ensuring service. From now on, we will assume Perfect Power Control, i. e., the

transmission powers are at the minimum possible level (see for example Bambos et al.,

). It is to be expected that a real  system will work on average on a higher

transmission power level (see Sipilä et al., ).

We expect that with measurements from live networks it will be possible to find

suitable offsets to correct any models based on this assumption.

If we assume perfect power control it follows that inequalities (.) and (.) are

met with equality, i. e., the  inequalities become  equations. In reality, this might

sometimes be impossible, for example, due to required minimum transmission powers.

We also assume that if a mobile is served, this is done by its best-server, which is the

antenna whose pilot signal is received with the highest signal strength. In reality, this

is only the case with a certain probability.

Finally, we neglect soft-handover. This is a situation where two or more equally

strong, or in this case weak, antennas serve a mobile. The Radio Network Controller can

choose the best received signal in uplink and the mobile can combine the transmission

power of all antennas in downlink. The main benefit is a more seamless handover of

a moving mobile from one cell to another. The drawback is higher interference and

therefore reduced capacity in the downlink.

.. Cell load

Assuming equality, we can deduce how much of the capacity or transmission power of

an antenna is used by a specific mobile from (.) and (.). In uplink we can rearrange

(.) to yield p
↑
m depending on the total power:

p↑
m =

1

γ
↑
mi

· µ
↑
m

1 + α
↑
mµ

↑
m

· p̄↑
i

15 Even though there are several engineering provisions to ensure an acceptable behavior of the system, there

is, in fact, no proof that the system will find power levels anywhere near the optimum. At least theoretically

the system might even start to swing.

16 If all antennas send their pilots with the same power, the best-server is equal to the antenna which has

the smallest pathloss to the mobile. If the transmission power of the pilot signal varies between antennas,

the situation occurs that the best-server is not the antenna that is received best. This can have problematic

repercussions.

17 Due to obstacles, for example, the best-server for a moving mobile might frequently change. To smoothen

the dynamics in the systems, hysteresis is used in many cases. The Radio Network Controller might also decide

to connect a mobile to a different base-station for load balancing.

 Applications

The received power from mobile m at installation i is on average α
↑
mγ

↑
mip

↑
m. Writing

this as a ratio of the total received power at the installation we get the uplink user load:

l↑m :=
α
↑
mγ

↑
mip

↑
m

p̄
↑
i

=
α
↑
mµ

↑
m

1 + α
↑
mµ

↑
m

(.)

l
↑
m ∈ [0, 1[is the fraction of the total power received at installation i that is caused by

mobile m. Note that the uplink user load is completely independent of the attenuation

of the signal.

In the downlink case, we basically repeat what has just been done for the uplink.

The starting point is the  constraint (.), again assuming that the constraint is met

with equality for all mobiles, it can be rewritten as:

1 + ω̄imα
↓
mµ

↓
m

α
↓
mµ

↓
m

α↓
mp

↓
im = ω̄imp̄

↓
i +

∑

j6=i

γ
↓
jm

γ
↓
im

p̄
↓
j +

ηm

γ
↓
im

We define the downlink user load of serving mobile m as:

l↓m :=
α
↓
mp

↓
im

ω̄imp̄
↓
i +

∑

j6=i

γ
↓

jm

γ
↓

im

p̄
↓
j + ηm

γ
↓

im

=
α
↓
mµ

↓
m

1 + ω̄imα
↓
mµ

↓
m

(.)

.. Pathloss revisited

With the knowledge gained, we can again ask about the precision of our pathloss predic-

tions. Figure . shows the comparison between a  m resolution - and a

 m resolution  prediction. Two sites from the M Berlin scenario with a dis-

tance of  m were chosen. All shown predictions are isotropic, i. e., without antenna

effects. Figures .a and .b show  predictions computed by e·plus. Figures .d

and .e show - predictions of the same sites. Figures .c and .f are

best server maps of the area based on the respective predictions. If the pathloss differ-

ence is less than three decibel, then the area is colored white. Note that since we are

working in dB, i. e., on a logarithmic scale, difference means ratio.

Site 1 Fig. Site 2 Fig. Diff. Fig.

Average pathloss

5 m 3D prediction (dB) 132.0 5.10a 126.1 5.10b

50 m COST231-HATA (dB) 132.3 5.10d 129.5 5.10e

Correlation 0.77 0.81 0.87

Average difference (dB) 1.49 5.10g 6.48 5.10h 1.83 5.10i

Standard deviation 10.28 5.10j 9.65 5.10k 7.01 5.10l

Table .: Comparison of - and  pathloss predictions

Figure .g visualizes the difference between the two prediction methods for the

first site and .h for the second one. Areas in which the high resolution  predictor

MOMENTUM 

predicted less pathloss than the - predictor are marked red. In the opposite

case the area is marked green. Areas where both predictions do not differ by more than

three decibel are colored white, indicating concordance between the two predictions.

Figures .j and .k show the respective difference histograms. Note that the 0 dB bar

is clipped and corresponds in both cases to %.

Table . shows some statistical data about the comparison. The data indicates that

even though - is only a very simple prediction method, at least for the

flat urban area of Berlin, it is a suitable method to compute the average pathloss quite

accurately. On the other hand, it is clear that the particular pathloss at a specific point

can and usually will vary widely around this average.

Figure .i and the accompanying histogram .l show what we are really con-

cerned about: Where would we have differences in the ratio between the pathloss from

the two sites if we use a - prediction instead of a high resolution  predic-

tion? White areas indicate that the ratios between the two predictors differ by less than

three decibel. Note that the pathloss difference between the two antennas was clipped

at  dB. Red indicates areas where the - predictor sees the ratio between

the sites more in favor of the second site than the  predictor. Green areas indicate the

opposite. Note that the 0 dB bar in Figure .l is clipped and corresponds to %.

As can be seen in Table ., statistically the difference between the  predictions and

- is in fact smaller for the pathloss ratio than for the pathloss values itself.

.. Assessment

The sophisticated high resolution  predictions showed a standard deviation of about

 dB in comparison to pathloss measurements performed by e·plus. Since we have no

access to the measurement data, we cannot assess the quality of the - pre-

dictions against the real world. But with the  m - predictions essentially

averaging the  m  predictions with a standard deviation of about  dB we can ex-

pect them to have only a slightly higher deviation against the measurements for  m

resolution.

If we recall Figures . to . we can see that within a radius of about  m around

an antenna the pathloss is highly volatile. This might not be too problematic, because as

Figure . shows, the absolute value will be on average high enough to ensure coverage

and, as Figure .l indicates, the area is likely to be dominated by the local antenna. On

the other hand, this is probably all we can say with some certainty about this area. It

should be noted that - was not meant to be used for distances below  km.

If we are at least that far away, we can expect to get a fair idea of the average pathloss

18 A factor of  dB means that one of the signals will be attenuated  times more than the other. If the

difference is this big, then it is unlikely to matter in interference calculations. Therefore, in this picture white,

meaning “no difference”, is also used if the difference in pathloss between the two antennas for both prediction

methods is bigger than  dB, regardless of the actual amount.

19 This result is slightly misleading, as Sipilä et al. () show from simulations that due to effects resulting

from multi-path reception and fast power control the observed interference will be higher, at least for slow

moving mobiles.

20 Our conclusions so far are drawn from one arbitrarily chosen example.

 Applications

(a) (b) (c) = (a) - (b)

(d) (e) (f) = (d) - (e)

(g) = (a) - (d) (h) = (b) - (e) (i) = (c) - (f)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-30 -20 -10 0 10 20 30

%
 P

ix
el

dB

Pathloss difference 5m E-Plus vs. 50m COST-Hata (4595641,5821922)

27%

(j)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-30 -20 -10 0 10 20 30

%
 P

ix
el

dB

Pathloss difference 5m E-Plus vs. 50m COST-Hata (4596650,5822621)

27%

(k)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-30 -20 -10 0 10 20 30

%
 P

ix
el

dB

Pathloss ratio 5m E-Plus vs. 50m COST-Hata

25%

(l)

Figure .: Comparison of - and  pathloss predictions

MOMENTUM 

and especially pathloss ratios between different sites from the predictions.

To assess the implications of this insight, we need to have an idea on how the possible

scenarios look like. This can be split into two parts. The question is whether we are

◮ coverage or capacity limited

◮ uplink or downlink limited

In rural areas with low traffic, coverage will be the limiting factor. In dense urban areas

with high traffic, we expect to be capacity limited. All services offered for  so far

have either symmetric traffic demands, e. g., voice or video telephony, or if they are

asymmetric they have the higher demand in downlink, e. g., video streaming, ,

E-mail. Hence, we assume that especially in high traffic areas, the downlink will be

much more demanding. Since  deployment will start in urban areas, we expect the

downlink capacity limited scenario to be the most important.

Looking at Figure . we see that in a realistic urban scenario the nearest neighbor

of most sites is less than  km away. In many cases two sites are less than  m apart.

The standard deviation of the prediction data is about as high as the maximum change

we can achieve by either turning or tilting antennas. Adding the fact that all traffic

forecasts especially for the new services are educated guesses at best, we can conclude

that qualitative results on average behavior of  systems seem possible while any

quantitative results based on this kind of data should be very carefully assessed and

viewed with suspicion.

. Models

Now that we have a little understanding of how  works, we will present three opti-

mization models to address planning choices. We will use models based on set covering

and partitioning (see, e. g., Borndörfer, ) for the site and azimuth selection.

.. Site selection

As we stated in the beginning, the first task is to select sites. The planning area is dis-

cretized, i. e., divided into square pixels of some resolution, usually between  m and

 m. Each point in a pixel shares all the attributes, like pathloss, with all other points

in this pixel.

Given a set of possible sites S and a set of pixels P, we compute cover-sets Sp ⊆ S, p ∈
P which contain all sites that can possibly serve pixel p. Since we have not yet decided

on azimuth and tilt of the antennas, and because the capacity of a cell depends on its

neighbors, it is not possible to know precisely which pixel can and will be served by

which site. Therefore, we have to build the cover-sets heuristically, along the following

ideas for example:

21 As of June , all providers offering  services are limited to  kbit/s in uplink vs.  kbit/s in

downlink.

 Applications

◮ Include only pixels, whose predicted pathloss (either isotropic, minimum possi-

ble, complete including antenna) is above a threshold (coverage).

◮ Use the cell load arguments from Section .., to sum up the load using the aver-

age traffic on the pixel until some threshold is exceeded (capacity).

◮ Ignore pixels with a distance greater than a certain threshold.

◮ If the potentially served areas due to the coverage criterion are not coherent, use

only those adherent to the site location.

Have a look at Figure .a. For a threshold of  dB the green area will have coverage

and is connected to the center. Areas marked in red are enclosed by the green area, but

will not have sufficient coverage. Areas which will suffer from heavy interference are

marked blue.

A related question is, which pixels to include into the selection at all. It might be a

good idea to ignore pixels that have no traffic, that are on the border of the scenario, or

even some of those that can only be served by a single site, since this would mean the

site is surely selected.

We introduce binary variables xs, s ∈ S and zij, i, j ∈ S. xs = 1 if and only if site

s is selected and zij = 1 if and only if sites i and j are both selected. The latter gives us

some leverage to minimize interference using a heuristical penalty factor 0 6 cij 6 1

indicating the amount of interference between sites i and j.

Our objective is to minimize the number of sites and the interference:

min
∑

s∈S

xs +
∑

i∈S

∑

j∈S

cijzij .

The constraints are:

∑

s∈Sp

xs > 1 for all p ∈ P with Sp 6= ∅ (.)

xi + xj − zij 6 1 for all i ∈ S, j ∈ S (.)

(.) ensures that each pixel can be served, and (.) marks sites that mutually interfere.

(.) is the typical formulation for the logical a = b ∧ c as shown in Equation .. The

first two parts of . can be omitted, because we are minimizing and cij > 0 in all cases.

The solvability of the resulting  is empirically good. We have successfully used it

for commercial scenarios with more than  sites. Figure .b shows a solution of this

model for the M The Hague public scenario (Rakoczi et al., , Geerdes

et al., ). Three antennas with ◦ angles were installed at each selected site. Green

and blue areas have sufficient pilot coverage. Blue areas are covered by a single installa-

tion. An example of the model formulated in Z can be found in Appendix C. on

page .

MOMENTUM 

(a) Berlin selection criteria (b) Pilot count

Figure .: Site selection

.. Azimuth (and a little tilting)

Jakl et al. () gave some ideas how to analytically derive settings for the azimuth

and tilt. We will show how to quickly transform some of these ideas into s.

According to Nawrocki and Wieckowski (), the optimal azimuth setting for an-

tennas in a hexagonal grid looks like Figure .. The idea is that each antenna should

point directly to another site and that the angles between the beam directions of the

antennas should be maximized. Additionally, the number of beams crossing each other

should be minimized.

We start by building a directed simple graph G = (S,A) with the site set S being the

set of nodes, and A being the arcs. We include only arcs between sites that are no more

than d meters apart. We choose a set packing approach and introduce binary variables

xij = 1, if and only if arc (i, j) ∈ A is selected, i. e., if an antenna is pointing from site i

to site j.

Additionally, we set binary variables ymn
ij = 1, (i, j) ∈ A, (m,n) ∈ A, if and only

if antennas pointing from site i to j and from m to n are both active. We only use

combinations of i, j,m,n, where at least two of them are equal, i. e., mostly three sites

are involved, and the angle between the two arcs is less than ◦. We denote the set of

these arc pairs by F ⊂ A × A.

Finally, binary variables zmn
ij , (i, j) ∈ A, (m,n) ∈ A are defined. zmn

ij = 1 if and

only if arcs (i, j) and (m,n) are both selected and cross each other. The set of crossing

arcs is called C ⊂ A × A.

22 i. e., without doing explicit or implicit simulations, meaning without looking specifically at the  in-

equalities.

 Applications

Figure .: Optimal azimuth in a regular hexagonal grid

The objective is to minimize

∑

(i,j)∈A

cijxij +
∑

(i,j,m,n)∈F

vmn
ij ymn

ij +
∑

(i,j,m,n)∈C

wmn
ij zmn

ij

where cij is the cost of arc (i, j), which depends on the pathloss between sites i and j.

The heuristic idea is that a high pathloss between the sites is beneficial, since there will be

less interference. vmn
ij is the penalty for arcs with an angle of less than ◦. The penalty

should increase nonlinearly towards smaller angles. Furthermore, we have wmn
ij , the

penalty for crossing arcs.

The number of antennas at each site s is fixed in advance and denoted by ζs. This

gives us a cardinality constraint:

∑

(s,r)∈A

xsr = ζs for all s ∈ S

ζs is usually set to three. If the angle between two adjacent arcs emitting from a site

is greater than ◦ we mark the site as belonging to the border of the scenario. For

these sites we set ζs = 0. Using a reduced value like one or two is also possible. Since

anti-parallel arcs are interference-wise the worst case, they are not allowed:

xij + xji 6 1 for all i, j ∈ A, i 6= j

In order to trigger the setting of the y and z variables we have again reduced logical ‘∧’

constraints of type (.):

xij + xmn − ymn
ij 6 1 for all i, j,m,n ∈ F

xij + xmn − zmn
ij 6 1 for all i, j,m,n ∈ C .

MOMENTUM 

Table . lists some data about the models. Berlin is the original network given with

the M Berlin public scenario. Berlin∗ is a network computed with the site

selection model from the previous section. Lisbon is the original network from M-

 Lisbon public scenario (Rakoczi et al., , Geerdes et al., ). Figure .

shows the azimuth optimization results for Berlin∗ and Lisbon. The blue lines indicate

possible antenna directions, the red lines are those present in the solution. Also visible

is the most eminent problem of this approach: Since we have restricted the possible di-

rections, sometimes there is simply no good choice available. Introducing artificial sites

to increase the number of possible locations could be a remedy for this problem. On

the other hand, this is just a heuristic in order to get some sensible directions to begin

with. In our experience, the results obtained are a good starting point for a local search

heuristic that cleans up “local problems” afterwards.

Berlin Berlin∗ Lisbon

max. distance [m] 2,200 2,200 1,800

Sites 50 44 52

Cells 111 90 102

Arcs 622 356 1,098

Variables 21,872 4,512 89,858

Constraints 64,011 12,690 266,881

Non-zeros 149,794 29,804 623,516

Optimality gap 6% 2% 12%

Time [h] 2 1 14

Table .: Azimuth optimization

A Z formulation of the model can be found in Appendix C. on page .

Analytical tilting

Having computed the azimuth, the question of tilting remains. Assuming an antenna

installed at site i pointing at site j, we can compute a suitable tilting angle by θ =

arctan hi

λdij
, with hi being the height of site i and dij being the distance between sites i

and j. λ is a factor in the range [0, 1] indicating where between i and j the main lope of

the antenna should point. This idea can be improved in several ways. One option is to

take not only the height of site i, but of the whole area into account.

Having computed an angle θ, we first try to accomplish this by electrical tilting

because of the more favorable antenna diagram. If this is not sufficient, mechanical

tilting is employed. Again, as with the azimuth these heuristics give us a sensible starting

point, which allows us to restrict some local search heuristic to nearby settings.

 Applications

(a) Berlin∗ (b) Lisbon

Figure .: Azimuth optimization

.. Snapshots

Simulations are required, to realistically evaluate an  scenario. This leads to the

question whether it is possible to combine simulation and optimization. To this end, we

will first try to model the core of a simulator as a .

Recalling the notation from Section .. the network to evaluate is given as a set

of installations I. We introduce binary variables xmi which indicate whether mobile

m ∈ M is served by installation i ∈ I. It is required that no mobile is served by more

than one installation:
∑

i∈I

xmi 6 1 for all m ∈ M (.)

Adding inequality (.) we obtain for the uplink:

γ
↑
mip

↑
m

p̄
↑
i − γ

↑
miα

↑
mp

↑
m

> µ↑
mxmi for all m ∈ M, i ∈ I

And using inequality (.) for the downlink we obtain:

γ
↓
imp

↓
im

γ
↓
imω̄im

(

p̄
↓
i − α

↓
mp

↓
im

)

+
∑

j6=i γ
↓
jmp̄

↓
j + ηm

> µ↓
mxmi for all m ∈ M, i ∈ I (.)

Linearization

Since the above inequalities are quadratic, we have to find a linear reformulation for

them, since the solution of quadratic mixed integer programming problems is difficult

MOMENTUM 

in practice. We show the linearization for the downlink case, the uplink is similar. Start-

ing with a transformation of inequality (.):

γ
↓
imp

↓
im

µ
↓
m

>

(

γ
↓
imω̄imp̄

↓
i − γ

↓
imω̄imα↓

mp
↓
im +

∑

j6=i

γ
↓
jmp̄

↓
j + ηm

)

︸ ︷︷ ︸

Total interference φ(i, m)

xmi > 0

we find an upper bound for φ(i,m) by inserting the maximum total output power at

each installation:

Θim := γ
↓
imω̄imΠ

max↓
i +

∑

j6=i

γ
↓
jmΠ

max↓
j + ηm

Writing

γ
↓
im

µ
↓
m

p
↓
im > φ(m, i) − Θim(1 − xmi) (.)

we obtain the linearization of (.). Inequality (.) is always fulfilled if xmi = 0. In case

xmi = 1 it is fulfilled if and only if inequality (.) is fulfilled.

One disadvantage of this approach is that we have modeled the  as the differ-

ence between signal and interference and not as the ratio between them. Some services

such as file-transfer are packet-switched instead of the traditional circuit-switched. This

allows to upgrade or downgrade their data rate and, correspondingly, their  target

depending on the utilization of the network. With our “basic” approach used here, we

have to decide in advance which data rate we choose.

Taking the  inequalities for uplink, downlink, and pilot together with limits on

the power output and maximizing the number of served mobiles gives us essentially a

snapshot evaluator. Experiments have shown that the linear relaxation of this model

is quite tight. Some decisions from the Radio-Resource-Management (), like pre-

ferring voice users over streaming users, can be incorporated by a suitable objective

function. Furthermore, we are able to require minimum power levels as resulting from

perfect power control by adding the power variables with some tiny costs to the objec-

tive function. Figure .. shows the result of an evaluation. Blue dots indicate served

mobiles, red dots represent unserved mobiles. The gray area is the region of interest and

a darker gray indicates higher terrain.

Optimization

To extend this model to optimize the network, we need only two additions: First, we

extend the set of installations to include all potential installations and require that only

a limited number of installations is chosen per site. Second, we have to change the

objective to minimize the cost of the resulting network while still serving most of the

users. We denote by S the set of all possible sites and introduce binary variables sk,

k ∈ S with the interpretation sk = 1 if and only if site k is used. This allows us to

23 In a way, the relaxation resembles soft-handover since mobiles can be served by more than one cell.

 Applications

Figure .: Snapshot evaluation for Lisbon

introduce costs for opening a site. Installations are selected through binary variables

zi, i ∈ I, where zi = 1 if and only if installation i is used. An installation i is only

available if its site σ(i) is in use:

zi 6 sσ(i) for all i ∈ I (.)

Of course, the number of installations at a site is bounded:

Υmin
k 6

∑

i∈I(k)

zi 6 Υmax
k for all k ∈ S (.)

and only a selected installation may serve mobiles:

xmi 6 zi for all m ∈ M, i ∈ I (.)

Up to now we maximized the number of served mobiles, but with costs for opening sites

and selecting installations. We would like to change the objective function to minimize

network cost while still serving “enough” users. Operators, asked how many users are

enough, usually state that: “it’s OK if, say, % of the mobiles are not served.” Opening

a site only to serve a “few” additional users is obviously a bad idea in this setting. A

possible solution is to change inequality (.) to:
∑

i∈I

xmi = 1 − um for all m ∈ M (.)

24 Opening a site is a costly decision. It is, in fact, so expensive compared to installing another antenna at a

site, that most sites are built with three antennas from the beginning on.

MOMENTUM 

Either the mobile is served, or a binary variable um is set to one, indicating that mobile

m is unserved. Adding

∑

m∈Md

um 6 0.05 |Md| for all d ∈ D

would request that in each snapshot at most % of the mobiles remain unserved. In

computational experiments we used an alternative approach. The um variables were

given high costs which would then trigger the opening of additional sites. This allows

to eventually express how desirable it is to serve a mobile. The experiments have shown

that the above model is computationally very unfavorable. This has several reasons:

◮ Monte-Carlo simulators use thousands of snapshots to get reliable results. To do

the same, we have to include all the snapshots into a single .

◮ The  grows by I × M. The growth resulting from increasing the number of

mobiles can partly be confined by preprocessing, since the number of installations

that can possibly be the best server for a mobile is more or less constant.

◮ If a large number of possible installations per site is used, these will inevitably

be rather similar. The more so if only average predictions like - are

used.

◮ The linearization is a so-called big M formulation. These tend to be numerically

unfavorable.

◮ The high cost difference between serving a mobile compared to not serving it

leads in case of a not serviceable mobile to an unfortunate branching order in the

 codes.

Apart from this, a uniform distribution of the unserved mobiles is desirable. In dense

urban areas, which are our main focus, capacity is often the bottleneck and not coverage.

It is quite possible that given the freedom to choose, aggregated dropping might take

place in hot-spot areas.

For these reasons, we tried equation (.), taking the view that if it does not matter

whether a mobile at a specific place is served, none should be generated at this place in

a snapshot, anyway.
∑

i∈I

xmi = 1 for all m ∈ M (.)

This improved the computational solvability, but the range of feasibility for a given set of

parameters became very small, e. g., all parameters had to be chosen extremely carefully

to get feasible solutions. This gets increasingly difficult with every additional snapshot

included in the problem.

In the end, we were not able to solve a suitable number of snapshots, i. e., more than

one to get reliable results on realistic scenarios, even when we restricted the model to

only the downlink case.

25 This is not that big a restriction, because if a mobile is not served, it will be either because of uplink,

downlink or pilot  requirements. This means two of the three inequalities are likely to be non-tight in a

 Applications

. Practice

We conclude our examination with an example. As we have seen  is a complex

system, where nearly everything is interacting with everything else. The highly nonlin-

ear behavior of the system where problems in one area are proliferated to neighboring

cells via interference, make it hard to correctly evaluate the performance of a network.

Furthermore there is no clear definition of a “good” network. There are only several

performance indicators that have to be weighted against each other.

We have seen limited evaluations of different scenarios with the M dy-

namic and advanced static simulators, with Forsk’s A, the A T simu-

lator and /Atesio’s NV swift  performance analyzer. While the qualitative

results were mostly comparable, i. e., all tools see a high load in areas with a lot of traf-

fic, the quantitative results about how many users a network can accommodate are very

dependent on the actual settings of numerous parameters.

Until we have the possibility to compare results with the real world, we can only

demonstrate our ability to model the problem, adapt to the evaluation tool at hand and

produce sensible results using an ever increasing toolbox of models and methods. But

then, this is what rapid mathematical programming is all about.

This said, we will now show the results of computing a network for the M

Berlin public scenario using the models presented in the previous sections. The result

will be compared with the initial network for the scenario, which was provided by e·plus

and which is derived from their  network.

The scenario itself has an area of  square km. We defined a border strip of  m

that we excluded from the evaluation, leaving about  square km effective. In the main

business hour on average  users are active at all times, half of them using voice

telephony and the rest distributed on the other services.

To construct a network, we first used the set covering model of Section .., se-

lecting  from  potential sites. Next the azimuth of the antennas was determined

with the graph based model according to Section ... Afterwards the tilts were set

analytically. Finally, a local search heuristic was run, which repeatedly tried for indi-

vidual promising sites to vary the tilt or change the azimuth by ±◦ until no further

improvement could be achieved. The original network and the one we computed were

evaluated with the NV swift  performance analyzer. The results can be seen

in Table .. Even though we used  cells fewer than the original network in the focus

area, the performance of the computed network is better for the assumed traffic.

Figure . shows a comparison of the pilot coverage areas. Note the light colored

border which is not included in the evaluation. Red and yellow indicate a weak pilot

signal. Areas with insufficient pilot coverage are unlikely to receive any service. This is

independent of the load of the network.

Figure . visualizes the difference in signal strength between the strongest and sec-

solution anyway. And since we are mostly in a downlink limited scenario, the tight one will be usually the

downlink constraint.

26 This is one of the more reliable indicators, as it is only depending on the pathloss predictions.

MOMENTUM 

(a) Original (b) Computed

Figure .: Pilot coverage

(a) Original (b) Computed

Figure .: Pilot separation

 Applications

(a) Original (b) Computed

Figure .: Downlink cell load

(a) Original (b) Computed

Figure .: Load loss / interference coupling

MOMENTUM 

Original Computed

Sites (inside focus zone) 50 (44) 44 (30)

Cells (inside focus zone) 148 (131) 132 (90)

Lower values indicate better performance

Weak pilot signal % of area 6 1

Pilot pollution % of area 9 3

Uplink load (average) % 12 13

(maximum) % 40 36

Downlink load (average) % 20 20

(maximum) % 70 65

Total emitted power dBm 582 534

Overloaded cells 3 0

Lost traffic % 8 6 1

Table .: Comparison of performance indicators

ond strongest pilot signal. A big difference indicates that the cell with the strongest

signal is “undisputed”. Blue areas have at least  dB difference, green is  down to  dB,

yellow starts at  dB, and is getting more reddish up to zero decibel, which is colored

plain red. Pilot pollution happens if more than three pilot signals are within  dB of

each other. This is an indication that too many antennas are covering a specific area and

unnecessary interference is likely to occur.

The distribution of the downlink load is shown in Figure .. Dark colors indicate

a low load, lighter colors indicate higher load. Table . shows that while the average

load of both networks is similar, the maximum load of the original network is higher.

Note that % is the maximal possible downlink load in our case. Cells exceeding this

threshold are overloaded and traffic will be lost. Additionally, overloaded cells cannot

be expected to accommodate new users, i. e., users in the orange areas of the original

network (Figure .a) initiating a call or moving into the area with an active connection

are likely to be rejected.

Finally, Figure . shows two unrelated issues. The gray areas indicate load loss.

As we can see, most of the loss in the original network is located in the lower left cor-

ner. Our investigations revealed that the existing sites have no possibility to cover that

area completely. If five additional sites in the border area would be present as in the

computed scenario, we could expect that the weak pilot and load loss indicators reach

similar levels as in the computed network.

The graph imposed on the load loss map visualizes the interference coupling be-

tween the cells. Cells that do not have a connecting arc have no noteworthy mutual

interference. Note that the arcs indicate how strong the coupling between the cells is,

and not how strong the actual interference is. Looking at Figures .a we see a few or-

27 Areas with less than  dB difference are likely to be soft-handover areas, which is not bad per se.

 Applications

ange arcs indicating that the strongest interference coupling happens if two antennas are

directed at each other. Comparing with Figures .b and .a suggests that the results

of our azimuth selection model are indeed beneficial.

The importance of less interference coupling can be seen if we increase the traffic

demands. For a test we uniformly doubled the traffic in the scenario. Despite having

considerably fewer cells, i. e., potential capacity, our new network performed compara-

bly to the original one.

.. Conclusion

 planning is still in its infancy. We presented models that seem to work acceptably,

but lack feedback from the real world to verify data, models, and results. Once the

models are more mature, additional theoretical work is needed to get a better notion of

the potential capacity of a network. In contrast to  networks, the introduction of an

additional site can decrease the capacity of an  network. At the moment, it is very

difficult to give more than a trivial lower bound on the number of cells needed to handle

a given traffic load. In face of the uncertainty regarding the underlying data, especially

the pathloss predictions, all results about  networks should be viewed with some

suspicion.

Nevertheless, rapid mathematical prototyping has proved itself a formidable tool to

quickly investigate lines of thought and to differentiate between promising and futile

approaches. Additional details, further information on models, data, and advanced

topics can be found in Eisenblätter et al. (a,b,c,d,e,f, ), Amaldi et al. (,

a,b), Mathar and Schmeink (), Whitaker and Hurley ().

.. Acknowledgements

Some of the graphics shown in this chapter were computed using data provided by

e·plus Mobilfunk GmbH & Co. KG, Düsseldorf, as part of the M project. This

data in turn was generated using data provided from the Bundesamt für Kartographie

und Geodäsie, Frankfurt am Main, and from Tele Atlas N.V., Düsseldorf.

28 Both networks had most cells overloaded and lost % to % of the traffic.

Chapter 

Steiner Tree Packing Revisited

And now something completely different

— BBC

In this chapter we will explore how far we can get with our rapid prototyping approach on

a “classical” hard combinatorial problem. Bob Bixby (Bixby et al., , Bixby, )

claims “dramatic” improvements in the performance of generic -Solvers like .

We will revisit the Steiner tree packing problem in graphs and make some comparisons

against special purpose codes. I wish to thank Alexander Martin and David Grove

Jørgensen for their help and contributions.

. Introduction

The weighted Steiner tree problem in graphs () can be stated as follows:

Given a weighted graph G = (V, E, c) and a non-empty set of vertices T ⊆
V called terminals, find an edge set S∗ such that (V(S∗), S∗) is a tree with

minimal weight that spans T .

This problem is nearly as classical as the Traveling Salesman Problem (). An extensive

survey on the state-of-the-art of modeling and solving the  can be found in Polzin

().

Most papers on the  claim real-world applications, especially in -design and

wire-routing. This usually refers to a generalization of the , the weighted Steiner

tree packing problem in graphs (). Instead of having one set of terminals, we have

N non-empty disjoint sets T1, . . . , TN, called Nets, that have to be “packed” into the

graph simultaneously, i. e., the resulting edge sets S1, . . . , SN have to be disjoint. In

these applications, G is usually some kind of grid graph.

1 Chvátal () describes solving the  as sports. The  qualifies as sports for similar reasons.



 Applications

Grötschel et al. (), Lengauer () give detailed explanations of the modeling

requirements in -design. We will follow their classification and give an overview of

the main variants only.

Routing

Motivated by the applications three routing models are of particular interest:

Channel routing (.a) Here, we are given a complete rectangular grid graph. The ter-

minals of the nets are exclusively located on the lower and upper border. It is

possible to vary the height of the channel. Hence, the size of the routing area is

not fixed in advance. Usually all nets have only two terminals, i. e., |Ti| = 2.

Switchbox routing (.b) Again, we are given a complete rectangular grid graph. The

terminals may be located on all four sides of the graph. Thus, the size of the

routing area is fixed.

General routing (.c) In this case, an arbitrary grid graph is considered. The terminals

can be located arbitrarily (usually at some hole in the grid).

✁✂✁✄ ☎✆ ✝✞ ✟✠ ✡☛☞✂☞✌✂✌ ✍✎ ✏✑

✒✓ ✔✕✖✗✘✂✘✙ ✚✛

✜✂✜✢

✣✂✣✤✂✤ ✥✦✧✂✧★ ✩✪

(a) Channel routing

✫✂✫✬ ✭✮ ✯✰ ✱✂✱✲✂✲ ✳✴ ✵✶

✷✂✷✸ ✹✺✻✼✽✂✽✾ ✿✂✿❀✂❀ ❁✂❁❂ ❃❄

❅✂❅❆

❇❈

❉❊

❋❋●
●❍✂❍❍✂❍■

■

❏✂❏❑

▲▲▼
▼
◆◆❖
❖

P✂PP✂P◗
◗

(b) Switchbox routing

❘❙ ❚❯ ❱✂❱❲✂❲❳✂❳❨ ❩❬

❭✂❭❪ ❫❴❵✂❵❛ ❜✂❜❝✂❝ ❞✂❞❡

❢✂❢❣

❤✐

❥✂❥❥✂❥❦
❦

❧✂❧♠

♥♥♦
♦
♣♣q
q

rs
t✂tt✂t✉✂✉✉✂✉

✈✇ ①✂①②

③③④
④⑤✂⑤⑤✂⑤⑥
⑥

⑦✂⑦⑧

(c) General routing

Figure .:  routing variations

Intersection model

The intersection of the nets is an important point in Steiner tree packing. Again three

different models are possible.

Manhattan (.a) Consider some (planar) grid graph. The nets must be routed in an

edge disjoint fashion with the additional restriction that nets that meet at some

node are not allowed to bend at this node, i. e., so-called Knock-knees are not

allowed. This restriction guarantees that the resulting routing can be laid out on

two layers at the possible expense of causing long detours.

Knock-knee (.b) Again, some (planar) grid graph is given and the task is to find

an edge disjoint routing of the nets. In this model Knock-knees are possible.

Steiner Tree Packing Revisited 

Very frequently, the wiring length of a solution in this case is smaller than in

the Manhattan model. The main drawback is that the assignment to layers is

neglected.

Node disjoint (.c) The nets have to be routed in a node disjoint fashion. Since no

crossing of nets is possible in a planar grid graph, this requires a multi-layer

model.

(a) Manhattan model (b) Knock-knee model (c) Node disjoint model

Figure .:  intersection models

Multiple layers

While channel routing usually involves only a single layer, switchbox and general routing

problems are typically multi-layer problems. Using the Manhattan and Knock-knee

intersection is a way to reduce the problems to a single-layer model. Accordingly, the

multi-layer models typically use node disjoint intersection. While the multi-layer model

is well suited to reflect reality, the resulting graphs are in general quite large. We consider

two possibilities to model multiple layers:

k-crossed layers (.a) There is given a k-dimensional grid graph (that is a graph ob-

tained by stacking k copies of a grid graph on top of each other and connecting

corresponding nodes by perpendicular lines, so-called vias), where k denotes the

number of layers. This is called the k-layer model in Lengauer ().

k-aligned layers (.b) This model is similar to the crossed-layer model, but in each

layer there are only connections in one direction, either east-to-west or north-to-

south. Lengauer () calls this the directional multi-layer model. Korte et al.

() indicate that for k = 2 this model resembles the technology used in -

wiring best. Boit () mentions that current technology can use a much higher

number of layers.

2 A third possibility is to use a single-layer model with edge capacities greater than one.

 Applications

(a) Multi-crossed layers (b) Multi-aligned layers (c) With connectors

Figure .:  modeling taxonomy

Note that for switchbox routing there is a one-to-one mapping between feasible solu-

tions for the Manhattan one-layer model () and the node disjoint two-aligned-layer

model (), assuming that there are never two terminals on top of each other, i. e.,

connected by a via.

To map a feasible solution for  to , all we have to do is to merge the two

layers, i. e., contract every pair of nodes along the respective via. Since no two terminals

are connected by a via, the situation that two terminals are to be merged cannot happen.

Due to the shape of the aligned-layer-graph, the result obviously adheres to the Man-

hattan constraint and is edge disjoint as no edges were added. Finally, because all nodes

that were connected by vias in the  solution are now contracted, all paths between

terminals are still present, accordingly the new solution has to be feasible.

In the other direction ( to ), we assign vias as needed, this is straightforward.

The result will be node disjoint, because whenever two nets cross in the  solution

they are now assigned to different layers and all other nodes in the graph are touched

by at most one net. More difficult is to decide the layer for each terminal. Have a look

at Figure . for an example. If a terminal is located at a corner of the grid graph it

can be assigned to either node, because it will block the whole corner anyway. In case

a terminal is not located at a corner (Figure .a), it has to be placed in the same layer

as the edge perpendicular to the border (Figure .b), because otherwise it might block

another net (Figure .c).

For the general routing model, the above transformation might not be possible. If

a terminal is within the grid there is no easy way to decide the correct layer for the

terminal in the two-layer model.

Unfortunately, in the seven “classic” instances given by Burstein and Pelavin (),

Luk (), Coohoon and Heck () two terminals are connected to a single corner in

several cases. This stems from the use of connectors, i. e., the terminal is outside the grid

and connected to it by a dedicated edge. In the multi-layer models there has to be an

edge from the terminal to all permissible layers (Figure .c).

The Knock-knee one-layer model can also be seen as an attempt to approximate

the node disjoint two-crossed-layer model. But mapping between these two models

Steiner Tree Packing Revisited 

(a) Manhattan one-layer (b) Feasible (c) Infeasible

Figure .: Manhattan one-layer vs. Node disjoint two-aligned-layer

is not as easy. Brady and Brown () have designed an algorithm that guarantees

that any solution in the Knock-knee one-layer model can be routed in a node disjoint

four-crossed-layer model, but deciding whether three layers are enough is shown to be

NP-complete by Lipski ().

For an example have a look at Figure .. Figures .a and .d show two feasi-

ble Knock-knee one-layer routings. If we solve the same problem in the node disjoint

crossed-multi-layer model, the first example needs at least two layers (Figure .b), while

the second needs at least three layers (Figure .e). But this holds only if we can choose

the layers for the terminals. If the layers are fixed in advance in both cases up to four

layers may be needed (Figures .c and .f).

. Integer programming models

A survey of different integer programming models for Steiner tree packing can be found

in Chopra (). We will examine two of the models in more detail.

.. Undirected partitioning formulation

This formulation is used in Grötschel et al. (). Given a weighted grid graph G =

(V, E, c), and terminal sets T1, . . . , TN, N > 0, N = {1, . . . ,N}, we introduce binary

variables xn
ij for all n ∈ N and (i, j) ∈ E, where xn

ij = 1 if and only if edge (i, j) ∈ Sn.

We define δ(W) = {(i, j) ∈ E|(i ∈ W, j 6∈ W) ∨ (i 6∈ W, j ∈ W)} with W ⊆ V .

The following formulation models all routing choices for the Knock-knee one-layer

model:

min
∑

n∈N

∑

(i,j)∈E

cijx
n
ij

∑

(i,j)∈δ(W)

xn
ij > 1 for all W ⊂ V,W ∩ Tn 6= ∅, (V \ W) ∩ Tn 6= ∅, n ∈ N (.)

∑

n∈N

xn
ij 6 1 for all (i, j) ∈ E (.)

xn
ij ∈ {0, 1} for all n ∈ N, (i, j) ∈ E (.)

 Applications

(a) Knock-knee (b) Node disjoint (c) Fixed terminals

(d) Knock-knee (e) Node disjoint (f) Fixed terminals

Figure .: Number of layers needed to route a Knock-knee one-layer solution

In order to use Manhattan intersection another constraint is needed to prohibit Knock-

knees. Let (i, j), (j, k) be two consecutive horizontal (or vertical) edges. Then,

∑

n∈N1

xn
ij +

∑

m∈N2

xm
jk 6 1for all j ∈ V,N1 ⊂ N,N2 ⊂ N,N1 ∩ N2 = ∅,N1 ∪ N2 = N

(.)

is called Manhattan inequality. The model can be further strengthened with several

valid inequalities as described in Grötschel et al. (a,b), Grötschel et al. ().

.. Multicommodity flow formulation

For our computational investigations we will use a multicommodity flow formulation.

For the  this was formulated by Wong (). The multicommodity flow formulation

has the advantage that it has only a polynomial number of variables and constraints.

3 Another way to enforce the Manhattan constraints is given in Jørgensen and Meyling (). Every node

v in the grid graph is split into two nodes vh and vv. vh is connected to the horizontal edges and vv to the

vertical edges incident to v. An additional edge is used to connect vh and vv. This makes it impossible for

more than one net to use both vertical and horizontal edges incident to v. Note, that this is equivalent to

converting an one-layer model into a two-aligned-layer model.

Steiner Tree Packing Revisited 

This allows us to generate the complete model in advance and solve it with a standard

 solver like .

Given a weighted bidirectional grid digraph G = (V,A, c), and sets T1, . . . , TN, N >

0, N = {1, . . . ,N} of terminals, we arbitrarily choose a root rn ∈ Tn for each n ∈ N. Let

R = {rn|n ∈ N} be the set of all roots and T =
⋃

n∈N Tn be the union of all terminals.

We introduce binary variables x̄n
ij for all n ∈ N and (i, j) ∈ A, where x̄n

ij = 1 if and only

if arc (i, j) ∈ Sn. Additionally we introduce non-negative variables yt
ij, for all t ∈ T \ R.

For all i ∈ V , we define δ+
i := {(i, j) ∈ A} and δ−

i := {(j, i) ∈ A}. For all t ∈ Tn,

n ∈ N, we define σ(t) := n. The following formulation models all routing choices for

any number of layers, crossed and aligned, with Knock-knee intersection:

min
∑

n∈N

∑

(i,j)∈A

cn
ijx̄

n
ij

∑

(i,j)∈δ−

j

yt
ij −

∑

(j,k)∈δ+

j

yt
jk =







1 if j = t

−1 if j = rσ(t)

0 otherwise







for all j ∈ V, t ∈ T \ R (.)

0 6 yt
ij 6 x̄

σ(t)

ij for all (i, j) ∈ A, t ∈ T \ R (.)
∑

n∈N

(x̄n
ij + x̄n

ji) 6 1 for all (i, j) ∈ A (.)

x̄n
ij ∈ {0, 1} for all n ∈ N, (i, j) ∈ A (.)

To use node disjoint intersection we have to add:

∑

n∈N

∑

(i,j)∈δ−

j

x̄n
ij 6

{

0 if j ∈ R

1 otherwise
for all j ∈ V (.)

The above system (especially (.)) has the following implications which hold also for

the linear relaxation, i. e., x̄n
ij ∈ [0, 1] instead of (.):

x̄n
ij > max

t∈Tn\R
yt

ij for all (i, j) ∈ A,n ∈ N (.)

Assuming cn
ij > 0, inequality (.) is even met with equality. This leads to

x̄n
jk 6

∑

(i,j)∈δ−

j

x̄n
ij for all j ∈ V \ R, (j, k) ∈ δ+

j , n ∈ N , (.)

i. e., for each net the flow on each outgoing arc is less than or equal to the total flow into

the node.

Proof. For each t ∈ T \ R and each j ∈ V \ T equation (.) states that
∑

(i,j)∈δ−

j
yt

ij =
∑

(j,k)∈δ+

j
yt

jk. It follows that
∑

(i,j)∈δ−

j
yt

ij > yt
jk for any (j, k) ∈ δ+

j and further
∑

(i,j)∈δ−

j
maxt∈Tn\R yt

ij > maxt∈Tn\R yt
jk for any (j, k) ∈ δ+

j . Substituting (.) we

arrive at (.). This holds also if j ∈ T \R, because (.) only limits the flow on outgoing

arcs in this case.

 Applications

It is possible to strengthen (.) by subtracting the incoming arc anti-parallel to the

outgoing arc in question, giving the following valid inequality:

x̄n
jk + x̄n

kj 6
∑

(i,j)∈δ−

j

x̄n
ij for all j ∈ V \ R, (j, k) ∈ δ+

j , n ∈ N , (.)

Proof. If in any optimal solution x̄n
kj is one, x̄n

jk has to be zero due to (.). In this case

(.) is trivially satisfied. In case x̄n
kj is zero, (.) is equal to (.).

.. Comparison of formulations

Theorem . Any feasible solution of the  relaxation of the multicommodity flow formu-

lation of the node disjoint two-aligned-layer model together with inequality (.) defines

a feasible solution for the  relaxation of the partitioning formulation of the Manhattan

one-layer model by setting xn
ij = x̄n

ij + x̄n
ji for all (i, j) ∈ E.

Proof. For any given n ∈ N and any given partition W ⊂ V , W ∩ Tn 6= ∅, and U =

(V \ W) ∩ Tn 6= ∅, we can assume without loss of generality that rn ∈ R ∩ U and that

there exists a terminal t ∈ (Tn \ R) ∩W. Due to (.) {(i, j) ∈ A | yt
ij} form a path from

r to t, i. e., any feasible solution to (.) will constitute a flow of one unit within the yt

variables from rn to t. It follows that the sum of the yt in the cut between U and W

is at least one. Due to (.) the same holds for the x̄n, i. e.,
∑

(i,j)∈A,i∈U,j∈W x̄n
ij > 1.

Consequently (.) holds. (.) and (.) hold because of (.) and (.).

In the two-aligned-layer model, each node j in the graph has at most three neighbors

i, k, and l, with l being the node on the other layer.

Due to (.) for (.) to hold it suffices to show that xn
ij + xm

jk 6 1 holds for any

j ∈ V and m 6= n. For the two-aligned-layer model we can rewrite this as:

xn
ij + xm

jk = x̄n
ij + x̄n

ji + x̄m
jk + x̄m

kj 6 1 (.)

(i) For j ∈ V \ Tn this holds because adding up

x̄n
ij + x̄n

kj + x̄n
lj + x̄m

ij + x̄m
kj + x̄m

lj 6 1 holds due to (.)

x̄n
ji − x̄n

kj − x̄n
lj 6 0 holds due to (.)

x̄m
jk − x̄m

ij − x̄m
lj 6 0 holds due to (.)

results in (.).

(ii) In case j ∈ R, (.) ensures that x̄n
ij + x̄m

kj = 0 and (.) proliferates this to the

corresponding yt variables. It follows from (.) that all yt
ji = 0 for (j, i) ∈ δ+

j

with σ(t) 6= σ(j). Since the m and n are from two disjoint nets, at most one of

x̄n
ji and x̄m

jk can be non-zero and (.) holds.

Steiner Tree Packing Revisited 

(iii) In case j ∈ T \ R, (.) requires
∑

(i,j)∈δ−

j
y

j
ij = 1. Due to (.), (.) this forces

yt
ij = 0 for all (i, j) ∈ δ−

j with σ(t) 6= σ(j). It follows from (.) that yt
ji = 0 for

all (j, i) ∈ δ+
j with σ(t) 6= σ(j). Since m and m are from two disjoint nets (.)

holds.

Corollary . The  relaxation of the multicommodity flow formulation of the node dis-

joint two-aligned-layer model is strictly stronger than the  relaxation of the partitioning

formulation of the Manhattan one-layer model.

Proof. Theorem  implies that for the  it is at least as strong. Polzin () shows

that for the  the  relaxation of the multicommodity flow formulation is equivalent

to the directed cut formulation, which in turn is strictly stronger than the undirected

partitioning formulation. It follows, that this holds for the , since the  is a

special case.

. Valid inequalities

While the flow formulation is strictly stronger than the partitioning formulation alone,

it can be further strengthened by valid inequalities. Interestingly, the flow formulation

does not ensure

∑

(i,j)∈δ−

j

x̄n
ij 6

∑

(j,k)∈δ+

j

x̄n
jk for all j ∈ V \ (T \ R), n ∈ N (.)

as can be seen in Figure . (Koch and Martin, , Polzin, ). Numbers indicate

arc weights, T1 = {r, s}, T2 = {r, t}, and R = {r}. Each arc (i, j) in Figure . corresponds

to yt
ij = 0.5. The objective function value is . for the  relaxation and  for a fea-

sible integer solution. Adding (.) strengthens the relaxation to provide an objective

function value of .

r

s

t

3

3

1

1

1

1

1

Figure .: The central node violates (.)

The critical cut inequalities introduced in Grötschel et al. (c) are also valid for

the flow formulation. Consider a graph G = (V, E) with unit edge capacities and a list of

 Applications

nets N. For a node set W ⊆ V we define S(W) := {n ∈ N|Tn∩W 6= ∅, Tn∩(V \W) 6= ∅}.
The cut induced by W is called critical if s(W) := |δ(W)|− |S(W)| 6 1. The cut induced

by W is critical if there is no edge disjoint path entering and leaving W left, i. e., no

net without a terminal in W can pass through W in a feasible solution. In the node

disjoint case the support of this cut can get even stronger, as can be seen for example in

Figure ..

Node disjoint

Edge disjoint

Figure .: Critical cut in the edge disjoint and node disjoint case

The grid inequality described in Grötschel et al. () basically states that it is not

possible for two nets T1 and T2 to cross each other in a 2×h, h > 2 grid graph. As shown

in Figure .a, there exist non integral solutions for the  relaxation of the partitioning

model in this case (unit edge weights, blue edges mean x1
ij = 0.5, red edges indicate

x2
ij = 0.5). For an integral solution some path outside the 2 × h grid is required. In the

(a) undirected Knock-nee (b) directed node disjoint

Figure .: Grid inequalities

multicommodity flow formulation of the directed node disjoint model it is still possible

to find a non-integral solution to the  relaxation, even though the path outside the

2 × h grid is already present. Figure .b shows the smallest example of this solution

(unit arc weights, blue arcs correspond to y1
ij = 0.5, red arcs indicate y2

ij = 0.5). Note

that at least a 3 × h grid plus the two terminals of T2 are needed for this configuration

to occur.

Steiner Tree Packing Revisited 

. Computational results

In this section we present computational results obtained by generating the complete

integer program resulting from the directed multicommodity flow formulation with

Z and then solving it with  .. None of the strengthening inequalities and no

preprocessing prior to  was used to reduce the size of the problems. The versatility

of our approach can be seen by the fact that we can generate general-routing problems,

which includes channel and switchbox routing as a special case, with any number of

layers, crossed and aligned, either with knock-knee or node disjoint intersection. The

only missing case is Manhattan intersection, but this can always be reformulated as an

equivalent multi-aligned-layer problem.

Table . lists all Steiner tree packing problem instances we have considered. N

denotes the number of nets, and |T | the total number of terminals. The columns labeled

Vars, Cons, and NZ list the number of variables, constraints and non-zero entries in

the constraint matrix of the generated integer programs. Complete descriptions of all

instances are listed in Appendix D. The Z program used for the node disjoint model

can be found in Appendix C. on page .

We used three different sets of  settings, denoted (B)arrier, (D)efault and

(E)mphasis. The differences are listed in Table .. The mixed integer optimality gap

tolerance was set to zero in all settings.

Parameter (B)arrier (D)efault (E)mphasis

Generate cuts no auto no

Probing yes auto yes

LP algorithm barrier dual simplex dual simplex

MIP emphasis balanced balanced feasibility

Table .: Comparison of  settings used

.. Choosing the right LP solver algorithm

The barrier setting is quite uncommon, since usually the dual simplex is the preferred

algorithm for solving the subproblems. The reason for this is the missing warm-start

capability of the barrier or interior-point algorithm, which requires to solve each sub-

problem from scratch. On the other hand, the running times for the barrier algorithm

tend to be much more predictable and are sometimes nearly constant for each sub-

problem. Since we observed that the reoptimization of the subproblems using the dual

simplex algorithm often took considerable more time and iterations than expected, we

tried the barrier algorithm instead.

4 For current developments in interior-point warm-start see, e. g., Gondzio and Grothey (), Elhedhli

and Goffin ().

5 The high number of simplex iterations needed to reoptimize a subproblem after branching on some

variable may have the following reasons: Part of the pivots are degenerate. Additionally the basis has to be

changed substantially to reach the optimum again. To understand the latter, remember what the model is

 Applications

Table . shows the results for solving the root relaxation of alue- (see Table .)

with different algorithms. The times are wall clock times on a dual Alpha  pro-

cessor workstation with  megahertz. The first row of the table gives the time for

the barrier algorithm without cross-over. The barrier algorithm is much better suited

to parallelization than the simplex algorithm and accordingly we get a % speed-up by

using the dual processor version as can be seen in the second row. The third row shows

that performing a cross-over takes nearly twice the time of finding the solution in the

first place. Next can be seen that on this selected instance the dual simplex algorithm

needs more than eight times longer to solve the instance than the barrier algorithm.

In many studies (e. g. Grötschel et al., a) it is reported that perturbing the problem

leads to significant speed-ups in the simplex algorithm. Since  automatically ap-

plies perturbation after some time when solving the problem, we solved it again with

explicitly switching perturbation on and supplying a very high perturbation constant of

one. Interestingly the results are disappointing. In the next two rows the experiment is

repeated with the primal simplex algorithm with even worse results.

Algorithm Iterations Time [s]

Barrier 17 357

Barrier (2 threads) 17 235

Barrier with cross-over 17 865

Dual simplex 112,789 3,032

Dual simplex with perturbation 192,831 4,930

Primal simplex 467,205 17,368

Primal simplex with perturbation 609,297 15,184

Table .: Solving the root relaxation of alue-

As a consequence, we tried to use the barrier algorithm for the root relaxation and

the dual simplex for the subproblems. Unfortunately this requires a cross-over from the

non-vertex barrier solution to a vertex solution, which, as we have seen, takes consid-

erable time. In the end we tried to use the barrier algorithm also for the subproblems.

This caused a small problem with the cut generation in  as the routine computing

Gomory-cuts needs a vertex solution. Since as far as we have observed it, Gomory cuts

are the only cuts  applied to the problems, and since we are not sure about their

impact, we disabled the cut generation completely for the Barrier and Emphasis settings.

about: Routing nets through a grid graph. Variables with non-integral values mean that at least two nets are

competing for a route. By fixing such a variable at least one net has to be rerouted. Or, one net has a split

route. In this case, due to the inherent symmetry in a grid graph, fixing a single variable will often result in a

considerable rerouting of the net to reach another permutation of the former configuration.

6 A . gigahertz - is about . times faster for this task

7  automatically switches to devex pricing after a short time. Explicitly setting steepest edge pricing

does neither change the running time nor the number of iterations needed significantly.

8 Although the objective function is all ones and zeros we know from experience that even with a highly

perturbed objective function the result is likely to be near the optimum.

9 About half of the primal simplex iterations are needed to become feasible in phase .

Steiner Tree Packing Revisited 

Name Size N |T | Vars Cons NZ

Knock-knee one-layer model

augmenteddense-1 16×18 19 59 70,918 62,561 215,158

dense-1 15×17 19 59 63,366 56,057 192,246

difficult-1 23×15 24 66 94,776 78,292 275,712

modifieddense-1 16×17 19 59 67,260 59,410 204,060

moredifficult-1 22×15 24 65 89,440 73,299 258,688

pedagogical-1 15×16 22 56 56,560 44,909 159,580

terminalintens-1 23×16 24 77 119,196 106,403 365,328

Node disjoint two-aligned-layer model

augmenteddense-2 16×18 19 59 97,940 91,587 326,438

difficult-2 23×15 24 66 131,604 115,399 427,536

moredifficult-2 22×15 24 65 123,890 107,779 400,952

pedabox-2 15×16 22 56 77,168 65,067 245,576

terminalintens-2 23×16 24 77 164,010 154,947 550,104

sb11-20-7 21×21 7 77 197,274 243,726 751,884

sb3-30-26d 31×31 29 87 485,212 437,515 1,607,464

sb40-56 41×41 56 112 1,111,264 755,307 3,318,000

Node disjoint two-crossed-layer model

gr2-8-32 9×9 8 32 22,144 21,038 76,512

Node disjoint three-aligned-layer model

dense-3 15×17 19 59 144,668 131,412 482,722

modifieddense-3 16×17 19 59 154,580 140,307 515,986

taq-3 25×25 14 35 115,640 98,508 368,760

Node disjoint four-aligned-layer model

alue-4 25×25 22 55 294,084 236,417 933,830

Table .:  instances

.. Results for the Knock-knee one-layer model

Table . shows the results for the Knock-knee one-layer model. The column labeled

CS contains the  setting according to Table .. B&B Nodes denotes the number of

Branch-and-Bound nodes including the root node evaluated by . Root node lists

the objective function value of the  relaxation of the root node. Finally arcs is the total

number of arcs used in the optimal solution.

As we can see from the table, the  relaxation is rather strong, but this is in line

with other reported results like Martin (), Jørgensen and Meyling (). Since for

difficult-, modifieddense-, moredifficult-, and pedabox- the relaxation already provides

the optimal value, it is possibly to solve these instances without any branching. The De-

fault setting achieves this in three of the four cases, which is exceptional as only general

 heuristics are used and in none of the cases the optimal  solution of the root  has

 Applications

B&B Time Root

Name CS Nodes [s] node Arcs

augmenteddense-1 B 545 6,245 466.5 469

D 53 7,277 466.5 469

E 41 3,303 466.5 469

dense-1 B 189 1,954 438.0 441

D >300 >120,000 438.0 —

E 64 15,891 438.0 441

difficult-1 B 1,845 17,150 464.0 464

D 1 160 464.0 464

E 15 274 464.0 464

modifieddense-1 B 33 358 452.0 452

D 1 150 452.0 452

E 3 132 452.0 452

moredifficult-1 B 489 4,102 452.0 452

D 121 6,635 452.0 452

E 6 118 452.0 452

pedabox-1 B 45 187 331.0 331

D 1 35 331.0 331

E 31 166 331.0 331

terminalintens-1 B >7,000 >120,400 535.0 (536)

D 15 2,779 535.0 536

E 160 3,903 535.0 536

Table .: Results for the Knock-knee-one-layer model

been a feasible solution of the integer program. The reason for this success may lie in

the application of Gomory cuts which is only done in the Default settings.

On the downside the Default settings are not able to find any feasible solution to the

dense- instance at all. Looking into the details, the low number of branch-and-bound

nodes reported in comparison to the elapsed time indicates that the  subproblems

are difficult to solve for the simplex algorithm. The Emphasis setting exhibits a similar

slow-down. While superior for dense-, the Barrier setting has problems dealing with

terminalintens-. Even though an optimal solution was found, the instance could not be

finished in time.

In general it can be said that the solution time is heavily dependent on the time it

takes to find the optimal primal solution.

10 Martin () reports that in their computations the optimal solution of a linear program has never been

a feasible solution of the integer program.

Steiner Tree Packing Revisited 

.. Results for the node disjoint multi-aligned-layer model

Table . shows results for the node disjoint multi-aligned-layer model. Since this is a

multi-layer model we have to assign costs to the vias. These are given in the column

labeled Via-cost. The next three columns list the numbers of vias, “regular” arcs, and

vias+arcs in the optimal solution.

In case of unit via costs, the objective value of the  relaxation is equal to the ob-

jective value of the optimal integer solution for all instances except for moredifficult-.

The value of the  relaxation for moredifficult- is .. This is weaker than the value

reported in Grötschel et al. (), while for pedabox- the relaxation is stronger than

reported. Note that in five out of seven instances with unit via costs the Barrier setting

gives the best performance.

To our knowledge this is the first time that Manhattan solutions are computed for

the dense (Luk, ) and modifieddense (Coohoon and Heck, ) problems. As re-

ported in Grötschel et al. (), both problems are not solvable with the Manhattan

one-layer model and have therefore no Manhattan solution in two layers. As can be

seen in Figures .a and .b both problems have a three-layer solution, with only one

net (dark blue at three o’clock) using the third layer at a single point.

(a) dense- (b) modifieddense-

Figure .: Node disjoint three-aligned-layer solutions

Via minimization

Traditionally via minimization is viewed as a separate problem after the routing has

taken place (Grötschel et al., ). Since we work with multi-layer models via min-

imization is part of the routing. As can be seen in Table . we tried the “classical”

instances with three different cost settings for the vias. First unit costs were used to

minimize the total number of arcs, including vias. Next, the number of vias was min-

imized by setting the cost to ,, which is above the total cost of all “regular” arcs,

11 This indicates that some of the strengthening cuts used by Grötschel et al. () to tighten the undirected

partitioning formulation can also be used to tighten the directed flow formulation.

 Applications

B&B Time Via- Vias

Name CS Nodes [s] cost Vias Arcs +Arcs

augmenteddense-2 B 1 60 1 35 469 504

augmenteddense-2 D 1 120 1 35 469 504

augmenteddense-2 E 1 117 1 35 469 504

augmenteddense-2 B 1 261 1000 35 469 504

augmenteddense-2 B 1 372 0.001 35 469 504

difficult-2 B 1 43 1 56 470 526

difficult-2 D 1 276 1 56 470 526

difficult-2 E 1 274 1 56 470 526

difficult-2 B 9 817 1000 51 484 535

difficult-2 B 11 1,083 0.001 63 469 532

moredifficult-2 B 25 863 1 61 461 522

moredifficult-2 D 525 22,712 1 60 462 522

moredifficult-2 E 14 1071 1 61 461 522

moredifficult-2 B 74 4,502 1000 53 481 534

moredifficult-2 B 3 395 0.001 61 461 522

pedabox-2 B 1 14 1 47 343 390

pedabox-2 D 1 52 1 47 343 390

pedabox-2 E 1 52 1 47 343 390

pedabox-2 B 17 486 1000 47 343 390

pedabox-2 B 14 391 0.001 47 343 390

terminalintens-2 B 1 139 1 59 537 596

terminalintens-2 D 1 58 1 59 537 596

terminalintens-2 E 1 54 1 59 537 596

terminalintens-2 B 1 62 1000 55 562 617

terminalintens-2 B 1 478 0.001 59 537 596

dense-3 B 1 161 1 35 436 471

dense-3 D 1 127 1 35 436 471

dense-3 E 1 125 1 35 436 471

dense-3 B 1 204 1000 35 436 471

dense-3 B 1 610 0.001 35 436 471

modifieddense-3 B 1 184 1 35 450 485

modifieddense-3 D 1 308 1 35 450 485

modifieddense-3 E 1 311 1 35 450 485

modifieddense-3 B 1 448 1000 35 450 485

modifieddense-3 B 1 579 0.001 35 450 485

Table .: Results for the node disjoint multi-aligned-layer model (part )

Steiner Tree Packing Revisited 

ensuring that a global minimum is reached. Finally, the cost of each via was set to .

which is equal to minimizing the number of “regular” arcs. This results in solutions that

have the same number of arcs as reported by Grötschel et al. () for the Manhattan

one-layer model.

Interestingly, the number of vias is constant for augmenteddense-, pedabox-, mod-

ifieddense-, and dense-. For the other instances, minimization of the number of vias

always results in detours, i. e., higher total number of arcs used.

Performance

Grötschel et al. () report solution times for the Manhattan one-layer model on a

  / with  megahertz. Of course, any comparison of  times between dif-

ferent processors is highly inaccurate and debatable. Nevertheless, we will make some

educated guesses. The results for the node disjoint two-aligned-layer model in Table .

were computed on a , megahertz computer. This gives us a factor of . If we com-

pare our best solution times with the ones reported, the geometric mean of the speed-

up for all five solvable instances is ,. This is nearly twenty times faster than what we

would have expected from the megahertz figure. Furthermore, this is the comparison

between a special purpose code with preprocessing, separation routines and problem

specific primal heuristics with a generate the whole model and feed it into a- tandard

solver approach without any problem specific routines. We can conclude from the value

of the root  relaxation that the partitioning formulation with additional strengthen-

ing cuts and the directed multicommodity flow formulation are about equally strong in

practice. It should be noted, though, that for moredifficult-, the only instance where

the flow formulation is weaker, we also have the least improvement by only a factor of

, while for pedabox-, the only instance where the flow formulation is stronger, we

have the highest improvement by a factor of ,. The rest of the speed-up seems to

come from . The numbers are compatible with those given in Bixby et al. ()

and Bixby (), keeping in mind that the improvement in hardware speed of  times

is only a gross approximation.

New instances

All the instances presented so far are quite old and can be solved in less than one hour.

To get an outlook on how far our approach will take us, we tried a few new instances.

The results can be found in Table ..

sb-, sb--d, and sb-- are all random generated switchbox instances.

sb- is about four times the size of the “classical” instances and the resulting  has

more than three million non-zero entries in the constraint matrix. Regarding memory

consumption, this is on the limit what can be solved in two gigabytes of  with .

sb-- is noteworthy because all nets have eleven terminals. This value is substantially

higher compared to the “classical” instances where the nets have at most six terminals.

12 Since we use a different model, part of the speed-up might possibly be due to the model being more

amenable for the solver.

 Applications

B&B Time Via- Vias

Name CS Nodes [s] cost Vias Arcs +Arcs

sb11-20-7 B 1 16,437 1 107 486 593

E 1 65,393 1 107 486 593

sb3-30-26d B 1 1,455 1 130 1286 1416

E 1 47,335 1 130 1286 1416

sb40-56 B 1 3,846 1 166 2286 2452

D 1 518 1 166 2286 2452

E 3 776 1 166 2286 2452

taq-3 B 71 931 1 66 371 437

D 4 385 1 66 371 437

E 19 346 1 66 371 437

alue-4 B 124 18,355 1 117 668 785

D 1 3,900 1 117 668 785

E 4 1,825 1 117 668 785

Table .: Results for the node disjoint multi-aligned-layer model (part )

For all three instances the value of the  relaxation is equal to the value of the integer

optimal solution. Pictures of the solutions can be found in Figures ., . and ..

Solving the root relaxation for sb-- with the dual simplex algorithm took more

than  hours. Interestingly, the solution was immediately integer feasible. For sb--

d it took more than  hours to solve the root relaxation, but again the result was

immediately integer feasible.

When comparing the timings it should be kept in mind that the number of branch-

and-bound nodes is not equal to the number of linear programs solved. When using

the Barrier setting, even though no branching was performed, eleven linear programs

had to be solved to compute the solution to sb--, none were needed for sb--d

and  s had to be solved for sb-.

taq- (Figure .) and alue- (Figure .) are general routing problems based on

circuits described in Jünger et al. (). alue- is the only instance so far that requires

four aligned layers. In both instances the  relaxation does not reach the value of the

optimum integer solution. For taq- the  relaxation objective value is , and for

alue- it is ..

We also generated one instance of a general routing problem in the node disjoint

two-crossed-layer model, namely gr--. The forbidden area of the graph is located

only in one layer, as can be seen in the left half of Figure .. The optimal solution is

shown in the right half of Figure .. The objective value is , including  vias of

unit cost. The objective value of the root relaxation is . Using the Emphasis setting

the solution time was , seconds. , branch-and-bound nodes were generated.

13 Rounding and diving heuristics, for example, also use linear programs.

Steiner Tree Packing Revisited 

. Outlook

From the results shown it became clear that the approach presented in this chapter has

not reached its limits yet. Several complementary improvements are possible:

◮ Use of problem specific preprocessing, especially the computation of node dis-

joint critical cuts to reduce the number of variables.

◮ Use of parallel computers with much memory. The barrier algorithm can utilize

several processors and also branching can be done in parallel. More memory is

evidently needed for larger instances.

◮ Further strengthening of the formulation. Very often the  relaxation already

yields the value of the optimal integer solution but is not feasible. Can this be

improved by either problem specific valid inequalities or Gomory cuts? If there is

a gap, can classes of violated inequalities be found to improve this?

◮ If the  relaxation is non-integral, but has an equal objective value as the op-

timal integer solution, using a pivot and complement type heuristics like those

described in Balas and Martin (), Balas et al. () seem promising.

Figure .: gr--

 Applications

Figure .: sb-

Steiner Tree Packing Revisited 

Figure .:

sb--d

Figure .:

sb--

 Applications

Figure .: taq-

Steiner Tree Packing Revisited 

Figure .: alue-

Chapter 

Perspectives

The problem with engineers is that they tend to cheat in order to get results.

The problem with mathematicians is that they tend to work on

toy problems in order to get results.

The problem with program verifiers is that they tend to cheat at

toy problems in order to get results

— fortune()

We have seen that modeling languages together with standard  solvers are a win-

ning combination to solve many real-world (and even some mathematical) problems.

Regarding the real-world it turned out that understanding the problem itself and the

limitations presented by the available data are often a bigger obstacle than building and

solving the mathematical model itself. Especially looking at Chapter  one could ask:

What is it about? The models presented can be written down and solved in a few hours.

But this is precisely our point. The goal was to make it easy. Problems that a few

years ago (if not today) were solved by implementing special tailored branch-and-cut

codes can now be tackled within days. Maybe the hand-made branch-and-cut code

employing problem specific heuristics and separators would be a bit faster, but how fast

has it to be in order to make up for the development time. And maybe it is not faster

at all, because the latest stand-alone state-of-the art solver may, for example, use more

sophisticated branching- and variable-selection rules.

Doing mathematical computations on a high level of abstraction makes it also easier

to reproduce the results. One might ask what another person would have to do, to

reproduce the work done in Chapter ? He or she would have to

i) take the descriptions of the problems from Appendix D,

ii) write down the model given in Section .. in any suitable modeling language,

iii) write a little program to prepare the data from the descriptions, and

iv) use a standard out-of-the-box  solver to solve the instances.



 Perspectives

This could be done in a few days. No special knowledge of combinatorics, polyhedra,

or how to implement branch-and-cut algorithms is needed.

The use of extended functions in modeling languages makes it even easier to turn

complex problems into models. It seems likely that future solvers will “understand”

these extended functions directly and convert them themselves to whatever suits them

best.

We hope that the current trend to produce open-source software persists and gets

stronger in the mathematical community. In a recent interview for Business Week Linus

Torvalds said

I compare it to science vs. witchcraft.

In science, the whole system builds on people looking at other people’s results

and building on top of them. In witchcraft, somebody had a small secret and

guarded it—but never allowed others to really understand it and build on it.

Traditional software is like witchcraft. In history, witchcraft just died out. The

same will happen in software. When problems get serious enough, you can’t

have one person or one company guarding their secrets. You have to have ev-

erybody share in knowledge.

While some skepticism seems advisable about this forecast, science certainly has a lot

to loose if the software it depends on more and more is not publicly available. This

also extends to data. Many papers are published claiming in their introduction practical

applications. Interestingly most of them do not deal with real-world data. And those

which do, usually do not publish it.

There is another reason why sharing knowledge is so important. The software we

build is getting more complex all of the time. Right now it gets increasingly visible that

the industry with their “witchcraft” approach is having more and more problems to

control this complexity. It is getting a commonplace experience that devices malfunc-

tion due to software problems. Z makes things simpler.

Z is not a toy. It can generate very complex models, like for example the 

snapshot model shown in Appendix C.. It needs less than  seconds  time to

generate the sb- instance with more than one million variables and three million

non-zero entries and it has been used successfully in several classes and projects.

We hope to have made our tiny but useful contribution to the store of publicly avail-

able software and have at least set an example to make mathematical experiments easier

and more reproducible.

Appendix A

Notation

A (simple undirected) graph G = (V, E) consists of a finite nonempty set V of nodes (or

vertices) and a finite set E ⊆ V×V of edges. With every edge, an unordered pair of nodes,

called its endnodes, is associated and we say that an edge is incident to its endnodes. We

denote an edge e with endnodes i and j by (i, j). We assume that the two endnodes of an

edge are distinct, i. e., we do not allow loops, unless specified otherwise. Two edges are

called parallel if they have the same endnodes. A graph without parallel edges is called

simple. If not otherwise noted, we always assume simple graphs.

We call a graph G a complete rectangular h × w grid graph, if it can be embedded in

the plane by h horizontal lines and w vertical lines such that the nodes V are represented

by the intersections of the lines and the edges are represented by the connections of the

intersections. A grid graph is a graph that is obtained from a complete rectangular grid

graph by deleting some edges and removing isolated nodes, i. e., nodes that are not

incident to any edge.

A (simple) directed graph (or digraph) D = (V,A) consists of a finite nonempty set

V of nodes (or vertices) and a set A of arcs. With every arc a, an ordered pair (u, v)

of nodes, called its endnodes, is associated; u is the initial endnode (or tail) and v the

terminal endnode (or head) of a. As in the undirected case, loops (u,u) will only be

allowed if explicitly stated. We denote an arc a with tail u and head v by (u, v); we also

say that a goes from u to v, that a is incident from u and incident to v, and that a leaves u

and enters v.

If A is a real m × n matrix and b ∈ R
m, then Ax 6 b is called a system of (linear)

inequalities, and Ax = b a system of (linear) equations. The solution set {x ∈ R
n | Ax 6

b} of a system of inequalities is called a polyhedron. A polyhedron P that is bounded is

called a polytope.

We call finding a vector x∗ ∈ P = {x ∈ R
n | Ax 6 b} maximizing the linear function

cT x over P for a given m × n matrix A, a vector b ∈ R
m, and a vector c ∈ R

n, a linear

programming problem or short linear program or . We usually just write max cT x

subject to Ax 6 b.

We call finding an integral vector x∗ ∈ P = {x ∈ R
n | Ax 6 b} maximizing the



 Appendix A

linear function cTx over the integral vectors in P for a given an m×n matrix A, a vector

b ∈ R
m and a vector c ∈ R

n, an integer linear programming problem, or short integer

program or . Given an integer linear program, the linear program which arises by

dropping the integrality constraints is called its  relaxation.

A. Decibel explained

A Bel (symbol B) is a dimensionless unit of measure of ratios, named in honor of

Alexander Graham Bell. The decibel (dB), or one-tenth of a bel is defined as

decibels = 10 log10(ratio) .

-20

-15

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20

dB

10*log(x)

Zero decibel mean the strength of the signal is

unchanged, negative values indicate losses and

positive values indicate gains. A doubling in sig-

nal power is equal to about three decibel. Since

decibel describe ratios it is well suited to express

losses and gains regarding signal strength. In this

case the ratio is between the strength of the mod-

ified signal and the strength of the original signal.

For example, if the pathloss between two points

weakens a signal by a factor of 1/108 this can be

expressed as −80dB.

Decibels can also be used to measure absolute

power values by expressing the ratio to a known

predefined power level. If the reference power

level is one milliwatt, the unit is called decibel-

milliwatt (dBm). For example, a signal power of

20 W equals about 43 dBm, since

10 log10

(20

0.001

)

≈ 43 .

Now using decibels, it is easy to add-up gains and

losses. For example, a signal with a strength of

43 dBm is emitted from a base station. On its way

to the mobile it is amplified by a 12 dB antenna-gain and then weakened by a pathloss

of −80dB. As a result, the mobile receives a signal with a strength of 43 + 12 − 80 =

−25 dBm. This equals about . milliwatts, as

20000 · 15.8 · 10−8 ≈ 10
−25
10 ≈ 0.00316 .

Appendix B

Zimpl Internals

B. The grammar of the Zimpl parser

1 / * /

2 / * * /

3 / * F i l e : mmlparse . y * /

4 / * Name : MML P a r s e r * /

5 / * Author . . : T h o r s t e n Koch * /

6 / * C o p y r i g h t by Author , A l l r i g h t s r e s e r v e d * /

7 / * * /

8 / * /

9 %union

10 {

11 u n si gn ed i n t b i t s ;

12 Numb * numb ;

13 c o n s t c h a r * s t r g ;

14 c o n s t c h a r * name ;

15 Symbol * sym ;

16 D e f i n e * def ;

17 CodeNode * code ;

18 } ;

19 %token DECLSET DECLPAR DECLVAR DECLMIN DECLMAX DECLSUB

20 %token DEFNUMB DEFSTRG DEFSET PRINT CHECK BINARY INTEGER REAL

21 %token ASGN DO WITH I N TO BY FORALL EMPTY_TUPLE EMPTY_SET E X I S T S

22 %token PR I O R I TY STARTVAL DEFAULT AND OR XOR NOT SUM MIN MAX

23 %token CMP_LE CMP_GE CMP_EQ CMP_LT CMP_GT CMP_NE INFTY

24 %token I F THEN ELSE END INTER UNION CROSS SYMDIFF WITHOUT PROJ

25 %token MOD DIV POW FAC READ AS S K I P USE COMMENT V I F VABS

26 %token CARD ABS SGN FLOOR C E I L LOG LN EXP SQRT RANDOM ORD

27 %token SUBSETS INDEXSET POWERSET

28 %token < sym > NUMBSYM STRGSYM VARSYM SETSYM

29 %token < def > NUMBDEF STRGDEF SETDEF DEFNAME

30 %token < name > NAME

31 %token < s t r g > STRG

32 %token <numb> NUMB

33 %token < b i t s > SCALE

34 %token < b i t s > SEPARATE



 Appendix B

35

36 %type < code > stmt d e c l _ s e t d e c l _ p a r d e c l _ v a r d e c l _ o b j d e c l _ s u b command

37 %type < code > def_numb d e f _ s t r g d e f _ s e t exec_do c o n s t r a i n t vb ool

38 %type < code > c e x p r c e x p r _ l i s t c f a c t o r c p r odu c t symidx t u p l e t u p l e _ l i s t

39 %type < code > s e x p r l e x p r r ead r e a d _ p a r c e x p r _ e n t r y c e x p r _ e n t r y _ l i s t

40 %type < code > s e t _ e n t r y i d x s e t vp r odu c t v f a c t o r vex p r n a m e _ l i s t

41 %type < code > s e t _ e n t r y _ l i s t p a r _ d e f a u l t v a r _ t y p e con_type l ow er

42 %type < code > upper p r i o r i t y s t a r t v a l c o n d i t i o n matr i x _b ody matr i x _h ead

43 %type < b i t s > c o n _ a t t r c o n _ a t t r _ l i s t

44

45 % r i g h t ASGN

46 % l e f t ’ , ’

47 % r i g h t ’ (’

48 % l e f t ’) ’

49 % l e f t OR XOR

50 % l e f t E X I S T S

51 % l e f t AND

52 % l e f t CMP_EQ CMP_NE CMP_LE CMP_LT CMP_GE CMP_GT

53 % l e f t I N

54 % l e f t NOT

55 % l e f t UNION WITHOUT SYMDIFF

56 % l e f t INTER

57 % l e f t CROSS

58 % l e f t ’ + ’ ’ − ’

59 % l e f t SUM MIN MAX

60 % l e f t ’ * ’ ’ / ’ MOD DIV

61 % l e f t POW

62 % l e f t FAC

63 %%

64 stmt

65 : d e c l _ s e t

66 | d e c l _ p a r

67 | d e c l _ v a r

68 | d e c l _ o b j

69 | d e c l _ s u b

70 | def_numb

71 | d e f _ s t r g

72 | d e f _ s e t

73 | exec_do

74 ;

75 d e c l _ s e t

76 : DECLSET NAME ASGN s e x p r ’ ; ’

77 | DECLSET NAME ’ [’ i d x s e t ’] ’ ASGN s e x p r ’ ; ’

78 | DECLSET NAME ’ [’ i d x s e t ’] ’ ASGN s e t _ e n t r y _ l i s t ’ ; ’

79 | DECLSET NAME ’ [’ ’] ’ ASGN s e t _ e n t r y _ l i s t ’ ; ’

80 ;

81 s e t _ e n t r y _ l i s t

82 : s e t _ e n t r y

83 | s e t _ e n t r y _ l i s t ’ , ’ s e t _ e n t r y

84 | SUBSETS ’ (’ s e x p r ’ , ’ c e x p r ’) ’

85 | POWERSET ’ (’ s e x p r ’) ’

86 ;

87 s e t _ e n t r y

88 : t u p l e s e x p r

Z Internals 

89 ;

90 def_numb

91 : DEFNUMB DEFNAME ’ (’ n a m e _ l i s t ’) ’ ASGN c e x p r ’ ; ’

92 ;

93 d e f _ s t r g

94 : DEFSTRG DEFNAME ’ (’ n a m e _ l i s t ’) ’ ASGN c e x p r ’ ; ’

95 ;

96 d e f _ s e t

97 : DEFSET DEFNAME ’ (’ n a m e _ l i s t ’) ’ ASGN s e x p r ’ ; ’

98 ;

99 n a m e _ l i s t

100 : NAME

101 | n a m e _ l i s t ’ , ’ NAME

102 ;

103 d e c l _ p a r

104 : DECLPAR NAME ’ [’ i d x s e t ’] ’

105 ASGN c e x p r _ e n t r y _ l i s t p a r _ d e f a u l t ’ ; ’

106 | DECLPAR NAME ’ [’ i d x s e t ’] ’ ASGN c e x p r p a r _ d e f a u l t ’ ; ’

107 | DECLPAR NAME ASGN c e x p r ’ ; ’

108 ;

109 p a r _ d e f a u l t

110 : / * empty * /

111 | DEFAULT c e x p r

112 ;

113 d e c l _ v a r

114 : DECLVAR NAME ’ [’ i d x s e t ’] ’

115 v a r _ t y p e l ow er upper p r i o r i t y s t a r t v a l ’ ; ’

116 | DECLVAR NAME ’ [’ i d x s e t ’] ’ BINARY p r i o r i t y s t a r t v a l ’ ; ’

117 | DECLVAR NAME v a r _ t y p e l ow er upper p r i o r i t y s t a r t v a l ’ ; ’

118 | DECLVAR NAME BINARY p r i o r i t y s t a r t v a l ’ ; ’

119 ;

120 v a r _ t y p e

121 : / * empty * /

122 | REAL

123 | INTEGER

124 ;

125 l ow er

126 : / * empty * /

127 | CMP_GE c e x p r

128 | CMP_GE ’ − ’ INFTY

129 ;

130 upper

131 : / * empty * /

132 | CMP_LE c e x p r

133 | CMP_LE INFTY

134 ;

135 p r i o r i t y

136 : / * empty * /

137 | PR I O R I TY c e x p r

138 ;

139 s t a r t v a l

140 : / * empty * /

141 | STARTVAL c e x p r

142 ;

 Appendix B

143 c e x p r _ e n t r y _ l i s t

144 : c e x p r _ e n t r y

145 | c e x p r _ e n t r y _ l i s t ’ , ’ c e x p r _ e n t r y

146 | r ead

147 | matr i x _h ead matr i x _b ody

148 ;

149 c e x p r _ e n t r y

150 : t u p l e c e x p r

151 ;

152 matr i x _h ead

153 : WITH c e x p r _ l i s t WITH

154 ;

155 matr i x _b ody

156 : matr i x _h ead c e x p r _ l i s t WITH

157 | matr i x _b ody matr i x _h ead c e x p r _ l i s t WITH

158 ;

159 d e c l _ o b j

160 : DECLMIN NAME DO vex p r ’ ; ’

161 | DECLMAX NAME DO vex p r ’ ; ’

162 ;

163 d e c l _ s u b

164 : DECLSUB NAME DO c o n s t r a i n t ’ ; ’

165 ;

166 c o n s t r a i n t

167 : vex p r con_type vex p r c o n _ a t t r _ l i s t

168 | vex p r con_type c e x p r c o n _ a t t r _ l i s t

169 | c e x p r con_type vex p r c o n _ a t t r _ l i s t

170 | c e x p r con_type c e x p r c o n _ a t t r _ l i s t

171 | c e x p r con_type vex p r CMP_LE c e x p r c o n _ a t t r _ l i s t

172 | c e x p r con_type c e x p r CMP_LE c e x p r c o n _ a t t r _ l i s t

173 | c e x p r con_type vex p r CMP_GE c e x p r c o n _ a t t r _ l i s t

174 | c e x p r con_type c e x p r CMP_GE c e x p r c o n _ a t t r _ l i s t

175 | FORALL i d x s e t DO c o n s t r a i n t

176 | I F l e x p r THEN c o n s t r a i n t ELSE c o n s t r a i n t END

177 | V I F vb ool THEN vex p r con_type vex p r

178 ELSE vex p r con_type vex p r END

179 | V I F vb ool THEN c e x p r con_type vex p r

180 ELSE vex p r con_type vex p r END

181 | V I F vb ool THEN vex p r con_type c e x p r

182 ELSE vex p r con_type vex p r END

183 | V I F vb ool THEN vex p r con_type vex p r

184 ELSE c e x p r con_type vex p r END

185 | V I F vb ool THEN vex p r con_type vex p r

186 ELSE vex p r con_type c e x p r END

187 | V I F vb ool THEN c e x p r con_type c e x p r

188 ELSE vex p r con_type vex p r END

189 | V I F vb ool THEN c e x p r con_type vex p r

190 ELSE c e x p r con_type vex p r END

191 | V I F vb ool THEN c e x p r con_type vex p r

192 ELSE vex p r con_type c e x p r END

193 | V I F vb ool THEN vex p r con_type c e x p r

194 ELSE c e x p r con_type vex p r END

195 | V I F vb ool THEN vex p r con_type c e x p r

196 ELSE vex p r con_type c e x p r END

Z Internals 

197 | V I F vb ool THEN vex p r con_type vex p r

198 ELSE c e x p r con_type c e x p r END

199 | V I F vb ool THEN c e x p r con_type c e x p r

200 ELSE c e x p r con_type vex p r END

201 | V I F vb ool THEN c e x p r con_type c e x p r

202 ELSE vex p r con_type c e x p r END

203 | V I F vb ool THEN c e x p r con_type vex p r

204 ELSE c e x p r con_type c e x p r END

205 | V I F vb ool THEN vex p r con_type c e x p r

206 ELSE c e x p r con_type c e x p r END

207 | V I F vb ool THEN c e x p r con_type c e x p r

208 ELSE c e x p r con_type c e x p r END

209 | V I F vb ool THEN vex p r con_type vex p r END

210 | V I F vb ool THEN c e x p r con_type vex p r END

211 | V I F vb ool THEN vex p r con_type c e x p r END

212 | V I F vb ool THEN c e x p r con_type c e x p r END

213 ;

214 vb ool

215 : vex p r CMP_NE vex p r

216 | c e x p r CMP_NE vex p r

217 | vex p r CMP_NE c e x p r

218 | vex p r CMP_EQ vex p r

219 | c e x p r CMP_EQ vex p r

220 | vex p r CMP_EQ c e x p r

221 | vex p r CMP_LE vex p r

222 | c e x p r CMP_LE vex p r

223 | vex p r CMP_LE c e x p r

224 | vex p r CMP_GE vex p r

225 | c e x p r CMP_GE vex p r

226 | vex p r CMP_GE c e x p r

227 | vex p r CMP_LT vex p r

228 | c e x p r CMP_LT vex p r

229 | vex p r CMP_LT c e x p r

230 | vex p r CMP_GT vex p r

231 | c e x p r CMP_GT vex p r

232 | vex p r CMP_GT c e x p r

233 | vb ool AND vb ool

234 | vb ool OR vb ool

235 | vb ool XOR vb ool

236 | NOT vb ool

237 | ’ (’ vb ool ’) ’

238 ;

239 c o n _ a t t r _ l i s t

240 : / * empty * /

241 | c o n _ a t t r _ l i s t ’ , ’ c o n _ a t t r

242 ;

243 c o n _ a t t r

244 : SCALE

245 | SEPARATE

246 ;

247 con_type

248 : CMP_LE

249 | CMP_GE

250 | CMP_EQ

 Appendix B

251 ;

252 vex p r

253 : vp r odu c t

254 | vex p r ’ + ’ vp r odu c t

255 | vex p r ’ − ’ vp r odu c t

256 | vex p r ’ + ’ c p r odu c t %prec SUM

257 | vex p r ’ − ’ c p r odu c t %prec SUM

258 | c e x p r ’ + ’ vp r odu c t

259 | c e x p r ’ − ’ vp r odu c t

260 ;

261 vp r odu c t

262 : v f a c t o r

263 | vp r odu c t ’ * ’ c f a c t o r

264 | vp r odu c t ’ / ’ c f a c t o r

265 | c p r odu c t ’ * ’ v f a c t o r

266 ;

267 v f a c t o r

268 : VARSYM symidx

269 | ’ + ’ v f a c t o r

270 | ’ − ’ v f a c t o r

271 | VABS ’ (’ vex p r ’) ’

272 | SUM i d x s e t DO vp r odu c t %prec ’ + ’

273 | I F l e x p r THEN vex p r ELSE vex p r END

274 | ’ (’ vex p r ’) ’

275 ;

276 exec_do

277 : DO command ’ ; ’

278 ;

279 command

280 : PRINT c e x p r

281 | PRINT t u p l e

282 | PRINT s e x p r

283 | CHECK l e x p r

284 | FORALL i d x s e t DO command

285 ;

286 i d x s e t

287 : t u p l e I N s e x p r c o n d i t i o n

288 | s e x p r c o n d i t i o n

289 ;

290 c o n d i t i o n

291 : / * empty * /

292 | WITH l e x p r

293 ;

294 s e x p r

295 : SETSYM symidx

296 | SETDEF ’ (’ c e x p r _ l i s t ’) ’

297 | EMPTY_SET

298 | ’ { ’ c e x p r TO c e x p r BY c e x p r ’ } ’

299 | ’ { ’ c e x p r TO c e x p r ’ } ’

300 | s e x p r UNION s e x p r

301 | s e x p r ’ + ’ s e x p r %prec UNION

302 | s e x p r SYMDIFF s e x p r

303 | s e x p r WITHOUT s e x p r

304 | s e x p r ’ − ’ s e x p r %prec WITHOUT

Z Internals 

305 | s e x p r CROSS s e x p r

306 | s e x p r ’ * ’ s e x p r

307 | s e x p r INTER s e x p r

308 | ’ (’ s e x p r ’) ’

309 | ’ { ’ t u p l e _ l i s t ’ } ’

310 | ’ { ’ c e x p r _ l i s t ’ } ’

311 | ’ { ’ i d x s e t ’ } ’

312 | PROJ ’ (’ s e x p r ’ , ’ t u p l e ’) ’

313 | INDEXSET ’ (’ SETSYM ’) ’

314 | I F l e x p r THEN s e x p r ELSE s e x p r END

315 ;

316 r ead

317 : READ c e x p r AS c e x p r

318 | r ead r e a d _ p a r

319 ;

320 r e a d _ p a r

321 : S K I P c e x p r

322 | USE c e x p r

323 | COMMENT c e x p r

324 ;

325 t u p l e _ l i s t

326 : t u p l e

327 | t u p l e _ l i s t ’ , ’ t u p l e

328 | r ead

329 ;

330 l e x p r

331 : c e x p r CMP_EQ c e x p r

332 | c e x p r CMP_NE c e x p r

333 | c e x p r CMP_GT c e x p r

334 | c e x p r CMP_GE c e x p r

335 | c e x p r CMP_LT c e x p r

336 | c e x p r CMP_LE c e x p r

337 | s e x p r CMP_EQ s e x p r

338 | s e x p r CMP_NE s e x p r

339 | s e x p r CMP_GT s e x p r

340 | s e x p r CMP_GE s e x p r

341 | s e x p r CMP_LT s e x p r

342 | s e x p r CMP_LE s e x p r

343 | l e x p r AND l e x p r

344 | l e x p r OR l e x p r

345 | l e x p r XOR l e x p r

346 | NOT l e x p r

347 | ’ (’ l e x p r ’) ’

348 | t u p l e I N s e x p r

349 | E X I S T S ’ (’ i d x s e t ’) ’ %prec E X I S T S

350 ;

351 t u p l e

352 : EMPTY_TUPLE

353 | CMP_LT c e x p r _ l i s t CMP_GT

354 ;

355 symidx

356 : / * empty * /

357 | ’ [’ c e x p r _ l i s t ’] ’

358 ;

 Appendix B

359 c e x p r _ l i s t

360 : c e x p r

361 | c e x p r _ l i s t ’ , ’ c e x p r

362 ;

363 c e x p r

364 : c p r odu c t

365 | c e x p r ’ + ’ c p r odu c t

366 | c e x p r ’ − ’ c p r odu c t

367 ;

368 c p r odu c t

369 : c f a c t o r

370 | c p r odu c t ’ * ’ c f a c t o r

371 | c p r odu c t ’ / ’ c f a c t o r

372 | c p r odu c t MOD c f a c t o r

373 | c p r odu c t DIV c f a c t o r

374 | c p r odu c t POW c f a c t o r

375 ;

376 c f a c t o r

377 : NUMB

378 | STRG

379 | NAME

380 | NUMBSYM symidx

381 | STRGSYM symidx

382 | NUMBDEF ’ (’ c e x p r _ l i s t ’) ’

383 | STRGDEF ’ (’ c e x p r _ l i s t ’) ’

384 | c f a c t o r FAC

385 | CARD ’ (’ s e x p r ’) ’

386 | ABS ’ (’ c e x p r ’) ’

387 | SGN ’ (’ c e x p r ’) ’

388 | FLOOR ’ (’ c e x p r ’) ’

389 | C E I L ’ (’ c e x p r ’) ’

390 | LOG ’ (’ c e x p r ’) ’

391 | LN ’ (’ c e x p r ’) ’

392 | EXP ’ (’ c e x p r ’) ’

393 | SQRT ’ (’ c e x p r ’) ’

394 | ’ + ’ c f a c t o r

395 | ’ − ’ c f a c t o r

396 | ’ (’ c e x p r ’) ’

397 | RANDOM ’ (’ c e x p r ’ , ’ c e x p r ’) ’

398 | I F l e x p r THEN c e x p r ELSE c e x p r END

399 | MIN i d x s e t DO c p r odu c t %prec ’ + ’

400 | MAX i d x s e t DO c p r odu c t %prec ’ + ’

401 | SUM i d x s e t DO c p r odu c t %prec ’ + ’

402 | MIN ’ (’ c e x p r _ l i s t ’) ’

403 | MAX ’ (’ c e x p r _ l i s t ’) ’

404 | ORD ’ (’ s e x p r ’ , ’ c e x p r ’ , ’ c e x p r ’) ’

405 ;

Z Internals 

B. Detailed function statistics

Here are the code statistics for each function within Z. The name in bold writing is

the name of the module. Aggregated statistics per module can be found in Section ..

on page . The first column of the tables list the name of the functions. Lines denotes

the number of code lines, i. e., without empty and comment lines. Stmt. is the number

of statements in the function. Calls is the number of calls to other functions. CC is the

cyclomatic complexity number. Dp. is the maximal nesting depth of if, for, while, and

do constructs. Ex. is the number of return statements and As. the number of asserts.

Cover denotes the percentage of statements that are executed by the regression tests.√
indicates %, while ⊗ means not called at all.

bound.c Lines Stmt. Calls CC Dp. Ex. As. Cover

bound_new 14 9 4 2 1 3
√

bound_free 8 5 4 2 1
√

bound_is_valid 6 1 1 6
√

bound_copy 5 2 2 1
√

bound_get_type 5 2 1 1
√

bound_get_value 6 3 1 2
√

6 functions, total 44 22 13 13 8 100%

∅ per function 7.3 3.7 2.2 2.2 1.3

∅ statements per 0.5 1.7 1.7 2.4

code.c Lines Stmt. Calls CC Dp. Ex. As. Cover

code_is_valid 4 1 1 2
√

code_new_inst 27 20 9 3 1 4
√

code_new_numb 13 10 5 2
√

code_new_strg 14 11 5 3
√

code_new_name 14 11 5 3
√

code_new_size 14 11 5 3
√

code_new_varclass 13 10 5 2
√

code_new_contype 13 10 5 2
√

code_new_bits 13 10 5 2
√

code_new_symbol 13 10 5 2
√

code_new_define 13 10 5 2
√

code_new_bound 14 11 6 2 3
√

code_free_value 58 29 11 18 1 1 80%

code_free 9 7 3 3
√

code_set_child 8 5 1 4 ⊗
code_get_type 5 2 1 1

√

code_get_inst 5 2 1 1
√

code_set_root 5 2 1 1
√

code_get_root 4 1 0
√

code_get_inst_count 4 1 0 ⊗
code_check_type 20 9 3 2 1 3

√

code_errmsg 9 4 6 2 80%

code_eval 6 3 1 1
√

(continued on next page)

 Appendix B

code.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

code_get_child 8 5 1 4
√

code_get_numb 4 1 1
√

code_get_strg 4 1 1
√

code_get_name 4 1 1
√

code_get_tuple 4 1 1
√

code_get_set 4 1 1
√

code_get_idxset 4 1 1
√

code_get_entry 4 1 1
√

code_get_term 4 1 1
√

code_get_size 4 1 1
√

code_get_bool 4 1 1
√

code_get_list 4 1 1
√

code_get_varclass 4 1 1
√

code_get_contype 4 1 1
√

code_get_rdef 4 1 1
√

code_get_rpar 4 1 1
√

code_get_bits 4 1 1
√

code_get_symbol 4 1 1
√

code_get_define 4 1 1
√

code_get_bound 4 1 1
√

code_value_numb 7 4 2 1
√

code_value_strg 8 5 2 2
√

code_value_name 8 5 2 2
√

code_value_tuple 8 5 3 2
√

code_value_set 8 5 3 2
√

code_value_idxset 8 5 3 2
√

code_value_entry 8 5 3 2
√

code_value_term 8 5 3 2
√

code_value_bool 7 4 2 1
√

code_value_size 7 4 2 1 ⊗
code_value_list 8 5 3 2

√

code_value_varclass 7 4 2 1 ⊗
code_value_contype 7 4 2 1 ⊗

code_value_rdef 8 5 3 2
√

code_value_rpar 8 5 3 2
√

code_value_bits 7 4 2 1 ⊗
code_value_bound 7 4 2 1

√

code_value_void 6 3 2 1
√

code_copy_value 65 40 13 19 1 2 28%

code_eval_child 4 1 2
√

code_eval_child_numb 4 1 3
√

code_eval_child_strg 4 1 3
√

code_eval_child_name 4 1 3
√

code_eval_child_tuple 4 1 3
√

code_eval_child_set 4 1 3
√

code_eval_child_idxset 4 1 3
√

code_eval_child_entry 4 1 3
√

code_eval_child_term 4 1 3
√

code_eval_child_size 4 1 3
√

code_eval_child_bool 4 1 3
√

code_eval_child_list 4 1 3
√

(continued on next page)

Z Internals 

code.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

code_eval_child_varclass 4 1 3
√

code_eval_child_contype 4 1 3
√

code_eval_child_rdef 4 1 3
√

code_eval_child_rpar 4 1 3
√

code_eval_child_bits 4 1 3
√

code_eval_child_symbol 4 1 3
√

code_eval_child_define 4 1 3
√

code_eval_child_bound 4 1 3
√

82 functions, total 662 355 225 125 74 85%

∅ per function 8.1 4.3 2.7 1.5 0.9

∅ statements per 0.5 1.6 2.8 4.7

conname.c Lines Stmt. Calls CC Dp. Ex. As. Cover

conname_format 4 1 0
√

conname_free 9 6 2 2
√

conname_set 19 16 8 3 3 4
√

conname_get 33 19 10 6 2 4
√

conname_next 4 1 0
√

5 functions, total 69 43 20 12 10 100%

∅ per function 13.8 8.6 4.0 2.4 2.0

∅ statements per 0.6 2.1 3.6 3.9

define.c Lines Stmt. Calls CC Dp. Ex. As. Cover

define_new 18 15 4 5
√

define_set_param 6 3 2 2
√

define_set_code 6 3 1 2
√

define_exit 14 10 4 2 1 1
√

define_is_valid 4 1 1 2
√

define_lookup 9 7 1 3 1
√

define_get_name 5 2 1 1
√

define_get_type 5 2 1 1
√

define_get_param 5 2 1 1
√

define_get_code 5 2 1 1
√

10 functions, total 77 47 17 14 15 100%

∅ per function 7.7 4.7 1.7 1.4 1.5

∅ statements per 0.6 2.8 3.4 2.9

elem.c Lines Stmt. Calls CC Dp. Ex. As. Cover

extend_storage 27 23 6 2 1 6
√

new_elem 13 10 2 2 3
√

elem_init 3 0 0
√

elem_exit 13 9 3 3 1 88%

elem_new_numb 8 5 2 1
√

elem_new_strg 9 6 1 2
√

elem_new_name 9 6 1 2
√

elem_free 10 7 2 2 1
√

elem_is_valid 4 1 1 2
√

elem_copy 14 8 4 2 1 2
√

elem_cmp 28 20 9 6 1 4 6 90%

 Appendix B

elem.c Lines Stmt. Calls CC Dp. Ex. As. Cover

elem_get_type 5 2 1 1
√

elem_get_numb 6 3 1 2
√

elem_get_strg 7 4 1 3
√

elem_get_name 7 4 1 3
√

elem_print 19 8 5 4 1 1 90%

elem_hash 20 9 3 4 1 72%

elem_tostr 24 13 6 4 1 3 80%

18 functions, total 226 138 49 39 36 93%

∅ per function 12.6 7.7 2.7 2.2 2.0

∅ statements per 0.6 2.8 3.5 3.7

entry.c Lines Stmt. Calls CC Dp. Ex. As. Cover

entry_new_numb 13 10 5 3
√

entry_new_strg 14 11 4 4
√

entry_new_set 14 11 5 4
√

entry_new_var 14 11 4 4
√

entry_free 26 13 6 6 2 1 86%

entry_is_valid 4 1 1 2
√

entry_copy 7 4 1 1
√

entry_cmp 6 3 3 2
√

entry_get_type 5 2 1 1
√

entry_get_tuple 6 3 2 2
√

entry_get_numb 6 3 1 2
√

entry_get_strg 6 3 1 2
√

entry_get_set 6 3 1 2
√

entry_get_var 6 3 1 2
√

entry_print 25 12 8 6 1 1 57%

15 functions, total 158 93 44 26 31 92%

∅ per function 10.5 6.2 2.9 1.7 2.1

∅ statements per 0.6 2.1 3.6 2.9

gmpmisc.c Lines Stmt. Calls CC Dp. Ex. As. Cover

pool_alloc 20 16 1 3 1 1
√

pool_free 6 3 0
√

pool_exit 10 6 1 2 1
√

gmp_str2mpq 50 34 7 10 2 2 85%

gmp_print_mpq 11 8 7 ⊗
gmp_alloc 6 3 2 2 2

√

gmp_realloc 25 18 7 5 1 4 4 68%

gmp_free 7 3 2 2
√

gmp_init 11 8 7 2 88%

gmp_exit 7 4 4
√

10 functions, total 153 103 38 29 7 80%

∅ per function 15.3 10.3 3.8 2.9 0.7

∅ statements per 0.7 2.7 3.6 12.9

Z Internals 

hash.c Lines Stmt. Calls CC Dp. Ex. As. Cover

hash_new 26 18 4 3 1 5
√

hash_free 20 15 6 4 2 1 92%

hash_is_valid 6 1 1 5
√

hash_add_tuple 14 11 4 4
√

hash_add_entry 16 13 5 4
√

hash_has_tuple 11 9 4 3 2
√

hash_has_entry 11 9 4 3 2
√

hash_lookup_entry 15 13 5 4 2 4
√

hash_add_elem_idx 14 11 4 3
√

hash_lookup_elem_idx 14 12 4 4 2 3
√

hash_statist 35 29 2 7 1 3 ⊗

11 functions, total 182 141 43 36 31 79%

∅ per function 16.5 12.8 3.9 3.3 2.8

∅ statements per 0.8 3.3 3.9 4.4

idxset.c Lines Stmt. Calls CC Dp. Ex. As. Cover

idxset_new 15 12 7 5
√

idxset_free 8 5 5 1
√

idxset_is_valid 4 1 1 2
√

idxset_copy 5 2 2 1 ⊗
idxset_get_lexpr 5 2 1 1

√

idxset_get_tuple 5 2 1 1
√

idxset_get_set 5 2 1 1
√

idxset_is_unrestricted 5 2 1 1
√

idxset_print 10 7 7 1 ⊗

9 functions, total 62 35 26 10 12 75%

∅ per function 6.9 3.9 2.9 1.1 1.3

∅ statements per 0.6 1.3 3.5 2.7

inst.c Lines Stmt. Calls CC Dp. Ex. As. Cover

i_nop 8 5 4 2 1
√

i_subto 17 12 9 2 1 1
√

i_constraint 46 32 23 8 2 3
√

i_rangeconst 53 35 37 6 2 1
√

i_forall 27 22 16 3 1 1
√

i_expr_add 8 4 6 1
√

i_expr_sub 8 4 6 1
√

i_expr_mul 8 4 6 1
√

i_expr_div 16 10 10 2 1 1
√

i_expr_mod 16 10 10 2 1 1
√

i_expr_intdiv 17 10 10 2 1 1 70%

i_expr_pow 20 14 12 2 1 1
√

i_expr_neg 10 7 6 1
√

i_expr_abs 10 7 6 1
√

i_expr_sgn 10 7 6 1
√

i_expr_floor 10 7 6 1
√

i_expr_ceil 10 7 6 1
√

i_expr_log 14 9 6 2 1 1
√

i_expr_ln 14 9 6 2 1 1
√

(continued on next page)

 Appendix B

inst.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

i_expr_sqrt 14 9 6 2 1 1 77%

i_expr_exp 7 4 5 1
√

i_expr_fac 31 22 15 4 1 1
√

i_expr_card 9 6 6 1
√

i_expr_rand 5 1 0 ⊗
i_expr_if 10 6 7 2 1

√

i_expr_min 42 31 22 6 3 1
√

i_expr_max 42 31 22 6 3 1
√

i_expr_sum 28 23 18 3 1 1
√

i_expr_min2 37 27 15 5 2 2
√

i_expr_max2 37 27 15 5 2 2
√

i_expr_ord 62 45 36 9 1 1 97%

i_bool_true 7 4 3 1
√

i_bool_false 7 4 3 1 ⊗
i_bool_not 7 4 4 1

√

i_bool_and 8 4 5 2 1
√

i_bool_or 8 4 5 2 1
√

i_bool_xor 11 8 5 4 1 ⊗
i_bool_eq 39 26 18 5 1 2 96%

i_bool_ne 7 4 5 1
√

i_bool_ge 39 26 18 5 1 2 88%

i_bool_gt 39 26 18 5 1 2 88%

i_bool_le 7 4 5 1
√

i_bool_lt 7 4 5 1
√

i_bool_seq 11 8 6 1
√

i_bool_sneq 11 8 6 1
√

i_bool_subs 11 8 6 1
√

i_bool_sseq 11 8 6 1
√

i_bool_is_elem 11 8 6 1 ⊗
i_bool_exists 27 22 15 3 1 1 ⊗

i_set_new_tuple 29 22 16 3 2 2
√

i_set_new_elem 7 4 5 1
√

i_set_pseudo 7 4 4 1 ⊗
i_set_empty 9 6 5 1

√

i_set_union 17 12 10 2 1 1
√

i_set_minus 17 12 10 2 1 1
√

i_set_inter 17 12 10 2 1 1
√

i_set_sdiff 17 12 10 2 1 1
√

i_set_cross 11 8 6 1
√

i_set_range 54 43 29 6 1 1
√

i_set_proj 48 36 24 6 2 1
√

i_set_indexset 10 7 6 2
√

i_tuple_new 14 12 9 2 1
√

i_tuple_empty 7 4 4 1
√

set_from_idxset 64 38 27 7 4 7
√

i_newsym_set1 37 28 22 3 1 1
√

i_newsym_set2 67 49 35 6 2 2
√

i_newsym_para1 83 62 45 9 2 3
√

i_newsym_para2 73 53 39 9 2 1 96%

i_newsym_var 136 91 101 24 4 6 80%

(continued on next page)

Z Internals 

inst.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

i_symbol_deref 42 28 23 6 1 2 96%

i_newdef 11 8 9 1
√

i_define_deref 43 29 27 5 2 3
√

i_set_idxset 8 5 4
√

i_idxset_new 73 52 39 9 5 2
√

i_idxset_pseudo_new 13 10 9 1
√

i_local_deref 26 14 11 4 2 1 93%

i_term_coeff 12 9 7 1
√

i_term_const 12 9 7 1
√

i_term_add 11 8 6 1
√

i_term_sub 11 8 6 1
√

i_term_sum 29 24 18 3 1 1
√

i_term_expr 12 9 6 1
√

i_entry 31 19 15 5 1 1 95%

i_elem_list_new 24 14 13 4 1 1 93%

i_elem_list_add 28 18 15 4 1 1 94%

i_tuple_list_new 9 4 5 1
√

i_tuple_list_add 12 9 7 1
√

i_entry_list_new 9 4 5 1
√

i_entry_list_add 12 9 7 1
√

i_entry_list_subsets 40 29 20 5 1 2
√

i_entry_list_powerset 24 20 9 3 1 3
√

i_list_matrix 93 70 35 9 3 8 95%

i_matrix_list_new 10 7 7 1
√

i_matrix_list_add 11 8 9 1
√

objective 19 14 11 2 1 1 80%

i_object_min 7 4 3 1
√

i_object_max 7 4 3 1
√

i_print 36 23 20 7 1 1 66%

i_bound_new 9 4 5 1
√

i_check 14 9 7 2 1 1
√

100 functions, total 2336 1624 1282 297 135 93%

∅ per function 23.4 16.2 12.8 3.0 1.4

∅ statements per 0.7 1.3 5.5 11.9

iread.c Lines Stmt. Calls CC Dp. Ex. As. Cover

i_read_new 11 8 6 1
√

i_read_param 12 9 7 1
√

i_read_comment 9 6 5 1
√

i_read_use 25 18 13 3 1 1 88%

i_read_skip 25 18 13 3 1 1 88%

parse_template 65 45 23 15 2 6
√

split_fields 52 34 2 15 2 94%

i_read 162 111 68 23 5 3 82%

8 functions, total 361 249 137 62 14 89%

∅ per function 45.1 31.1 17.1 7.8 1.8

∅ statements per 0.7 1.8 4.0 16.6

 Appendix B

list.c Lines Stmt. Calls CC Dp. Ex. As. Cover

list_add_data 13 10 2 3
√

list_new 15 12 4 3
√

list_new_elem 7 4 3 1
√

list_new_tuple 7 4 3 1
√

list_new_entry 7 4 3 1
√

list_new_list 7 4 3 1
√

list_free 36 21 8 8 3 1 95%

list_is_valid 4 1 1 3
√

list_is_elemlist 5 2 1 1
√

list_is_entrylist 5 2 1 1
√

list_is_tuplelist 5 2 1 1
√

list_copy 7 4 1 1
√

list_add_elem 9 6 4 3
√

list_add_tuple 9 6 4 3
√

list_add_entry 9 6 4 3
√

list_add_list 9 6 4 3
√

list_get_elems 5 2 1 1
√

list_get_data 10 7 1 3 2 1
√

list_get_elem 8 5 2 2 2
√

list_get_tuple 8 5 2 2 2
√

list_get_entry 8 5 2 2 2
√

list_get_list 8 5 2 2 2
√

list_print 25 13 5 6 2 ⊗

23 functions, total 226 136 62 43 37 90%

∅ per function 9.8 5.9 2.7 1.9 1.6

∅ statements per 0.6 2.2 3.2 3.6

load.c Lines Stmt. Calls CC Dp. Ex. As. Cover

get_line 54 37 6 18 3 2 2 94%

make_pathname 19 11 5 3 1 3 ⊗
add_stmt 34 28 14 11 1 3

√

3 functions, total 107 76 25 32 8 78%

∅ per function 35.7 25.3 8.3 10.7 2.7

∅ statements per 0.7 3.0 2.4 8.4

local.c Lines Stmt. Calls CC Dp. Ex. As. Cover

local_new 11 8 2 2 2
√

local_new_frame 4 1 1
√

local_drop_frame 16 11 2 4 1
√

local_lookup 9 7 1 4 1
√

local_install_tuple 21 15 12 3 2 4
√

local_print_all 15 8 4 3 2 37%

local_tostrall 40 28 8 6 2 3 89%

7 functions, total 116 78 30 23 10 90%

∅ per function 16.6 11.1 4.3 3.3 1.4

∅ statements per 0.7 2.6 3.4 7.1

Z Internals 

numbgmp.c Lines Stmt. Calls CC Dp. Ex. As. Cover

extend_storage 25 21 6 2 1 6
√

numb_init 8 5 3
√

numb_exit 17 12 6 3 1 91%

numb_new 13 10 3 2 1
√

numb_new_ascii 7 4 2 1
√

numb_new_integer 7 4 2 1
√

numb_new_mpq 7 4 2 1
√

numb_free 9 6 3 1
√

numb_is_valid 4 1 1 2
√

numb_copy 8 5 4 2
√

numb_equal 6 3 3 2
√

numb_cmp 6 3 3 2
√

numb_set 6 3 3 2
√

numb_add 6 3 3 2
√

numb_new_add 9 6 4 3
√

numb_sub 6 3 3 2
√

numb_new_sub 9 6 4 3
√

numb_mul 6 3 3 2
√

numb_new_mul 9 6 4 3
√

numb_div 6 3 3 2 ⊗
numb_new_div 9 6 4 3

√

numb_intdiv 11 8 9 2 ⊗
numb_new_intdiv 14 11 10 3

√

numb_mod 18 15 16 2 ⊗
numb_new_mod 21 18 17 3

√

numb_new_pow 19 15 5 4 1 2
√

numb_new_fac 12 9 5 2
√

numb_neg 5 2 2 1
√

numb_abs 5 2 2 1
√

numb_sgn 19 8 5 4 1 1 90%

numb_get_sgn 6 2 2 1
√

numb_ceil 9 6 7 1
√

numb_floor 9 6 7 1
√

numb_new_log 15 10 9 2 1 2 1
√

numb_new_sqrt 15 10 9 2 1 2 1 81%

numb_new_exp 7 4 5 1
√

numb_new_ln 15 10 9 2 1 2 1
√

numb_todbl 5 2 2 1
√

numb_get_mpq 5 2 2 1
√

numb_print 5 2 3 1
√

numb_hash 16 9 1 2
√

numb_tostr 9 6 4 2 ⊗
numb_zero 4 1 0

√

numb_one 4 1 0
√

numb_minusone 4 1 0
√

numb_is_int 11 4 4 3 1 2
√

numb_toint 6 3 4 2
√

numb_is_number 22 15 3 9 7 31%

48 functions, total 474 299 211 72 70 84%

∅ per function 9.9 6.2 4.4 1.5 1.5

∅ statements per 0.6 1.4 4.2 4.2

 Appendix B

prog.c Lines Stmt. Calls CC Dp. Ex. As. Cover

prog_new 12 9 4 2
√

prog_free 11 9 5 2 2
√

prog_is_valid 4 1 1 2
√

prog_is_empty 4 1 0
√

prog_add_stmt 17 11 3 2 1 5 66%

prog_print 8 6 3 2 1 ⊗
prog_execute 17 12 11 3 1 1 91%

7 functions, total 73 49 27 13 11 79%

∅ per function 10.4 7.0 3.9 1.9 1.6

∅ statements per 0.7 1.8 3.8 4.1

rathumwrite.c Lines Stmt. Calls CC Dp. Ex. As. Cover

write_name 43 25 8 9 4 3 69%

write_lhs 18 7 2 3 1 2 88%

write_rhs 24 13 7 4 1 2 83%

write_row 25 17 10 6 2 2
√

hum_write 110 81 43 32 2 2 81%

5 functions, total 220 143 70 54 11 79%

∅ per function 44.0 28.6 14.0 10.8 2.2

∅ statements per 0.7 2.0 2.6 11.9

ratlpfwrite.c Lines Stmt. Calls CC Dp. Ex. As. Cover

write_rhs 21 10 6 4 1 2 83%

write_row 20 15 8 5 1 3
√

lpf_write 132 97 49 38 3 3 89%

3 functions, total 173 122 63 47 8 89%

∅ per function 57.7 40.7 21.0 15.7 2.7

∅ statements per 0.7 1.9 2.6 13.6

ratlpstore.c Lines Stmt. Calls CC Dp. Ex. As. Cover

hash_valid 4 1 0 3
√

hashit 9 6 1 2 1
√

lps_hash_new 12 9 3 3
√

lps_hash_free 18 12 4 3 2 1
√

hash_lookup_var 13 11 3 4 3
√

hash_lookup_con 13 11 3 4 3
√

hash_add_var 15 12 4 5
√

hash_del_var 21 18 4 4 5 ⊗
hash_add_con 15 12 4 5

√

hash_del_con 21 18 4 4 5 94%

hash_statist 35 29 2 7 1 3 ⊗
lps_storage 26 20 5 2 1 4

√

lps_alloc 28 25 5 3
√

lps_free 55 50 25 10 1 1 91%

lps_number 21 16 1 3 1 7
√

lps_getvar 11 7 3 3 4 92%

lps_getcon 11 7 3 3 4
√

(continued on next page)

Z Internals 

ratlpstore.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

lps_getnzo 24 17 1 8 1 6
√

lps_addvar 37 31 11 2 1 6
√

lps_delvar 43 27 11 6 1 9 ⊗
lps_addcon 34 28 9 2 1 6

√

lps_delcon 41 25 9 6 1 9 88%

lps_addnzo 40 30 4 4 1 9
√

lps_delnzo 26 20 2 7 3 95%

lps_setval 5 2 1 1
√

lps_getval 5 2 1 1
√

lps_setdir 5 2 1 1
√

lps_setprobname 8 5 2 2 2 ⊗
lps_setobjname 8 5 2 2 2 83%

lps_setrhsname 8 5 2 2 2 ⊗
lps_setbndname 8 5 2 2 2 ⊗
lps_setrngname 8 5 2 2 2 ⊗

lps_getcost 6 3 1 2
√

lps_haslower 6 3 1 2
√

lps_setcost 6 3 1 2
√

lps_getlower 6 3 1 2
√

lps_setlower 14 8 2 6 1 3 66%

lps_hasupper 6 3 1 2
√

lps_getupper 6 3 1 2
√

lps_setupper 14 8 2 6 1 3
√

lps_setlhs 14 8 2 6 1 3 66%

lps_setrhs 14 8 2 6 1 3
√

lps_setcontype 6 3 0 2 ⊗
lps_contype 6 3 0 2

√

lps_vartype 6 3 0 2 ⊗
lps_getclass 6 3 0 2

√

lps_setclass 6 3 0 2
√

lps_getlhs 6 3 1 2 ⊗
lps_getrhs 6 3 1 2 ⊗

lps_setvartype 6 3 0 2 ⊗
lps_varstate 6 3 0 2 ⊗

lps_setvarstate 6 3 0 2 ⊗
lps_constate 6 3 0 2 ⊗

lps_setconstate 6 3 0 2 ⊗
lps_flags 6 3 0 2 ⊗

lps_addflags 6 3 0 2
√

lps_setscale 6 3 1 2 ⊗
lps_setpriority 6 3 0 2

√

lps_setvalue 6 3 1 2 ⊗
lps_setstartval 6 3 1 2

√

lps_stat 6 2 2 1 ⊗
lps_write 20 10 4 4 1 2 91%

lpfstrncpy 20 11 2 5 2
√

lps_makename 34 22 10 3 2 8
√

lps_transtable 35 24 12 8 2 5
√

lps_scale 32 26 15 8 3 1 95%

66 functions, total 975 672 198 181 195 76%

∅ per function 14.8 10.2 3.0 2.7 3.0

∅ statements per 0.7 3.4 3.7 3.4

 Appendix B

ratmpswrite.c Lines Stmt. Calls CC Dp. Ex. As. Cover

write_data 15 5 7 2 1 2
√

write_vars 40 27 12 6 3 4 92%

mps_write 120 78 41 28 3 3 90%

3 functions, total 175 110 60 36 9 91%

∅ per function 58.3 36.7 20.0 12.0 3.0

∅ statements per 0.6 1.8 3.1 11.0

ratmstwrite.c Lines Stmt. Calls CC Dp. Ex. As. Cover

lps_mstfile 27 23 9 7 1 4 95%

1 functions, total 27 23 9 7 4 95%

∅ per function 27.0 23.0 9.0 7.0 4.0

∅ statements per 0.9 2.6 3.3 4.6

ratordwrite.c Lines Stmt. Calls CC Dp. Ex. As. Cover

lps_orderfile 34 28 11 9 1 4 89%

1 functions, total 34 28 11 9 4 89%

∅ per function 34.0 28.0 11.0 9.0 4.0

∅ statements per 0.8 2.5 3.1 5.6

ratpresolve.c Lines Stmt. Calls CC Dp. Ex. As. Cover

remove_fixed_var 39 25 16 7 3 3 69%

simple_rows 123 78 54 38 4 5 2 58%

handle_col_singleton 136 68 31 19 5 9 7 40%

simple_cols 92 55 27 21 4 5 3 40%

lps_presolve 26 15 3 8 1 2 81%

5 functions, total 416 241 131 93 17 51%

∅ per function 83.2 48.2 26.2 18.6 3.4

∅ statements per 0.6 1.8 2.6 13.4

rdefpar.c Lines Stmt. Calls CC Dp. Ex. As. Cover

rdef_new 16 13 4 4
√

rdef_free 10 5 3 2 1 1 ⊗
rdef_is_valid 8 1 1 5

√

rdef_copy 7 4 1 1
√

rdef_set_param 20 9 2 4 1 2 54%

rdef_get_filename 5 2 1 1
√

rdef_get_template 5 2 1 1
√

rdef_get_comment 5 2 1 1
√

rdef_get_use 5 2 1 1
√

rdef_get_skip 5 2 1 1
√

rpar_new_skip 10 7 3 2 ⊗
rpar_new_use 10 7 3 2 ⊗

rpar_new_comment 10 7 3 2
√

rpar_free 6 3 3 1 ⊗
rpar_is_valid 5 1 1 3

√

rpar_copy 11 8 3 3 ⊗

16 functions, total 138 75 32 26 23 56%

∅ per function 8.6 4.7 2.0 1.6 1.4

∅ statements per 0.5 2.3 2.9 3.1

Z Internals 

set4.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_init 13 9 7 2
√

set_exit 5 2 1 1
√

set_new_from_list 29 19 16 5 1 4 95%

set_free 4 1 1
√

set_is_valid 4 1 1 2
√

set_copy 4 1 1
√

set_lookup_idx 4 1 1
√

set_lookup 4 1 1
√

set_get_tuple_intern 4 1 1
√

set_get_tuple 10 7 3 3
√

set_iter_init_intern 4 1 1
√

set_iter_init 4 1 1
√

set_iter_next_intern 4 1 1
√

set_iter_next 9 6 3 2 2
√

set_iter_exit_intern 4 1 1
√

set_iter_exit 4 1 1
√

set_iter_reset_intern 4 1 1
√

set_get_dim 5 2 1 1
√

set_get_members 5 2 1 1
√

set_print 45 29 16 9 1 2 77%

set_union 45 29 23 7 2 5 90%

set_inter 32 21 15 5 2 4 95%

set_minus 35 22 15 5 2 5 91%

set_sdiff 48 30 23 8 2 5 90%

set_proj 48 37 28 6 1 6 94%

set_is_subseteq 30 22 12 6 1 4 2 91%

set_is_subset 8 5 3 2 2 2
√

set_is_equal 8 5 3 2 2 2
√

counter_inc 13 8 1 3 1 2
√

set_subsets_list 51 44 21 6 2 7
√

30 functions, total 487 311 204 84 52 93%

∅ per function 16.2 10.4 6.8 2.8 1.7

∅ statements per 0.6 1.5 3.7 5.9

setempty.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_empty_is_valid 7 1 1 4
√

set_empty_iter_is_valid 4 1 1 2
√

set_empty_new 13 10 3 2
√

set_empty_copy 6 3 0
√

set_empty_free 10 5 3 2 1 1
√

set_empty_lookup_idx 7 4 2 3 ⊗
set_empty_get_tuple 11 8 4 6 ⊗

iter_init 12 9 5 2 5
√

iter_next 6 3 2 2
√

iter_exit 6 3 3 1
√

iter_reset 4 1 1 1 ⊗
set_empty_init 12 9 0

√

12 functions, total 98 57 25 18 21 76%

∅ per function 8.2 4.8 2.1 1.5 1.8

∅ statements per 0.6 2.3 3.2 2.6

 Appendix B

setlist.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_list_is_valid 14 6 2 9 2 83%

set_list_iter_is_valid 9 1 1 6
√

lookup_elem_idx 12 10 4 4 3 2
√

set_list_new 19 16 5 3 4
√

set_list_add_elem 27 17 8 5 2 5
√

set_list_new_from_elems 14 11 6 2 3
√

set_list_new_from_tuples 19 14 8 2 1 4
√

set_list_new_from_entrie 19 14 9 2 1 4
√

set_list_copy 6 3 0
√

set_list_free 16 12 6 4 1 1
√

set_list_lookup_idx 8 5 5 4
√

set_list_get_tuple 10 7 5 6
√

set_list_iter_init 40 24 9 6 3 6 92%

set_list_iter_next 13 10 6 2 2 5
√

set_list_iter_exit 6 3 3 1
√

set_list_iter_reset 5 2 1 1
√

set_list_init 12 9 0
√

set_list_get_elem 7 4 1 3
√

18 functions, total 256 168 79 52 49 98%

∅ per function 14.2 9.3 4.4 2.9 2.7

∅ statements per 0.7 2.1 3.2 3.4

setmulti.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_multi_is_valid 9 1 1 6
√

set_multi_iter_is_valid 10 1 1 11
√

subset_cmp 14 10 0 3 1 2 90%

order_cmp 13 10 0 3
√

set_multi_new_from_list 91 67 29 16 3 10
√

set_multi_copy 10 8 2 2 1
√

set_multi_free 18 15 8 4 1 1
√

subset_idx_cmp 17 13 0 3 1 2 3
√

order_idx_cmp 13 10 0 7
√

set_multi_lookup_idx 35 26 8 4 2 3 8 88%

set_multi_get_tuple 16 10 6 2 1 6
√

set_multi_iter_init 120 79 14 18 4 19 92%

set_multi_iter_next 19 13 7 3 1 2 5
√

set_multi_iter_exit 8 5 4 2 1
√

set_multi_iter_reset 5 2 1 1 ⊗
set_multi_init 12 9 0

√

16 functions, total 410 279 81 78 65 95%

∅ per function 25.6 17.4 5.1 4.9 4.1

∅ statements per 0.7 3.4 3.6 4.2

setprod.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_prod_is_valid 9 1 3 6
√

set_prod_iter_is_valid 7 1 1 4
√

set_prod_new 21 18 8 3 2 6 94%

set_prod_copy 8 5 2
√

set_prod_free 12 7 5 2 1 1
√

(continued on next page)

Z Internals 

setprod.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

set_prod_lookup_idx 17 14 5 3 3 4 86%

set_prod_get_tuple 17 14 5 6
√

set_prod_iter_init 19 15 9 3 7
√

get_both_parts 15 11 5 4 1 3 2 90%

set_prod_iter_next 45 32 11 6 2 3 6
√

set_prod_iter_exit 14 12 8 3 2 91%

set_prod_iter_reset 7 4 4 2 ⊗
set_prod_init 12 9 0

√

13 functions, total 203 143 66 38 36 93%

∅ per function 15.6 11.0 5.1 2.9 2.8

∅ statements per 0.7 2.2 3.8 3.9

setpseudo.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_pseudo_is_valid 8 1 1 5
√

set_pseudo_iter_is_valid 4 1 1 2
√

set_pseudo_new 13 10 3 2
√

set_pseudo_copy 6 3 0
√

set_pseudo_free 10 5 3 2 1 1
√

set_pseudo_lookup_idx 10 7 4 2 2 4 87%

set_pseudo_get_tuple 8 5 3 5 ⊗
iter_init 14 11 6 3 6

√

iter_next 9 6 2 2 2 2
√

iter_exit 6 3 3 1
√

iter_reset 5 2 1 1 ⊗
set_pseudo_init 12 9 0

√

12 functions, total 105 63 27 22 22 86%

∅ per function 8.8 5.2 2.2 1.8 1.8

∅ statements per 0.6 2.3 2.9 2.7

setrange.c Lines Stmt. Calls CC Dp. Ex. As. Cover

set_range_is_valid 7 1 1 4
√

set_range_iter_is_valid 7 1 1 5
√

set_range_new 16 13 3 2
√

set_range_copy 6 3 0
√

set_range_free 10 5 3 2 1 1
√

idx_to_val 5 1 0
√

val_to_idx 5 1 0
√

set_range_lookup_idx 39 23 11 10 1 5 5 83%

set_range_get_tuple 15 12 8 6
√

set_range_iter_init 48 30 12 8 3 6 75%

set_range_iter_next 18 15 9 2 2 5
√

set_range_iter_exit 6 3 3 1
√

set_range_iter_reset 5 2 1 1
√

set_range_init 12 9 0
√

14 functions, total 199 119 52 39 27 91%

∅ per function 14.2 8.5 3.7 2.8 1.9

∅ statements per 0.6 2.3 3.1 4.2

 Appendix B

source.c Lines Stmt. Calls CC Dp. Ex. As. Cover

show_source 31 24 3 5 1 6
√

1 functions, total 31 24 3 5 6 100%

∅ per function 31.0 24.0 3.0 5.0 6.0

∅ statements per 0.8 8.0 4.8 3.4

stmt.c Lines Stmt. Calls CC Dp. Ex. As. Cover

stmt_new 16 14 5 5
√

stmt_free 10 7 6 2 1
√

stmt_is_valid 8 1 1 5
√

stmt_get_filename 5 2 1 1
√

stmt_get_lineno 5 2 1 1
√

stmt_get_text 5 2 1 1
√

stmt_parse 9 6 5 2 1 83%

stmt_execute 13 7 6 3 1 1 57%

stmt_print 16 4 2 1 2 ⊗

9 functions, total 87 45 28 17 13 82%

∅ per function 9.7 5.0 3.1 1.9 1.4

∅ statements per 0.5 1.6 2.6 3.2

strstore.c Lines Stmt. Calls CC Dp. Ex. As. Cover

str_new 11 8 2 3
√

str_init 3 0 0
√

str_exit 12 8 2 2 1
√

str_hash 8 6 1 2
√

4 functions, total 34 22 5 6 3 100%

∅ per function 8.5 5.5 1.2 1.5 0.8

∅ statements per 0.6 4.4 3.7 5.5

symbol.c Lines Stmt. Calls CC Dp. Ex. As. Cover

symbol_new 25 22 8 2 7
√

symbol_exit 21 18 8 4 1 1
√

symbol_is_valid 4 1 1 2
√

symbol_lookup 9 7 1 3 1
√

symbol_has_entry 7 3 4 3 2 ⊗
symbol_lookup_entry 10 7 4 4 2

√

symbol_add_entry 36 23 13 6 1 7
√

symbol_get_dim 5 2 2 1 ⊗
symbol_get_iset 5 2 1 1

√

symbol_get_name 5 2 1 1
√

symbol_get_type 5 2 1 1
√

symbol_get_numb 7 4 2 3 ⊗
symbol_get_strg 7 4 2 3 ⊗
symbol_get_set 7 4 2 3 ⊗
symbol_get_var 7 4 2 3 ⊗

symbol_print 18 14 10 2 1 1 ⊗
symbol_print_all 7 5 1 2 1 ⊗

17 functions, total 185 124 63 36 38 66%

∅ per function 10.9 7.3 3.7 2.1 2.2

∅ statements per 0.7 2.0 3.4 3.2

Z Internals 

term.c Lines Stmt. Calls CC Dp. Ex. As. Cover

term_new 14 11 6 3
√

term_add_elem 20 14 8 2 1 7
√

term_free 12 10 7 2 1
√

term_copy 17 13 7 2 1 3
√

term_append_term 11 9 6 2 3
√

term_add_term 25 20 9 3 1 4
√

term_sub_term 26 21 10 3 1 4
√

term_add_constant 7 4 4 2
√

term_sub_constant 7 4 4 2
√

term_mul_coeff 19 13 8 4 1 2
√

term_get_constant 5 2 1 1
√

term_negate 6 3 4 1 ⊗
term_to_nzo 15 11 8 2 1 4

√

term_to_objective 14 10 8 2 1 3
√

term_get_elements 5 2 1 1
√

term_get_lower_bound 28 21 15 4 1 1 95%

term_get_upper_bound 28 21 15 4 1 1
√

term_is_all_integer 12 8 2 4 1 2
√

18 functions, total 271 197 123 40 43 88%

∅ per function 15.1 10.9 6.8 2.2 2.4

∅ statements per 0.7 1.6 4.9 4.5

tuple.c Lines Stmt. Calls CC Dp. Ex. As. Cover

tuple_new 17 13 4 2 4
√

tuple_free 16 12 5 4 1 2
√

tuple_is_valid 4 1 1 3
√

tuple_copy 7 4 1 1
√

tuple_cmp 27 19 8 7 2 3 3 68%

tuple_get_dim 5 2 1 1
√

tuple_set_elem 9 6 1 5
√

tuple_get_elem 9 5 1 4
√

tuple_combine 13 12 5 3 2 ⊗
tuple_print 12 8 5 3 1 1

√

tuple_hash 8 6 2 2
√

tuple_tostr 31 24 11 5 2 5 87%

12 functions, total 158 112 45 33 28 82%

∅ per function 13.2 9.3 3.8 2.8 2.3

∅ statements per 0.7 2.5 3.4 3.9

vinst.c Lines Stmt. Calls CC Dp. Ex. As. Cover

create_new_constraint 17 14 11 5
√

create_new_var_entry 22 19 19 5
√

check_how_fixed 34 21 12 13 1 ⊗
check_if_fixed 64 38 35 21 3 5 42%

handle_vbool_cmp 212 156 189 18 2 4 89%

i_vbool_ne 5 2 2
√

i_vbool_eq 5 2 2
√

i_vbool_lt 5 2 2
√

i_vbool_le 5 2 2
√

i_vbool_gt 5 2 2
√

(continued on next page)

 Appendix B

vinst.c (cont.) Lines Stmt. Calls CC Dp. Ex. As. Cover

i_vbool_ge 5 2 2
√

i_vbool_and 45 36 34 3
√

i_vbool_or 45 36 34 3
√

i_vbool_xor 52 42 40 3
√

i_vbool_not 34 27 22 2
√

gen_cond_constraint 50 33 25 13 2 1 91%

handle_vif_then_else 25 17 13 8 1 1
√

i_vif_else 24 19 15 1
√

i_vif 19 15 10 1
√

i_vabs 114 90 98 10 1 2 95%

20 functions, total 787 575 569 97 36 87%

∅ per function 39.4 28.8 28.4 4.8 1.8

∅ statements per 0.7 1.0 5.9 15.5

xlpglue.c Lines Stmt. Calls CC Dp. Ex. As. Cover

xlp_alloc 5 2 1 1
√

xlp_scale 4 1 1
√

xlp_write 5 2 1 1
√

xlp_transtable 5 2 1 1
√

xlp_orderfile 5 2 1 1
√

xlp_mstfile 5 2 1 1
√

xlp_free 5 2 1
√

xlp_stat 4 1 1 ⊗
xlp_conname_exists 5 2 1 1

√

xlp_addcon 37 25 13 5 1 5 96%

xlp_addvar 33 24 21 4 1 5 96%

xlp_getclass 5 2 1 1
√

xlp_getlower 19 13 9 2 1 1 92%

xlp_getupper 19 13 9 2 1 1
√

xlp_objname 5 2 1 1
√

xlp_setdir 4 1 1 2
√

xlp_addtonzo 26 19 12 3 1 3
√

xlp_addtocost 15 12 8 2
√

xlp_presolve 21 10 4 5 1 33%

19 functions, total 227 137 88 35 25 91%

∅ per function 11.9 7.2 4.6 1.8 1.3

∅ statements per 0.6 1.6 3.9 5.3

zimpl.c Lines Stmt. Calls CC Dp. Ex. As. Cover

add_extention 11 8 6 4
√

strip_path 8 5 2 2 2
√

strip_extension 18 14 4 8 1 2 85%

check_write_ok 8 3 3 2 1 50%

is_valid_identifier 11 6 2 5 2 1 83%

add_parameter 44 33 23 6 1 2 1 80%

main 247 173 77 49 3 1 70%

7 functions, total 347 242 117 73 11 74%

∅ per function 49.6 34.6 16.7 10.4 1.6

∅ statements per 0.7 2.1 3.3 20.2

Appendix C

Zimpl Programs

C. Facility location model with discrete link capacities

For the description of the model see Section . on page .
1 # *
2 # * *
3 # * F i l e : gwin . z p l *
4 # * Name : Th r ee l a y e r f a c i l i t y l o c a t i o n *
5 # * Author . . : T h o r s t e n Koch *
6 # * *
7 # *
8 s e t K : = { " T2 " , " T3 " , " T4 " , " T5 " } ;

9 s e t V : = { r ead " backbone . dat " as "<1 s >" comment " # " } ;

10 s e t W : = V ;

11 s e t U : = { r ead " nodes . dat " as "<1 s >" comment " # " } ;

12 s e t AUV : = { r ead " auv . dat " as "<1 s , 2 s >" comment " # " } ;

13 s e t AVW : = { < u , v > i n AUV w i th < u > i n V } ;

14 s e t AVWxK : = AVW * K ;

15

16 param capa [K] : = < " T2 " > 3 4 , < " T3 " > 1 5 5 , < " T4 " > 6 2 2 , < " T5 " > 2 4 0 0 ;

17 param c o s t [K] : = < " T2 " > 2 . 8 8 , < " T3 " > 6 . 2 4 , < " T4 " > 8 . 6 4 , < " T5 " > 1 0 . 5 6 ;

18 param cxuv [AUV] : = r ead " auv . dat " as "<1 s , 2 s > 3 n " comment " # " ;

19 param d i s t [AUV] : = r ead " auv . dat " as "<1 s , 2 s > 4 n " comment " # " ;

20 param cy [V] : = r ead " backbone . dat " as "<1 s > 2 n " comment " # " ;

21 param demand [U] : = r ead " nodes . dat " as "<1 s > 4 n " comment " # " ;

22 param m i n _ d i s t : = 5 0 ;

23

24 v a r xuv [AUV] b i n a r y ;

25 v a r xvw [AVWxK] b i n a r y ;

26 v a r yv [V] b i n a r y ;

27 v a r yw [W] b i n a r y ;

28

29 mi n i mi ze c o s t :

30 sum < u , v > i n AUV : cxuv [u , v] * xuv [u , v]

31 + sum < v , w , k > i n AVWxK : d i s t [v , w] * c o s t [k] * xvw [v , w , k]

32 + sum < v > i n V : cy [v] * yv [v]

33 + sum <w> i n W : cy [w] * yw [w] ;



 Appendix C

34

35 # A l l demand nodes have to be connected .

36 su b to c1 : f o r a l l < u > i n U do sum < u , v > i n AUV : xuv [u , v] = = 1 ;

37

38 # Demand nodes can o n l y be connected to a c t i v e backbone nodes .

39 su b to c2 : f o r a l l < u , v > i n AUV do xuv [u , v] < = yv [v] ;

40

41 # I f backbone nodes a r e a c t i v e th ey have to be connected to a c o r e

42 # node w i th a l i n k from one o f th e p o s s i b l e c a p a c i t i e s .

43 su b to c3 : f o r a l l < v > i n V do

44 sum < v , w , k > i n AVWxK : xvw [v , w , k] = = yv [v] ;

45

46 # Backbone nodes can o n l y be connected to a c t i v e c o r e nodes .

47 su b to c4 : f o r a l l < v , w> i n AVW do sum < k > i n K : xvw [v , w , k] < = yw [w] ;

48

49 # Backbone nodes t h a t a r e not i d e n t i c a l to a c o r e node have

50 # to be a t l e a s t m i n _ d i s t a p a r t .

51 su b to c5 :

52 f o r a l l < v , w , k > i n AVWxK w i th d i s t [v , w] < m i n _ d i s t and v ! = w do

53 xvw [v , w , k] = = 0 ;

54

55 # Each c o r e node i s connected to e x a c t l y t h r e e backbone nodes .

56 su b to c6 : f o r a l l <w> i n W do

57 sum < v , w , k > i n AVWxK : xvw [v , w , k] = = 3 * yw [w] ;

58

59 # We have ten c o r e nodes .

60 su b to c7 : sum <w> i n W : yw [w] = = 1 0 ;

61

62 # A c o r e node has to be a l s o a backbone node .

63 su b to c8 : f o r a l l <w> i n W : yw [w] < = yv [w] ;

64

65 # The c a p a c i t y o f th e l i n k from th e backbone to th e c o r e node

66 # must have s u f f i c i e n t c a p a c i t y .

67 su b to c9 : f o r a l l < v > i n V do

68 sum < u , v > i n AUV : demand [u] * xuv [u , v] < =

69 sum < v , w , k > i n AVWxK : capa [k] * xvw [v , w , k] ;

C. Facility location model with configurations

For the description of the model see Section  on page .
1 # *
2 # * *
3 # * F i l e : f a c i l i t y . z p l *
4 # * Name : F a c i l i t y l o c a t i o n w i th c o n f i g u r a t i o n s *
5 # * Author . . : T h o r s t e n Koch *
6 # * *
7 # *
8 s e t S : = { r ead " c f g . dat " as "<1 s >" comment " # " } ;

9 s e t U : = { r ead " bsc . dat " as "<1 s >" comment " # " } ;

10 s e t V : = { r ead " msc . dat " as "<1 s >" comment " # " } ;

11 s e t A : = { r ead " auv . dat " as "<1 s , 2 s >" comment " # " } ;

12 s e t VxS : = V * S ;

13

Z Programs 

14 v a r x [A] b i n a r y ;

15 v a r z [VxS] b i n a r y ;

16

17 param demand [U] : = r ead " bsc . dat " as "<1 s > 2 n " comment " # " ;

18 param kappa [S] : = r ead " c f g . dat " as "<1 s > 2 n " comment " # " ;

19 param cx [A] : = r ead " auv . dat " as "<1 s , 2 s > 3 n " comment " # " ;

20 param c z [S] : = r ead " c f g . dat " as "<1 s > 3 n " comment " # " ;

21

22 mi n i mi ze c o s t :

23 sum < u , v > i n A : cx [u , v] * x [u , v]

24 + sum < v , s > i n VxS : c z [s] * z [v , s] ;

25

26 # Each BSC has to be connected to e x a c t l y one MSC .

27 su b to c1 : f o r a l l < u > i n U do sum < u , v > i n A : x [u , v] = = 1 ;

28

29 # Each MSC has e x a c t l y one c o n f g u r a t i o n .

30 su b to c2 : f o r a l l < v > i n V do sum < v , s > i n VxS : z [v , s] = = 1 ;

31

32 # The c o n f i g u r a t i o n s a t th e MSC need to have enough

33 # c a p a c i t y to meet th e demands o f a l l connected l a y e r −1 nodes .

34 su b to c3 : f o r a l l < v > i n V do

35 sum < u , v > i n A : demand [u] * x [u , v]

36 − sum < v , s > i n VxS : kappa [s] * z [v , s] < = 0 ;

C. UMTS site selection

For the description of the model see Section .. on page .
1 # *
2 # * *
3 # * F i l e : s i t e s e l e c t . z p l *
4 # * Name : UMTS S i t e S e l e c t i o n *
5 # * Author . . : T h o r s t e n Koch *
6 # * *
7 # *
8 s e t SP : = { r ead " s i t e _ c o v e r . dat " as "<1n , 2 n >" comment " # " } ;

9 s e t S : = p r o j (SP , < 1 >) ;

10 s e t P : = p r o j (SP , < 2 >) ;

11 s e t SxS : = { r ead " s i t e _ i n t e r . dat " as "<1n , 2 n >" comment " # " } ;

12

13 param c z [SxS] : = r ead " s i t e _ i n t e r . dat " as "<1n , 2 n > 3 n " comment " # " ;

14

15 v a r x [S] b i n a r y ;

16 v a r z [SxS] b i n a r y ;

17

18 mi n i mi ze s i t e s :

19 sum < s > i n S : 1 0 0 * x [s]

20 + sum < s1 , s2 > i n SxS : c z [s1 , s2] * z [s1 , s2] ;

21

22 # Each p i x e l has to be c over ed .

23 su b to c1 : f o r a l l < p > i n P do sum < s , p > i n SP : x [s] > = 1 ;

24

25 # Mark s i t e s i n t e r f e r i n g w i th each o t h e r .

26 su b to c2 : f o r a l l < i , j > i n SxS do z [i , j] − x [i] − x [j] > = −1 ;

 Appendix C

C. UMTS azimuth setting

For the description of the model see Section .. on page .
1 # *
2 # * *
3 # * F i l e : az i mu th . z p l *
4 # * Name : UMTS Azimuth S e l e c t i o n *
5 # * Author . . : T h o r s t e n Koch *
6 # * *
7 # *
8 s e t A : = { r ead " a r c s . dat " as "<1n , 2 n >" comment " # " } ;

9 s e t C : = { r ead " i n t e r . dat " as "<1n , 2 n , 3 n , 4 n >" comment " # " } ;

10 s e t F : = { r ead " an gl e . dat " as "<1n , 2 n , 3 n , 4 n >" comment " # " } ;

11 s e t S : = p r o j (A , < 1 >) ;

12

13 param c o s t [A] : = r ead " a r c s . dat " as "<1n , 2 n > 3 n " comment " # " ;

14 param c e l l s [S] : = r ead " c e l l s . dat " as "<1n > 2 n " comment " # " ;

15 param an gl e [F] : = r ead " an gl e . dat "

16 as "<1n , 2 n , 3 n , 4 n > 5 n " comment " # " ;

17 v a r x [A] b i n a r y ;

18 v a r y [F] b i n a r y ;

19 v a r z [C] b i n a r y ;

20

21 mi n i mi ze c o s t :

22 sum < i , j > i n A : (c o s t [i , j] / 1 0) ^ 2 * x [i , j]

23 + sum < i , j ,m, n > i n F : (an gl e [i , j ,m, n] / 1 0) ^ 2 * y [i , j ,m, n]

24 + sum < i , j ,m, n > i n C : 2 0 0 * z [i , j ,m, n] ;

25

26 # Each s i t e s has c e l l s [s] c e l l s .

27 su b to c1 : f o r a l l < s > i n S do sum < s , i > i n A : x [s , i] = = c e l l s [s] ;

28

29 # Only one d i r e c t i o n al l ow ed , i to j or j to i or n e i t h e r .

30 su b to c2 : f o r a l l < i , j > i n A w i th i < j do x [i , j] + x [j , i] < = 1 ;

31

32 # Mark i n t e r f e r i n g a n g l e s .

33 su b to c3 : f o r a l l < i , j ,m, n > i n F do

34 y [i , j ,m, n] − x [i , j] − x [m, n] > = −1 ;

35

36 # Mark beams t h a t c r o s s each o t h e r

37 su b to c4 : f o r a l l < i , j ,m, n > i n C do

38 z [i , j ,m, n] − x [i , j] − x [m, n] > = −1 ;

C. UMTS snapshot model

For the description of the model see Section .. on page .
1 # *
2 # * *
3 # * T h i s f i l e i s p a r t o f th e t o o l s e t *
4 # * s c h n a p p f i s c h −−− UMTS Snapshot G e n e r a t o r and E v a l u a t o r *
5 # * *
6 # * C o p y r i g h t (C) 2 0 0 2 T h o r s t e n Koch *
7 # * 2002 A t e s i o GmbH *

Z Programs 

8 # * 2002 Konrad−Zuse−Zentrum *
9 # * f u e r I n f o r m a t i o n s t e c h n i k B e r l i n *

10 # * 2002 T e c h n i s c h e ä U n i v e r s i t t Dar mstadt *
11 # * *
12 # *
13 s e t S : = { r ead " s i t e s . dat " as "<1 s >" comment " # " } ;

14 s e t I : = { r ead " i n s t a l l a t i o n s . dat " as "<1 s >" comment " # " } ;

15 s e t M : = { r ead " mob i l es . dat " as "<1 s >" comment " # " } ;

16 s e t C : = { r ead " u s e r c l a s s . dat " as "<1 s >" comment " # " } ;

17 s e t IM : = I * M;

18

19 param m i n _ i n s t [S] : = r ead " s i t e s . dat " as "<1 s > 2 n " ;

20 param max _i n st [S] : = r ead " s i t e s . dat " as "<1 s > 3 n " ;

21 param a t t e n _ d l [IM] : = r ead " a t t e n u a t i o n . dat " as "<1 s , 2 s > 3 n " ;

22 param a t t e n _ u l [IM] : = r ead " a t t e n u a t i o n . dat " as "<1 s , 2 s > 4 n " ;

23 param orthogo [IM] : = r ead " a t t e n u a t i o n . dat " as "<1 s , 2 s > 5 n " ;

24 param p m i n _ p i l o t [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 4 n " ;

25 param p max _p i l ot [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 5 n " ;

26 param p m i n _ l i n k [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 6 n " ;

27 param p max _l i n k [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 7 n " ;

28 param pmax_down [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 8 n " ;

29 param code_budget [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 9 n " ;

30 param a t _ s i t e [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 2 s " ;

31 param n o i s e _ i [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 3 n " ;

32 param c c h f _ i [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 10 n " ;

33 param m a x _ n r i s e _ i [I] : = r ead " i n s t a l l a t i o n s . dat " as "<1 s > 11 n " ;

34 param snap [M] : = r ead " mob i l es . dat " as "<1 s > 2n " ;

35 param u s e r c l a s s [M] : = r ead " mob i l es . dat " as "<1 s > 3 s " ;

36 param noise_m [M] : = r ead " mob i l es . dat " as "<1 s > 4n " ;

37 param pmin_up [M] : = r ead " mob i l es . dat " as "<1 s > 5n " ;

38 param pmax_up [M] : = r ead " mob i l es . dat " as "<1 s > 6n " ;

39 param a c t i v i t y _ u l [M] : = r ead " mob i l es . dat " as "<1 s > 7n " ;

40 param a c t i v i t y _ d l [M] : = r ead " mob i l es . dat " as "<1 s > 8n " ;

41 param c ode_l en gth [M] : = r ead " mob i l es . dat " as "<1 s > 9n " ;

42 param m i n _ r s c p _ p i l o t [M] : = r ead " mob i l es . dat " as "<1 s > 10 n " ;

43 param c i r _ p i l o t [M] : = r ead " mob i l es . dat " as "<1 s > 11 n " ;

44 param c i r _ u p [M] : = r ead " mob i l es . dat " as "<1 s > 12 n " ;

45 param c i r _dow n [M] : = r ead " mob i l es . dat " as "<1 s > 13 n " ;

46 param c o v e r _ t a r g e t [C] : = r ead " u s e r c l a s s . dat " as "<1 s > 2 n " ;

47 param u s e r s [C] : = r ead " u s e r c l a s s . dat " as "<1 s > 3 n " ;

48

49 s e t D : = { 0 to max <m> i n M : snap [m] } ;

50 s e t I D : = I * D ;

51

52 param p i _ s c a l e [< i , d > i n I D] : =

53 max <m> i n M w i th snap [m] = = d : a t t e n _ u l [i ,m] * a c t i v i t y _ u l [m] ;

54

55 param s e r v i c e a b l e [< i ,m> i n IM] : =

56 i f (a t t e n _ d l [i ,m] * p max _p i l ot [i] > = c i r _ p i l o t [m] * noise_m [m]

57 and a t t e n _ d l [i ,m] * p max _p i l ot [i] > = m i n _ r s c p _ p i l o t [m])

58 then 1 e l s e 0 end ;

59

60 param demand [< d , c > i n D * C] : =

61 sum <m> i n M w i th snap [m] = = d and u s e r c l a s s [m] = = c

 Appendix C

62 and (max < i > i n I : s e r v i c e a b l e [i ,m]) = = 1 : 1 ;

63

64 v a r s [S] b i n a r y ;

65 v a r z [I] b i n a r y ;

66 v a r u [M] b i n a r y ;

67 v a r x [< i ,m> i n IM] i n t e g e r < = s e r v i c e a b l e [i ,m] ;

68

69 v a r pu [<m> i n M] r e a l < = pmax_up [m] ;

70 v a r pd [< i ,m> i n IM] r e a l < = p max _l i n k [i] ;

71 v a r pp [< i > i n I] r e a l < = p max _p i l ot [i] ;

72 v a r p t [< i , d > i n I D] r e a l < = pmax_down [i] ;

73 v a r p i [< i , d > i n I D] r e a l ;

74 v a r bod i n t e g e r < = c a r d (M) ;

75

76 mi n i mi ze c o s t :

77 sum < k > i n S : 1 0 0 0 * s [k]

78 + sum < i > i n I : 1 0 0 * z [i]

79 + sum <m> i n M : 1 0 0 0 * u [m]

80 + 5 0 0 * bod

81 + sum < i ,m> i n IM : −1 * x [i ,m]

82 + sum <m> i n M : 0 . 1 * pu [m]

83 + sum < i ,m> i n IM : 0 . 2 * pd [i ,m]

84 + sum < i > i n I : 0 . 0 5 * pp [i]

85 + sum < i , d > i n I D : 0 . 1 * p t [i , d] ;

86

87 # Only a c t i v e s i t e s can have i n s t a l l a t i o n s .

88 su b to c1 : f o r a l l < i > i n I do z [i] − s [a t _ s i t e [i]] < = 0 ;

89

90 # Th er e may be s i t e s which have a minimum number o f c e l l s .

91 su b to c2a : f o r a l l < k > i n S do

92 sum < i > i n I w i th a t _ s i t e [i] = = k : z [i] > = m i n _ i n s t [k] ;

93

94 # The number o f i n s t a l l a t i o n s p er s i t e i s l i m i t e d .

95 su b to c2b : f o r a l l < k > i n S do

96 sum < i > i n I w i th a t _ s i t e [i] = = k : z [i] < = max _i n st [k] ;

97

98 # Only a c t i v e i n s t a l l a t i o n s may s e r v e mob i l es .

99 su b to c3 : f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1 do

100 x [i ,m] − z [i] < = 0 ;

101

102 # Count th e u n ser ved mob i l es .

103 su b to c4 : f o r a l l <m> i n M do

104 u [m] + sum < i > i n I w i th s e r v i c e a b l e [i ,m] = = 1 : x [i ,m] = = 1 ;

105

106 # Count b l oc ked or dropped mob i l es p er sn ap sh ot .

107 su b to c4a : f o r a l l < d > i n D do

108 sum <m> i n M w i th snap [m] = = d : u [m] − bod < = 0 ;

109

110 # Only a l i m i t e d number o f codes i s a v a i l a b l e .

111 su b to c5 : f o r a l l < i , d > i n I D do

112 sum <m> i n M w i th snap [m] = = d and s e r v i c e a b l e [i ,m] = = 1 :

113 1 / c ode_l en gth [m] * x [i ,m] − code_budget [i] * z [i] < = 0 ;

114

115 # E v e r y s e r v e d mobile e m i t s a minimum power .

Z Programs 

116 su b to c6a : f o r a l l <m> i n M do

117 pu [m] + pmin_up [m] * u [m] > = pmin_up [m] ;

118

119 # Max power a l s o i s l i m i t e d .

120 su b to c6b : f o r a l l <m> i n M do

121 pu [m] + pmax_up [m] * u [m] < = pmax_up [m] ;

122

123 # R e c e i v e d power (i n t e r f e r e n c e) a t base s t a t i o n .

124 su b to c7a : f o r a l l < i , d > i n I D do

125 sum <m> i n M w i th snap [m] = = d and s e r v i c e a b l e [i ,m] = = 1 :

126 a t t e n _ u l [i ,m] * a c t i v i t y _ u l [m] * pu [m]

127 − p i _ s c a l e [i , d] * p i [i , d] = = 0 , s c a l e ;

128

129 # L i m i t n o i s e r i s e f o r a c t i v e i n s t a l l a t i o n s .

130 su b to c7b : f o r a l l < i , d > i n I D do

131 + p i _ s c a l e [i , d] * p i [i , d]

132 + sum <m> i n M w i th snap [m] = = d and s e r v i c e a b l e [i ,m] = = 1 :

133 a t t e n _ u l [i ,m] * a c t i v i t y _ u l [m] * pmax_up [m] * z [i]

134 <= n o i s e _ i [i] * (m a x _ n r i s e _ i [i] − 1)

135 + sum <m> i n M w i th snap [m] = = d and s e r v i c e a b l e [i ,m] = = 1 :

136 a t t e n _ u l [i ,m] * a c t i v i t y _ u l [m] * pmax_up [m] , s c a l e ;

137

138 # C I R u p l i n k .

139 su b to c8 : f o r a l l < i > i n I do

140 f o r a l l < d > i n D do

141 f o r a l l <m> i n M w i th snap [m] = = d

142 and s e r v i c e a b l e [i ,m] = = 1 do

143 − (a t t e n _ u l [i ,m] / c i r _ u p [m]) * pu [m]

144 + p i _ s c a l e [i , d] * p i [i , d]

145 − a t t e n _ u l [i ,m] * a c t i v i t y _ u l [m] * pu [m]

146 + n o i s e _ i [i] * x [i ,m]

147 + sum < n > i n M w i th n ! = m and snap [n] = = d :

148 a t t e n _ u l [i , n] * a c t i v i t y _ u l [n] * pmax_up [n] * x [i ,m]

149 <= sum < n > i n M w i th n ! = m and snap [n] = = d :

150 a t t e n _ u l [i , n] * a c t i v i t y _ u l [n] * pmax_up [n] , s c a l e ;

151

152 # Min and max dow n l i n k power must be used i f mobi le i s s e r v e d .

153 su b to c9a : f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1 do

154 p m i n _ l i n k [i] * x [i ,m] − pd [i ,m] < = 0 ;

155

156 su b to c9b : f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1 do

157 p max _l i n k [i] * x [i ,m] − pd [i ,m] > = 0 ;

158

159 # Min and max p i l o t power must be used i f i n s t a l l a t i o n i s used .

160

161 su b to c10a : f o r a l l < i > i n I do p m i n _ p i l o t [i] * z [i] − pp [i] < = 0 ;

162 su b to c10b : f o r a l l < i > i n I do p max _p i l ot [i] * z [i] − pp [i] > = 0 ;

163

164 # L i m i t th e maximum power p er i n s t a l l a t i o n .

165 su b to c11a : f o r a l l < i , d > i n I D do

166 (1 . 0 + c c h f _ i [i]) * pp [i]

167 + sum <m> i n M w i th snap [m] = = d and s e r v i c e a b l e [i ,m] = = 1 :

168 a c t i v i t y _ d l [m] * pd [i ,m] − p t [i , d] = = 0 ;

169

 Appendix C

170 su b to c11b : f o r a l l < i , d > i n I D do

171 p t [i , d] − pmax_down [i] * z [i] < = 0 ;

172

173 # C I R dow n l i n k .

174 su b to c12 : f o r a l l < i > i n I do

175 f o r a l l < d > i n D do

176 f o r a l l <m> i n M w i th snap [m] = = d

177 and s e r v i c e a b l e [i ,m] = = 1 do

178 − (a t t e n _ d l [i ,m] / c i r _dow n [m]) * pd [i ,m]

179 + orthogo [i ,m] * a t t e n _ d l [i ,m] * p t [i , d]

180 − orthogo [i ,m] * a t t e n _ d l [i ,m] * a c t i v i t y _ d l [m] * pd [i ,m]

181 + sum < j > i n I w i th j ! = i : a t t e n _ d l [j ,m] * p t [j , d]

182 + orthogo [i ,m] * a t t e n _ d l [i ,m] * pmax_down [i] * x [i ,m]

183 + sum < j > i n I w i th j ! = i :

184 a t t e n _ d l [j ,m] * pmax_down [j] * x [i ,m]

185 + noise_m [m] * x [i ,m]

186 <= orthogo [i ,m] * a t t e n _ d l [i ,m] * pmax_down [i]

187 + sum < j > i n I w i th j ! = i :

188 a t t e n _ d l [j ,m] * pmax_down [j] , s c a l e ;

189

190 # C I R P i l o t .

191 su b to c13 : f o r a l l < i > i n I do

192 f o r a l l < d > i n D do

193 f o r a l l <m> i n M w i th snap [m] = = d

194 and s e r v i c e a b l e [i ,m] = = 1 do

195 − (a t t e n _ d l [i ,m] / c i r _ p i l o t [m]) * pp [i]

196 + sum < j > i n I : a t t e n _ d l [j ,m] * p t [j , d]

197 − a t t e n _ d l [i ,m] * pp [i]

198 + sum < j > i n I : a t t e n _ d l [j ,m] * pmax_down [j] * x [i ,m]

199 + noise_m [m] * x [i ,m]

200 <= sum < j > i n I : a t t e n _ d l [j ,m] * pmax_down [j] , s c a l e ;

201

202 # Minimum P i l o t RSCP .

203 su b to c14 : f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1 do

204 a t t e n _ d l [i ,m] * pp [i] − m i n _ r s c p _ p i l o t [m] * x [i ,m] > = 0 , s c a l e ;

205

206 # Coverage r e q u i r e m e n t .

207 su b to c15 : f o r a l l < d , c > i n D * C do

208 sum <m> i n M w i th snap [m] = = d and u s e r c l a s s [m] = = c

209 and (max < i > i n I : s e r v i c e a b l e [i ,m]) = = 1 : u [m]

210 <= f l o o r ((1 − c o v e r _ t a r g e t [c]) * demand [d , c]) ;

211

212 # MIR−c u t based on u p l i n k C I R t a r g e t i n e q u a l i t y .

213 su b to c 8s : f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1 do

214 + 1 * x [i ,m] − a t t e n _ u l [i ,m]

215 * (1 / c i r _ u p [m] + a c t i v i t y _ u l [m]) / n o i s e _ i [i] * pu [m]

216 < = 0 , s c a l e ;

217

218 # MIR−c u t based on dow n l i n k C I R t a r g e t i n e q u a l i t y .

219 su b to c 12s : f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1 do

220 + 1 * x [i ,m] − a t t e n _ d l [i ,m]

221 * (1 / c i r _dow n [m] + orthogo [i ,m] * a c t i v i t y _ d l [m])

222 / noise_m [m] * pd [i ,m] < = 0 , s c a l e ;

223

Z Programs 

224 # H e u r i s t i c b e s t s e r v e r .

225 su b to h1 :

226 f o r a l l < i ,m> i n IM w i th s e r v i c e a b l e [i ,m] = = 1

227 and a t t e n _ u l [i ,m] * pmax_up [m]

228 <= c i r _ u p [m] * m a x _ n r i s e _ i [i] * n o i s e _ i [i] do

229 x [i ,m] < = 0 ;

230

231 # Dominance c r i t e r i o n .

232 su b to d1 : f o r a l l <m> i n M do

233 f o r a l l < n > i n M w i th n ! = m and snap [n] = = snap [m]

234 and a c t i v i t y _ u l [n] > = a c t i v i t y _ u l [m]

235 and a c t i v i t y _ d l [n] > = a c t i v i t y _ d l [m]

236 and c i r _ u p [n] > = c i r _ u p [m] and c i r _dow n [n] > = c i r _dow n [m]

237 and pmax_up [n] < = pmax_up [m] do

238 f o r a l l < i > i n I w i th s e r v i c e a b l e [i , n] = = 1

239 and a t t e n _ u l [i ,m] * pmin_up [m]

240 <= c i r _ u p [m] * (a t t e n _ u l [i , n] * a c t i v i t y _ u l [n]

241 * pmin_up [n] + n o i s e _ i [i])

242 and a t t e n _ d l [i , n] < a t t e n _ d l [i ,m]

243 and a t t e n _ u l [i , n] < a t t e n _ u l [i ,m] do

244 x [i , n] − sum < k > i n I w i th s e r v i c e a b l e [k ,m] = = 1

245 and a t t e n _ d l [k ,m] > = a t t e n _ d l [i ,m]

246 and a t t e n _ u l [k ,m] > = a t t e n _ u l [i ,m]

247 do x [k ,m] < = 0 ;

C. Steiner tree packing

For the description of the model see Section .. on page .
1 # *
2 # * *
3 # * F i l e : s tp 3d . z p l *
4 # * Name : S t e i n e r T r e e P a c k i n g *
5 # * Author . . : T h o r s t e n Koch *
6 # * *
7 # *
8 s e t Par ameter : = { " nodes " , " n e t s " } ;

9 param p ar ameter [Par ameter] : =

10 r ead " param . dat " as "<1 s > 2 n " comment " # " ;

11

12 s e t L : = { 1 . . p ar ameter [" n e t s "] } ; # N ets

13 s e t V : = { 1 . . p ar ameter [" nodes "] } ; # Nodes

14 s e t S : = { r ead " ter ms . dat " as "<1n >" comment " # " } ; # Terms+ R oots

15 s e t R : = { r ead " r o o t s . dat " as "<1n >" comment " # " } ; # R oots

16 s e t A : = { r ead " a r c s . dat " as "<1n , 2 n >" comment " # " } ;

17 s e t T : = S − R ; # o n l y Terms

18 s e t N : = V − S ; # Normal

19

20 param i n n e t [S] : = r ead " ter ms . dat " as "<1n > 2 n " comment " # " ;

21 param c o s t [A] : = r ead " a r c s . dat " as "<1n , 2 n > 3 n " comment " # " ;

22

23 v a r y [A * T] b i n a r y ;

24 v a r x [A * L] b i n a r y ;

25

 Appendix C

26 mi n i mi ze ob j : sum < i , j , k > i n A * L : c o s t [i , j] * x [i , j , k] ;

27

28 # For a l l r o o t s f l o w out .

29 su b to c1a : f o r a l l < t > i n T do

30 f o r a l l < r > i n R do

31 sum < r , j > i n A : y [r , j , t] = =

32 i f i n n e t [r] = = i n n e t [t] then 1 e l s e 0 end ;

33

34 # For a l l r o o t s f l o w i n .

35 su b to c1b : f o r a l l < t > i n T do

36 f o r a l l < r > i n R do sum < j , r > i n A : y [j , r , t] = = 0 ;

37

38 # For a l l t e r m i n a l s f l o w out .

39 su b to c2a : f o r a l l < t > i n T do

40 sum < t , j > i n A : y [t , j , t] = = 0 ;

41

42 # For a l l t e r m i n a l s i n t h e i r own n et : one f l o w i n .

43 su b to c2b : f o r a l l < t > i n T do

44 sum < j , t > i n A : y [j , t , t] = = 1 ;

45

46 # For a l l t e r m i n a l s i n th e same n et : i n e q u a l s out .

47 su b to c2c : f o r a l l < t > i n T do

48 f o r a l l < s > i n T w i th s ! = t and i n n e t [s] = = i n n e t [t] do

49 sum < j , s > i n A : (y [j , s , t] − y [s , j , t]) = = 0 ;

50

51 # For a l l t e r m i n a l s i n a d i f f e r e n t n et : z e r o f l o w .

52 su b to c2d : f o r a l l < t > i n T do

53 f o r a l l < s > i n T w i th i n n e t [s] ! = i n n e t [t] do

54 sum < j , s > i n A : (y [j , s , t] + y [s , j , t]) = = 0 ;

55

56 # For normal nodes : f l o w b a l a n c e .

57 su b to c3 : f o r a l l < t > i n T do

58 f o r a l l < n > i n N do sum < n , i > i n A : (y [n , i , t] − y [i , n , t]) = = 0 ;

59

60 # Bi n d x to y .

61 su b to c4 : f o r a l l < t > i n T do

62 f o r a l l < i , j > i n A do y [i , j , t] < = x [i , j , i n n e t [t]] ;

63

64 # Only one x can be a c t i v e p er a r c .

65 su b to c5 : f o r a l l < i , j > i n A w i th i < j do

66 sum < k > i n L : (x [i , j , k] + x [j , i , k]) < = 1 ;

67

68 # For a normal node o n l y one incomming a r c can be a c t i v e .

69 su b to c6 : f o r a l l < n > i n N do

70 sum < j , n , k > i n A * L : x [j , n , k] < = 1 ;

Appendix D

Steiner Tree Packing Instances

The first three numbers of each line describe the x, y, and z-position of a node. If there

is a fourth number, the node is a terminal and the number designates the network the

node belongs to. If there is no fourth number, the node is blocked. If the z-position is

omitted, the node is blocked in all layers.

sb--d

1 1 1 13
1 2 1 1
1 4 1 13
1 4 1 28
1 7 1 27
1 8 1 29
1 9 1 5
1 10 1 8
1 12 1 18
1 13 1 15
1 14 1 11
1 15 1 17
1 16 1 24
1 17 1 5
1 20 1 28

1 21 1 23
1 23 1 1
1 24 1 3
1 26 1 12
1 27 1 21
1 28 1 14
1 29 1 10
2 1 1 2
2 31 1 18
3 31 1 29
4 1 1 2
4 31 1 27
6 1 1 27
6 31 1 25
7 31 1 17

8 1 1 28
8 31 1 16
9 1 1 26
9 31 1 7

10 1 1 2
11 1 1 29
11 31 1 5
12 1 1 26
12 31 1 9
13 1 1 6
13 31 1 4
14 31 1 22
15 1 1 20
15 31 1 9
16 31 1 20

17 1 1 22
17 31 1 14
19 31 1 25
20 1 1 23
20 31 1 7
21 1 1 12
21 31 1 24
22 1 1 17
22 31 1 23
23 1 1 9
23 31 1 16
24 1 1 6
26 1 1 24
28 31 1 1
29 1 1 21

30 1 1 11
30 31 1 13
31 1 1 18
31 3 1 25
31 4 1 19
31 5 1 4
31 7 1 10
31 8 1 16
31 9 1 22
31 10 1 11
31 11 1 8
31 12 1 26
31 13 1 3
31 14 1 15
31 16 1 4

31 17 1 21
31 20 1 15
31 21 1 6
31 22 1 8
31 23 1 19
31 24 1 19
31 25 1 3
31 27 1 14
31 28 1 12
31 29 1 20
31 30 1 7
31 31 1 10

sb--

1 1 1 6
1 2 1 3
1 3 1 4
1 4 1 2
1 5 1 6
1 6 1 7
1 7 1 1
1 8 1 5
1 9 1 1
1 10 1 5
1 11 1 7
1 12 1 2
1 13 1 1

1 14 1 5
1 15 1 2
1 16 1 1
1 17 1 5
1 18 1 2
1 19 1 7
1 20 1 3
1 21 1 7
2 1 1 4
2 21 1 4
3 1 1 7
3 21 1 4
4 1 1 6

4 21 1 5
5 1 1 5
5 21 1 5
6 1 1 5
6 21 1 7
7 1 1 1
7 21 1 1
8 1 1 5
8 21 1 2
9 1 1 3
9 21 1 4

10 1 1 4
10 21 1 5

11 1 1 4
11 21 1 2
12 1 1 1
12 21 1 6
13 1 1 1
13 21 1 2
14 1 1 3
14 21 1 3
15 1 1 3
15 21 1 7
16 1 1 1
16 21 1 6
17 1 1 3

17 21 1 3
18 1 1 2
18 21 1 6
19 1 1 7
19 21 1 3
20 1 1 6
20 21 1 6
21 1 1 6
21 2 1 7
21 3 1 4
21 4 1 3
21 5 1 7
21 7 1 4

21 8 1 2
21 10 1 6
21 11 1 6
21 12 1 1
21 13 1 3
21 14 1 4
21 15 1 4
21 16 1 2
21 17 1 5
21 18 1 2
21 19 1 1
21 21 1 7



 Appendix D

dense-

7 1 2 1
15 13 1 1
7 17 2 1
1 9 1 1

13 1 2 2
15 7 1 2
1 7 1 2
3 1 2 3

15 11 1 3
8 17 2 3

1 10 1 3
14 1 2 4
15 16 1 4
1 16 1 4
4 1 2 5
4 17 2 5
1 14 1 5
2 1 2 6

15 6 1 6
9 17 2 6

9 1 2 7
15 14 1 7
6 17 2 7
6 1 2 8
15 10 1 8
5 17 2 8
10 1 2 9
15 17 1 9
1 17 1 9
8 1 2 10

15 9 1 10
11 17 2 10
1 8 1 10

15 15 1 11
12 17 2 11
1 15 1 11

15 8 1 12
1 5 1 12
5 1 2 13

15 12 1 13

13 17 2 13
1 12 1 13

11 1 2 14
15 4 1 14
1 4 1 14

15 5 1 15
15 17 2 15
1 3 1 15
1 1 2 16

12 1 2 16

15 1 1 16
3 17 2 17
1 13 1 17
2 17 2 18
1 11 1 18

15 1 2 19
15 2 1 19
1 17 2 19
1 2 1 19

taq-

5 12 1 1
8 24 1 1

15 12 1 1
20 12 1 1
23 11 1 1
23 24 1 1
5 25 1 2

10 12 1 2
25 12 1 2
8 11 1 3

15 25 1 3
4 14 1 4
9 1 1 4
9 14 1 5

10 25 1 5
13 11 1 6
13 24 1 6
14 1 1 7
14 14 1 7
18 1 1 8
18 11 1 8
18 24 1 9
19 14 1 9
20 25 1 10
24 14 1 10
25 2 1 11
25 25 1 11
11 1 1 12
25 1 1 12
1 9 1 12

25 19 1 13
4 24 1 13
1 22 1 13
3 11 1 14
3 24 1 14
3 8
3 9
3 10
3 12
3 13
3 15
3 16

3 17
3 18
3 21
3 22
3 23
5 8
5 9
5 10
5 11
5 13
5 15
5 16
5 17
5 18
5 21
5 22
5 23
5 24
6 8
6 9
6 10
6 11
6 12
6 13
6 15
6 16
6 17
6 18
6 21
6 22
6 23
6 24
8 2
8 3
8 4
8 5
8 8
8 9
8 10
8 12
8 13
8 15

8 16
8 17
8 18
8 21
8 22
8 23
9 21
9 22
9 23
9 24
10 2
10 3
10 4
10 5
10 8
10 9
10 10
10 11
10 13
10 15
10 16
10 17
10 18
11 2
11 3
11 4
11 5
11 8
11 9
11 10
11 11
11 12
11 13
11 15
11 16
11 17
11 18
11 21
11 22
11 23
11 24
13 2

13 3
13 4
13 5
13 8
13 9
13 10
13 12
13 13
13 15
13 16
13 17
13 18
13 21
13 22
13 23
15 2
15 3
15 4
15 5
15 8
15 9
15 10
15 11
15 13
15 15
15 16
15 17
15 18
15 21
15 22
15 23
15 24
16 2
16 3
16 4
16 5
16 8
16 9
16 10
16 11
16 12
16 13

16 15
16 16
16 17
16 18
16 21
16 22
16 23
16 24
18 3
18 4
18 5
18 8
18 9
18 10
18 12
18 13
18 15
18 16
18 17
18 18
18 21
18 22
18 23
19 3
19 4
19 5
20 3
20 4
20 5
20 8
20 9
20 10
20 11
20 13
20 15
20 16
20 17
20 18
20 21
20 22
20 23
20 24

21 3
21 4
21 5
21 8
21 9
21 10
21 11
21 12
21 13
21 15
21 16
21 17
21 18
21 21
21 22
21 23
21 24
22 3
22 4
22 5
23 3
23 4
23 5
23 8
23 9
23 10
23 12
23 13
23 15
23 16
23 17
23 18
23 21
23 22
23 23
24 3
24 4
24 5

Steiner Tree Packing Instances 

alue-

4 9 1 1
9 22 1 1
7 9 1 2

17 22 1 2
10 23 1 3
15 23 1 3
25 23 1 3
14 22 1 4
24 22 1 4
2 11 1 5
5 10 1 5
5 12 1 5

10 25 1 5
15 25 1 5
19 11 1 5
5 1 1 0

25 5 1 2
3 25 1 6
3 1 1 6
4 25 1 7
4 1 1 7
5 25 1 8
5 1 1 8
6 25 1 9
6 1 1 9
7 25 1 10
7 1 1 10

19 22 1 11
1 4 1 11

20 23 1 12
14 4 1 12
20 25 1 13
1 11 1 13

22 22 1 14
8 2 1 14

24 11 1 15
19 4 1 15
1 5 1 15
3 20 1 15

25 10 1 16

12 1 1 16
25 25 1 17
16 1 1 17
6 17 1 17
16 6 1 18
3 14 1 18
1 3 1 19
14 18 1 19
18 2 1 20
8 14 1 20
22 1 1 21
18 15 1 21
6 12 1 21
2 22 1 22
12 22 1 22
2 6
2 7
2 8
2 9
2 10
2 12
2 13
2 14
2 15
2 16
2 17
2 18
2 19
2 20
2 21
2 23
2 24
4 6
4 7
4 8
4 10
4 11
4 13
4 14
4 15

4 16
6 6
6 7
6 8
6 9
6 10
6 11
6 13
6 14
6 15
6 16
7 6
7 7
7 8
7 10
7 11
7 13
7 14
7 15
7 16
9 2
9 3
9 19
9 20
9 21
9 23
9 24

10 2
10 3
11 2
11 3
11 19
11 20
11 21
11 22
11 23
11 24
12 19
12 20
12 21

12 23
12 24
13 2
13 3
14 2
14 3
14 19
14 20
14 21
14 23
14 24
15 2
15 3
16 19
16 20
16 21
16 22
16 23
16 24
17 2
17 3
17 19
17 20
17 21
17 23
17 24
19 2
19 3
19 6
19 7
19 8
19 9
19 12
19 13
19 14
19 15
19 16
19 19
19 20
19 21

19 23
19 24
20 6
20 7
20 8
20 9
20 11
20 12
20 13
20 14
20 15
20 16
21 2
21 3
21 6
21 7
21 8
21 9
21 11
21 12
21 13
21 14
21 15
21 16
21 19
21 20
21 21
21 22
21 23
21 24
22 2
22 3
22 6
22 7
22 8
22 9
22 11
22 12
22 13
22 14

22 15
22 16
22 19
22 20
22 21
22 23
22 24
23 2
23 3
23 6
23 7
23 8
23 9
23 11
23 12
23 13
23 14
23 15
23 16
24 2
24 3
24 6
24 7
24 8
24 9
24 12
24 13
24 14
24 15
24 16
24 19
24 20
24 21
24 23
24 24

terminalintensive-

23 4 1 1
14 16 2 1
1 16 2 1
1 6 1 1
1 2 1 1

18 1 2 2
21 1 2 2
18 16 2 2
1 7 1 2
3 1 2 3

19 1 2 3
23 13 1 3
1 9 1 3

23 1 2 4
23 2 1 4
23 5 1 4
20 16 2 4
1 15 1 4
4 1 2 5
4 16 2 5
1 13 1 5
2 1 2 6
9 1 2 6
7 16 2 6
7 1 2 7
13 16 2 7

6 16 2 7
6 1 2 8
5 16 2 8

10 1 2 9
10 16 2 9
9 16 2 9
1 16 1 9
8 1 2 10

11 16 2 10
8 16 2 10
1 8 1 10

23 16 1 11
19 16 2 11

16 16 2 11
1 14 1 11

23 9 1 12
23 16 2 12
1 5 1 12
5 1 2 13

12 16 2 13
1 11 1 13

11 1 2 14
1 4 1 14

13 1 2 15
1 3 1 15
1 1 2 16

12 1 2 16
15 1 2 16
23 1 1 16
15 16 2 16
3 16 2 17
1 12 1 17
2 16 2 18
1 10 1 18

22 1 2 19
23 7 1 19
23 11 1 19
23 15 1 19
22 16 2 19

14 1 2 20
20 1 2 20
23 3 1 20
17 1 2 21
23 6 1 21
23 8 1 21
16 1 2 22
23 10 1 22
23 14 1 23
21 16 2 23
23 12 1 24
17 16 2 24

 Appendix D

difficult-

23 4 1 1
14 15 2 1
1 15 2 1
1 6 1 1

18 1 2 2
21 1 2 2
18 15 2 2
1 7 1 2
3 1 2 3

19 1 2 3
23 13 1 3

1 9 1 3
23 2 1 4
1 15 1 4
4 1 2 5
4 15 2 5
1 13 1 5
9 1 2 6
7 15 2 6
7 1 2 7
6 15 2 7
6 1 2 8

5 15 2 8
10 1 2 9
9 15 2 9
8 1 2 10
11 15 2 10
8 15 2 10
1 8 1 10
16 15 2 11
1 14 1 11
23 9 1 12
1 5 1 12

5 1 2 13
12 15 2 13
1 11 1 13

11 1 2 14
1 4 1 14

13 1 2 15
1 3 1 15
1 1 2 16

12 1 2 16
14 1 2 16
23 1 1 16

15 15 2 16
13 15 2 16
3 15 2 17
1 12 1 17
2 15 2 18
1 10 1 18

22 1 2 19
23 7 1 19
23 11 1 19
23 15 1 19
22 15 2 19

20 1 2 20
23 3 1 20
17 1 2 21
23 6 1 21
23 8 1 21
16 1 2 22
23 10 1 22
23 14 1 23
21 15 2 23
23 12 1 24
17 15 2 24

modifieddense-

7 1 2 1
16 13 1 1
7 17 2 1
1 9 1 1

14 1 2 2
16 7 1 2
1 7 1 2
3 1 2 3

16 11 1 3
8 17 2 3

1 10 1 3
15 1 2 4
16 16 1 4
1 16 1 4
4 1 2 5
4 17 2 5
1 14 1 5
2 1 2 6

16 6 1 6
9 17 2 6

9 1 2 7
16 14 1 7
6 17 2 7
6 1 2 8
16 10 1 8
5 17 2 8
11 1 2 9
16 17 1 9
1 17 1 9
8 1 2 10

16 9 1 10
12 17 2 10
1 8 1 10

16 15 1 11
13 17 2 11
1 15 1 11

16 8 1 12
1 5 1 12
5 1 2 13

16 12 1 13

14 17 2 13
1 12 1 13

12 1 2 14
16 4 1 14
1 4 1 14

16 5 1 15
16 17 2 15
1 3 1 15
1 1 2 16

13 1 2 16

16 1 1 16
3 17 2 17
1 13 1 17
2 17 2 18
1 11 1 18

16 1 2 19
16 2 1 19
1 17 2 19
1 2 1 19

moredifficult-

22 4 1 1
14 15 2 1
1 15 2 1
1 6 1 1

18 1 2 2
21 1 2 2
18 15 2 2
1 7 1 2
3 1 2 3

19 1 2 3
22 13 1 3

1 9 1 3
22 2 1 4
1 15 1 4
4 1 2 5
4 15 2 5
1 13 1 5
9 1 2 6
7 15 2 6
7 1 2 7
6 15 2 7
6 1 2 8

5 15 2 8
10 1 2 9
9 15 2 9
8 1 2 10
11 15 2 10
8 15 2 10
1 8 1 10
16 15 2 11
1 14 1 11
22 9 1 12
1 5 1 12

5 1 2 13
12 15 2 13
1 11 1 13

11 1 2 14
1 4 1 14

13 1 2 15
1 3 1 15
1 1 2 16

12 1 2 16
14 1 2 16
22 1 1 16

15 15 2 16
13 15 2 16
3 15 2 17
1 12 1 17
2 15 2 18
1 10 1 18

22 1 2 19
22 7 1 19
22 11 1 19
22 15 2 19
20 1 2 20

22 3 1 20
17 1 2 21
22 6 1 21
22 8 1 21
16 1 2 22
22 10 1 22
22 14 1 23
21 15 2 23
22 12 1 24
17 15 2 24

pedabox-

1 16 2 1
1 14 1 1
1 15 1 2
1 12 1 2

15 15 1 2
9 1 2 2
7 1 2 3

15 13 1 3
3 16 2 3

15 2 1 3

1 1 2 4
14 16 2 4
3 1 2 5
1 3 1 5

15 3 1 5
15 7 1 6
1 5 1 6

10 1 2 7
1 10 1 7

12 16 2 7

1 4 1 8
15 5 1 8
4 16 2 9
1 16 1 9
8 1 2 10
1 8 1 10
1 6 1 10
2 1 2 11
1 11 1 11
11 1 2 12

7 16 2 12
6 1 2 13
1 9 1 13

15 4 1 13
15 6 1 13
15 8 1 14
13 1 2 14
12 1 2 15
15 9 1 15
15 1 2 16

15 16 2 16
4 1 2 17
1 2 1 17
5 1 2 18
1 1 1 18
5 16 2 19
2 16 2 19

15 16 1 19
9 16 2 19

15 14 1 20

13 16 2 20
15 12 1 21
10 16 2 21
8 16 2 21
6 16 2 22

15 11 1 22

Steiner Tree Packing Instances 

augmenteddense-

7 1 2 1
16 13 1 1
7 18 2 1
1 9 1 1

13 1 2 2
16 7 1 2
1 7 1 2
3 1 2 3

16 11 1 3
8 18 2 3

1 10 1 3
14 1 2 4
16 16 1 4
1 16 1 4
4 1 2 5
4 18 2 5
1 14 1 5
2 1 2 6
16 6 1 6
9 18 2 6

9 1 2 7
16 14 1 7
6 18 2 7
6 1 2 8

16 10 1 8
5 18 2 8

10 1 2 9
16 17 1 9
1 17 1 9
8 1 2 10

16 9 1 10
11 18 2 10
1 8 1 10

16 15 1 11
12 18 2 11
1 15 1 11

16 8 1 12
1 5 1 12
5 1 2 13

16 12 1 13

13 18 2 13
1 12 1 13

11 1 2 14
16 4 1 14
1 4 1 14

16 5 1 15
15 18 2 15
1 3 1 15
1 1 2 16

12 1 2 16

16 1 1 16
3 18 2 17
1 13 1 17
2 18 2 18
1 11 1 18

15 1 2 19
16 2 1 19
1 18 2 19
1 2 1 19

gr--

9 2 1 1
9 4 1 1
5 9 1 1
1 3 1 1
1 8 1 1
3 1 1 2
4 1 1 2

9 1 1 2
1 5 1 2
9 5 1 3
4 9 1 3
8 9 1 3
1 9 1 3
9 3 1 4

9 6 1 4
9 9 1 4
7 6 1 4
1 1 1 5
5 1 1 5
1 4 1 5
9 7 1 6

2 9 1 6
1 7 1 6
2 1 1 7
8 1 1 7
1 2 1 7
4 6 1 7
6 9 1 8

7 9 1 8
7 1 1 8
3 9 1 8
9 8 1 8
5 4 1
5 5 1
5 6 1

6 4 1
6 5 1
6 6 1

sb-

1 1 1 55
1 2 1 15
1 3 1 48
1 5 1 29
1 6 1 39
1 7 1 22
1 8 1 16
1 9 1 42
1 10 1 13
1 11 1 19
1 13 1 15
1 16 1 4
1 19 1 43
1 21 1 12
1 22 1 32
1 23 1 29
1 24 1 21
1 25 1 36
1 26 1 54

1 27 1 38
1 28 1 51
1 29 1 56
1 32 1 18
1 33 1 8
1 34 1 24
1 35 1 18
1 36 1 27
1 38 1 40
1 40 1 12
2 1 1 31
3 1 1 6
4 1 1 40
4 41 1 5
5 1 1 49
5 41 1 2
6 1 1 46
7 1 1 1
7 41 1 48

8 1 1 42
8 41 1 7
9 1 1 27
9 41 1 39

10 1 1 30
10 41 1 56
11 1 1 23
11 41 1 3
12 1 1 54
12 41 1 14
13 1 1 7
13 41 1 10
16 41 1 45
17 41 1 8
18 1 1 11
19 1 1 14
19 41 1 20
20 1 1 53
20 41 1 36

21 41 1 44
22 1 1 37
22 41 1 55
23 41 1 37
24 1 1 35
24 41 1 33
25 1 1 53
25 41 1 26
26 1 1 35
26 41 1 23
27 1 1 47
28 1 1 5
28 41 1 32
29 1 1 52
29 41 1 16
30 1 1 11
31 41 1 22
33 1 1 38
33 41 1 1

34 41 1 4
35 1 1 30
35 41 1 41
36 1 1 28
36 41 1 45
37 1 1 13
37 41 1 17
38 1 1 19
38 41 1 28
40 1 1 44
40 41 1 10
41 1 1 49
41 2 1 3
41 3 1 50
41 6 1 9
41 7 1 51
41 8 1 31
41 9 1 50
41 11 1 2

41 12 1 33
41 13 1 25
41 15 1 24
41 16 1 26
41 21 1 43
41 22 1 34
41 23 1 17
41 26 1 41
41 28 1 6
41 30 1 46
41 34 1 34
41 35 1 9
41 36 1 52
41 37 1 20
41 39 1 25
41 40 1 47
41 41 1 21

List of Figures

. Modeling cycle according to Schichl () 

. “Effort vs. effect” . 

.  file format example . 

. Computing exact  solutions . 

. Tree of code-nodes . 

. C-function to determine floating-point precision 

. Polyhedron defined by ()-() . 

. Part of the call graph from the n-queens problem 

. Linear approximation of the Erlang to channel function 

. Layered graph with N = 4 . 

. Instable solution . 

. Cost depending on the distance per Mbit/s 

. Demands of G-WiN locations . 

. Results for the G-WiN access network planning. 

. Results for the  location planning 

. Switching network . 

. Cost function depending on distance and channels 

. Solution for regions Salzburg and Upper Austria 

. Solution for regions Tyrol and Vorarlberg 

. Solution for regions Carinthia and Styria 

. Solution for regions Vienna, Burgenland, and Lower Austria 

. Program structure . 

. Results with bee-line vs. transport network distances 

. Unexpected result with transport network distances 

. Antenna installation . 

. Pathloss predictions . 

. Antenna diagrams . 

. Tripled horizontal  diagram . 

. Pathloss change depending on distance 



 List of Figures

. Pathloss change depending on tilt . 

. Pathloss change depending on height and tilt 

. Site distances in Berlin . 

. Discretization jitter . 

. Comparison of - and  pathloss predictions 

. Site selection . 

. Optimal azimuth in a regular hexagonal grid 

. Azimuth optimization . 

. Snapshot evaluation for Lisbon . 

. Pilot coverage . 

. Pilot separation . 

. Downlink cell load . 

. Load loss / interference coupling . 

.  routing variations . 

.  intersection models . 

.  modeling taxonomy . 

. Manhattan one-layer vs. Node disjoint two-aligned-layer 

. Number of layers needed to route a Knock-knee one-layer solution . . . 

. The central node violates (.) . 

. Critical cut in the edge disjoint and node disjoint case 

. Grid inequalities . 

. Node disjoint three-aligned-layer solutions 

. gr-- . 

. sb- . 

. sb--d . 

. sb-- . 

. taq- . 

. alue- . 

List of Tables

. Modeling languages . 

. Results of solving the root relaxation of instances from - . . . 

. Z options . 

. Rational arithmetic functions . 

. Double precision functions . 

. Set related functions . 

. Indexed set functions . 

. Platforms Z compiles and runs on 

. Performance of hash functions . 

. Standard floating-point format parameters 

. Mantissa bits p in floating-point computations 

. Comparison of Z versions. 

. Total account of Z source code statistics 

. Statistics by function . 

. Number of  kbit/s channels depending on traffic in Erlang 

. G-WiN solution . 

. Scenario parameters . 

. Results of the  location planning . 

. Size of computational regions . 

. Different names, same mathematics . 

. Comparison of - and  pathloss predictions 

. Azimuth optimization . 

. Comparison of performance indicators 

. Comparison of  settings used . 

. Solving the root relaxation of alue- . 

.  instances . 

. Results for the Knock-knee-one-layer model 

. Results for the node disjoint multi-aligned-layer model (part ) 

. Results for the node disjoint multi-aligned-layer model (part ) 



Bibliography

Programming and Software

A. V. Aho, R. Sethi, and J. D. Ullman. Compiler Design: Principles, Techniques, and Tools. Addison-

Wesley, .

A. V. Aho and J. D. Ullman. Foundations of Computer Science. Freeman and Company, .

K. Beck. Extreme Programming. Addison-Wesley, .

K. Beck. Test-Driven Development. Addison-Wesley, .

J. Bentley. More Programming Perls. Addison-Wesley, .

J. Bentley. Programming Perls. Addison-Wesley, .

F. P. Brooks. The Mythical Man-Month. Addison-Wesley, anniversary edition, .

I. F. Darwin. Checking C Programs with lint. O’Reilly&Associates, .

S. C. Dewhurst. C++ Gotchas. Addison-Wesley, .

D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM

Computing Surveys, ():–, .

A. I. Holub. Compiler Design in C. Prentice Hall, .

S. C. Johnson. Yacc – yet another compiler-compiler. Technical Report Computer Science #,

Bell Laboratories, Murray Hill, New Jersey, .

S. H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley, nd edition,

.

B. W. Kernighan and R. Pike. The UNIX Programming Environment. Prentice Hall, .

B. W. Kernighan and R. Pike. The Practise of Programming. Addison-Wesley, .

D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume . Addison-

Wesley, nd edition, a.

D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume . Addison-Wesley,

nd edition, b.



 Bibliography

M. E. Lesk. Lex – a lexical analyzer generator. Technical Report Computer Science #, Bell

Laboratories, Murray Hill, New Jersey, .

J. R. Levine, T. Mason, and D. Brown. lex & yacc. O’Reilly&Associates, nd edition, .

D. Libes. Obfuscated C and other Mysteries. Wiley, .

S. A. Maguire. Writing Solid Code. Mircosoft Press, .

B. Meyer. Eiffel: The Language. Prentice Hall, .

S. Meyers. More Effective C++. Addison-Wesley, .

S. Meyers. Effective C++. Addison-Wesley, nd edition, .

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cam-

bridge University Press, nd edition, .

A. T. Schreiner and G. Friedman. Compiler bauen mit UNIX. Hanser, .

R. Sedgewick. Algorithms. Addison-Wesley, nd edition, .

M. Shepperd. Foundations of Software Measurement. Prentice Hall, .

H. Sutter. Exceptional C++. Addison-Wesley, .

H. Sutter. More Exceptional C++. Addison-Wesley, .

A. S. Tanenbaum. Modern Operating Systems. Pearson Education, .

P. van der Linden. Expert C Programming. Prentice Hall, .

A. H. Watson and T. J. McCabe. Structured testing: A testing methodology using the cyclomatic

complexity metric. Technical Report -, Computer Systems Laboratory, National Insti-

tute of Standards and Technology, Gaithersburg, USA, .

H. Zuse. History of software measurement.

http://irb.cs.tu-berlin.de/˜zuse/metrics/3-hist.html, .

Mathematical Programming

E. D. Andersen and K. D. Andersen. Presolve in linear programming. Mathematical Programming,

:–, .

E. Balas and C. Martin. Pivot and complement – a heuristic for / programming. Management

Science, :–, .

E. Balas, S. Schmietab, and C. Wallacea. Pivot and shift – a mixed integer programming heuristic.

Discrete Optimization, :–, .

J. Bisschop and A. Meeraus. On the development of a general algebraic modeling system in a

strategic planning environment. Mathematical Programming Study, :–, .

Mathematical Programming 

R. E. Bixby. Solving real-world linear programs: A decade and more of progress. Operations

Research, ():–, .

R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory and practice –

closing the gap. In M. J. D. Powell and S. Scholtes, editors, System Modelling and Optimization:

Methods, Theory and Applications. Kluwer, .

R. E. Bixby and D. K. Wagner. A note on detecting simple redundancies in linear systems. Oper-

ation Research Letters, ():–, .

A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming problems

prior to applying the simplex algorithm. Mathematical Programming, :–, .

M. R. Bussieck and A. Meeraus. General algebraic modeling system (GAMS). In J. Kallrath, editor,

Modeling Languages in Mathematical Optimization, pages –. Kluwer, .

V. Chvátal. Linear Programming. H.W. Freeman, New York, .

K. Cunningham and L. Schrage. The LINGO algebraic modeling language. In J. Kallrath, editor,

Modeling Languages in Mathematical Optimization, pages –. Kluwer, .

G. B. Dantzig. The diet problem. Interfaces, :–, .

S. Elhedhli and J.-L. Goffin. The integration of an interior-point cutting plane method within a

branch-and-price algorithm. Mathematical Programming, :–, .

R. Fourer and D. M. Gay. Experience with a primal presolve algorithm. In W. W. Hager, D. Hearn,

and P. Pardalos, editors, Large Scale Optimization: State of the Art, pages –. Kluwer, .

R. Fourer and D. M. Gay. Numerical issues and influences in the design of algebraic modeling

languages for optimization. In D. F. Griffiths and G. Watson, editors, Proceedings of the th Bi-

ennial Conference on Numerical Analysis, number Report NA/ in Numerical Analysis, pages

–. University of Dundee, .

R. Fourer, D. M. Gay, and B. W. Kernighan. A modelling language for mathematical program-

ming. Management Science, ():–, .

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modelling Language for Mathematical

Programming. Brooks/Cole—Thomson Learning, nd edition, a.

R. Fourer, L. B. Lopes, and K. Martin. LPFML: A WC XML schema for linear programming.

Technical report, Department of Industrial Engineering and Management Sciences, North-

western University, b. Information available at http://gsbkip.uchicago.edu/fml.

M. Gay. Electronic mail distribution of linear programming test problems. Mathemat-

ical Programming Society COAL Bulletin no. , pages –, . Data available at

http://www.netlib.org/netlib/lp.

J. Gondzio. Presolve analysis of linear programs prior to applying an interior point method.

INFORMS Journal on Computing, ():–, .

J. Gondzio and A. Grothey. Reoptimization with the primal-dual interior point method. SIAM

Journal on Optimization, ():–, .

 Bibliography

T. Hürlimann. The LPL modeling language. In J. Kallrath, editor, Modeling Languages in Mathe-

matical Optimization, pages –. Kluwer, .

J. Kallrath. Mathematical optimization and the role of modeling languages. In J. Kallrath, editor,

Modeling Languages in Mathematical Optimization, pages –. Kluwer, a.

J. Kallrath, editor. Modeling Languages in Mathematical Optimization. Kluwer, b.

T. Koch. The final NETLIB-LP results. Operations Research Letters, :–, .

A. Martin. Integer programs with block structure. Habilitations-Schrift, Technische Universität

Berlin, Fachbereich Mathematik, .

C. Mészàros and U. H. Suhl. Advanced preprocessing techniques for linear and quadratic pro-

gramming. OR Spectrum, :–, .

F. Plastria. Formulating logical implications in combinatorial optimization. European Journal of

Operational Research, :–, .

M. W. P. Savelsbergh. Preprocessing and probing for mixed integer programming problems.

ORSA Journal on Computing, pages –, .

H. Schichl. Models and the history of modeling. In J. Kallrath, editor, Modeling Languages in

Mathematical Optimization, pages –. Kluwer, .

K. Spielberg. The optimization systems MPSX and OSL. In J. Kallrath, editor, Modeling Languages

in Mathematical Optimization, pages –. Kluwer, .

J. A. Tomlin and J. S. Welch. Formal optimization of some reduced linear programming problems.

Mathematical Programming, :–, .

J. A. Tomlin and J. S. Welch. Finding duplicate rows in a linear programming model. Operations

Research Letters, ():–, .

H. P. Williams and S. C. Brailsford. Computational logic and integer programming. In J. E.

Beasley, editor, Advances in Linear and Integer Programming, pages –. Oxford University

Press, .

R. Wunderling. Paralleler und objektorientierter Simplex. Technical Report TR -, Konrad-

Zuse-Zentrum Berlin, .

Telecommunications

K. Aardal, M. Labbé, J. Leung, and M. Queyranne. On the two-level uncapacitated facility location

problem. INFORMS Journal on Computing, ():–, .

E. Amaldi, A. Capone, and F. Malucelli. Planning UMTS base station location: Optimization

models with power control and algorithms. IEEE Transactions on Wireless Communication,

():–, a.

E. Amaldi, A. Capone, F. Malucelli, and F. Signori. UMTS radio planning: Optimizing base station

configuration. In Proceedings of IEEE VTC Fall , volume , pages –. .

Telecommunications 

E. Amaldi, A. Capone, F. Malucelli, and F. Signori. Optimizing base station location and configu-

ration in UMTS networks. In Proceedings of INOC , pages –. b.

A. Balakrishnan, T. L. Magnanti, and R. T. Wong. A decomposition algorithm for local access

telecommunication network expansion planning. Operations Research, ():–, .

C. A. Balanis. Antenna Theory: Analysis and Design. Wiley, .

N. D. Bambos, S. C. Chen, and G. J. Pottie. Radio link admission algorithms for wireless networks

with power control and active link quality protection. IEEE, pages –, .

H. L. Bertoni. Radio Progation for Modern Wireless Applications. Prentice Hall, .

D. Bienstock and O. Günlück. Capacitated network design—polyhedral structure and computa-

tion. INFORMS Journal on Computing, ():–, .

A. Bley. A Lagrangian approach for integrated network design and routing in IP networks. In

Proceedings of International Network Optimization Conference (INOC ), Evry/Paris, France,

, pages –. .

A. Bley and T. Koch. Optimierung des G-WiN. DFN-Mitteilungen, pages –, .

A. Bley, T. Koch, and R. Wessäly. Large-scale hierarchical networks: How to compute an optimal

hierarchy? In H. Kaindl, editor, Networks : th International Telecommunications Network

Strategy and Planning Symposium, June -, , Vienna, Austria - Proceedings, pages –

. VDE Verlag, .

E. Brockmeyer, H. Halstrom, and A. Jensen. The life and works of A. K. Erlang. Academy of

Technical Sciences, Copenhagen, .

A. Eisenblätter, A. Fügenschuh, E. Fledderus, H.-F. Geerdes, B. Heideck, D. Junglas, T. Koch,

T. Kürner, and A. Martin. Mathematical methods for automatic optimization of UMTS radio

networks. Technical Report D., IST-- MOMENTUM, a.

A. Eisenblätter, A. Fügenschuh, H.-F. Geerdes, D. Junglas, T. Koch, and A. Martin. Optimization

methods for UMTS radio network planning. In Operation Research Proceedings , pages

–. Springer, b.

A. Eisenblätter, H.-F. Geerdes, D. Junglas, T. Koch, T. Kürner, and A. Martin. Final report on

automatic planning and optimisation. Technical Report D., IST-- MOMENTUM,

c.

A. Eisenblätter, H.-F. Geerdes, T. Koch, A. Martin, and R. Wessäly. UMTS radio network eval-

uation and optimization beyond snapshots. Technical Report –, Konrad-Zuse-Zentrum

Berlin, .

A. Eisenblätter, H.-F. Geerdes, T. Koch, and U. Türke. Describing UMTS radio networks using

XML. Technical Report IST---MOMENTUM-XML-PUB, MOMENTUM, d.

A. Eisenblätter, H.-F. Geerdes, T. Koch, and U. Türke. MOMENTUM public planning scenarios

and their XML format. Technical Report TD() , COST , Prague, Czech Republic, e.

 Bibliography

A. Eisenblätter, T. Koch, A. Martin, T. Achterberg, A. Fügenschuh, A. Koster, O. Wegel, and

R. Wessäly. Modelling feasible network configurations for UMTS. In G. Anandalingam and

S. Raghavan, editors, Telecommunications Network Design and Management. Kluver, f.

I. Gamvros and S. R. B. Golden. An evolutionary approach to the multi-level capacitated mini-

mum spanning tree problem. In G. Anandalingam and S. Raghavan, editors, Telecommunica-

tions Network Design and Management. Kluver, .

H.-F. Geerdes, E. Lamers, P. Lourenço, E. Meijerink, U. Türke, S. Verwijmeren, and T. Kürner.

Evaluation of reference and public scenarios. Technical Report D., IST-- MO-

MENTUM, .

N. Geng and W. Wiesbeck. Planungsmethoden für die Mobilkommunikation. Springer, .

F. Gil, A. R. Claro, J. M. Ferreira, C. Pardelinha, and L. M. Correia. A -D interpolation method for

base-station antenna radiation patterns. IEEE Antenna and Propagation Magazine, ():–

, .

L. Hall. Experience with a cutting plane algorithm for the capacitated spanning tree problem.

INFORMS Journal on Computing, ():–, .

H. Holma and A. Toskala. WCDMA for UMTS. Wiley, .

K. Holmberg and D. Yuan. A Lagrangian heuristic based branch-and-bound approach for the

capacitated network design problem. Operations Research, ():–, .

S. Jakl, A. Gerdenitsch, W. Karner, and M. Toeltsch. Analytical algorithms for base station param-

eter settings in UMTS networks. Technical Report COST  TD(), Institut für Nachrich-

tentechnik und Hochfrequenztechnik, Technische Universität Wien, .

T. Kürner. Propagation models for macro-cells. In Digital Mobile Radio towards Future Generation

Systems, pages –. COST Telecom Secretariat, .

R. Mathar and M. Schmeink. Optimal base station positioning and channel assignment for G

mobile networks by integer programming. Annals of Operations Research, :–, .

P. Mirchandani. The multi-tier tree problem. INFORMS Journal on Computing, ():–,

.

M. J. Nawrocki and T. W. Wieckowski. Optimal site and antenna location for UMTS – output

results of G network simulation software. Journal of Telecommunications and Information

Technology, .

K. Park, K. Lee, S. Park, and H. Lee. Telecommunication node clustering with node compatibility

and network survivability requirements. Managment Science, ():–, .

S. Qiao and L. Qiao. A robuts and efficient algorithm for evaluating Erlang B formula, .

http://www.dcss.mcmaster.ca/˜qiao/publications/erlang.ps.Z.

B. Rakoczi, E. R. Fledderus, B. Heideck, P. Lourenço, and T. Kürner. Reference scenarios. Techni-

cal Report D., IST-- MOMENTUM, .

S. R. Saunders. Antennas and Propagation for Wireless Communication Systems. Wiley, .

Steiner Trees and VLSI Layout 

K. Sipilä, J. Laiho-Steffens, A. Wacker, and M. Jäsberg. Modeling the impact of the fast power

control on the WCDMA uplink. In IEEE VTS Proceedings of Vehicular Technology Conference,

pages –. Huston, .

R. Wessäly. DImensioning Survivable Capacitated NETworks. Ph.D. thesis, Technische Universität

Berlin, .

R. M. Whitaker and S. Hurley. Evolution of planning for wireless communication systems. In

Proceedings of HICSS’. IEEE, Big Island, Hawaii, .

Steiner Trees and VLSI Layout

C. Boit. Personal communication. .

M. L. Brady and D. J. Brown. VLSI routing: Four layers suffice. In F. P. Preparata, editor, Advances

in Computing Research: VLSI theory, volume , pages –. Jai Press, London, .

M. Burstein and R. Pelavin. Hierachical wire routing. IEEE Transactions on computer-aided design,

:–, .

S. Chopra. Comparison of formulations and a heuristic for packing Steiner trees in a graph.

Annals of Operations Research, :–, .

J. P. Coohoon and P. L. Heck. BEAVER: A computational-geometry-based tool for switchbox

routing. IEEE Transactions on computer-aided design, :–, .

M. Grötschel, M. Jünger, and G. Reinelt. Via Minimization with Pin Preassignments and Layer

Preference. ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik, ():–,

.

M. Grötschel, A. Martin, and R. Weismantel. Packing Steiner trees: A cutting plane algorithm and

computational results. Mathematical Programming, :–, a.

M. Grötschel, A. Martin, and R. Weismantel. Packing Steiner trees: Further facets. European

Journal of Combinatorics, :–, b.

M. Grötschel, A. Martin, and R. Weismantel. Packing Steiner trees: Polyhedral investigations.

Mathematical Programming, :–, c.

M. Grötschel, A. Martin, and R. Weismantel. The Steiner tree packing problem in VLSI design.

Mathematical Programming, ():–, .

D. G. Jørgensen and M. Meyling. Application of column generation techniques in VLSI design.

Master’s thesis, Department of Computer Science, University of Copenhagen, .

M. Jünger, A. Martin, G. Reinelt, and R. Weismantel. Quadratic / optimization and a decompo-

sition approach for the placement of electronic circuits. Mathematical Programming, :–

, .

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, :–

, .

 Bibliography

B. Korte, H.-J. Prömel, and A. Steger. Steiner trees in VLSI-layout. In B. Korte, L. Lovász, H.-J.

Prömel, and A. Schrijver, editors, Paths, Flows, and VLSI-Layout. Springer, .

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley, .

W. Lipski. On the structure of three-layer wireable layouts. In F. P. Preparata, editor, Advances in

Computing Research: VLSI theory, volume , pages –. Jai Press, London, .

W. K. Luk. A greedy switch-box router. Integration, :–, .

A. Martin. Packen von Steinerbäumen: Polyedrische Studien und Anwendungen. Ph.D. thesis,

Technische Universität Berlin, .

T. Polzin. Algorithms for the Steiner Problem in Networks. Ph.D. thesis, Universität des Saarlandes,

.

R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical

Programming, :–, .

Miscellaneous

D. Applegate, R. E. Bixby, V. Chvátal, and W. Cook. Concord – combinatorial optimization

and networked combinatorial optimization research and development environment. .

http://www.math.princeton.edu/tsp/concorde.html.

R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering. Ph.D. thesis, Technische Univer-

sität Berlin, .

J. Borwein and D. Bailey. Mathematics by Experiment. A K Peters, .

S. Chopra and M. R. Rao. The partition problem. Mathematical Programming, ():–, .

V. Chvátal. A farmer’s daughter in our midst: An interview with Vašek Chvátal. .

http://www.cs.rutgers.edu/˜mcgrew/Explorer/1.2/#Farmers.

G. Dueck. Mathematik, fünfzehnprozentig. DMV-Mitteilungen, pages –, .

C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. Formulations and valid

inequalities for the node capacitated graph partitioning problem. Mathematical Programming,

:–, .

C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey. The node capacitated

graph partitioning problem: A computational study. Mathematical Programming, :–,

.

M. R. Garey and D. S. Johnson. Computers and Intractability. H.W. Freeman, New York, .

G. C. F. Greve. Brave GNU World. Linux Magazin, pages –, .

M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning polytope. Mathematical Pro-

gramming, ():–, .

Miscellaneous 

D. S. Johnson. A theoretician’s guide to the experimental analysis of algorithms. In M. H. Gold-

wasser, D. S. Johnson, and C. C. McGeoch, editors, Data Structures, Near Neighbor Searches,

and Methodology: Fifth and Sixth DIMACS Implementation Challenges, volume  of DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, pages –. American

Mathematical Society, .

F. Ortega and L. A. Wolsey. A branch-and-cut algorithm for the single-commodity, uncapacitated,

fixed-charge network flow problem. Networks, ():–, .

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, :–, .

A. Schrijver. Combinatorial Optimization. Springer, .

R. Sosič and J. Gu. ,, million queens in less than a minute. SIGART Bulletin, ():–,

.

P. Wessel and W. H. F. Smith. The generic mapping tools (GMT), version .. . Code and

documentation available at http://gmt.soest.hawaii.edu.

	Introduction
	Three steps to solve a problem
	Mathematical workbench
	Modeling Language with out-of-the-box solver
	Framework
	Doing it all yourself

	What's next?

	I Design and Implementation
	The Zimpl Modeling Language
	Introduction
	Invocation
	Format
	Expressions
	Sets
	Parameters
	Variables
	Objective
	Constraints
	Details on sum and forall
	Details on if in constraints
	Initializing sets and parameters from a file
	Function definitions
	Extended constraints
	Extended functions
	The do print and do check commands

	Modeling examples
	The diet problem
	The traveling salesman problem
	The capacitated facility location problem
	The n-queens problem

	Further developments

	Implementing Zimpl
	Notes on software engineering
	Zimpl overview
	The parser
	BISON as parser generator
	Reserved words
	Type checking

	Implementation of sets
	Implementation of hashing
	Arithmetic
	Floating-point arithmetic
	Rational arithmetic

	Extended modeling
	Boolean operations on binary variables
	Conditional execution

	The history of Zimpl
	Quality assurance and testing
	Regression tests
	Software metrics
	Statistics
	Program checking tools

	II Applications
	Facility Location Problems in Telecommunications
	Traffic
	Erlang linearization
	Switching network vs. transport network

	A linear mixed integer model for hierarchical multicommoditycapacitated facility location problems
	Planning the access network for the G-WiN
	Planning mobile switching center locations
	Planning fixed network switching center locations
	Demands and capacities
	Costs
	Model
	Results

	Conclusion

	MOMENTUM
	UMTS radio interface planning
	Coverage or how to predict pathloss
	How much freedom do the choices give us?

	Capacity or how to cope with interference
	The CIR inequality
	Assumptions and simplifications
	Cell load
	Pathloss revisited
	Assessment

	Models
	Site selection
	Azimuth (and a little tilting)
	Snapshots

	Practice
	Conclusion
	Acknowledgements

	Steiner Tree Packing Revisited
	Introduction
	Integer programming models
	Undirected partitioning formulation
	Multicommodity flow formulation
	Comparison of formulations

	Valid inequalities
	Computational results
	Choosing the right LP solver algorithm
	Results for the Knock-knee one-layer model
	Results for the node disjoint multi-aligned-layer model

	Outlook

	Perspectives

	Appendix
	Notation
	Decibel explained

	Zimpl Internals
	The grammar of the Zimpl parser
	Detailed function statistics

	Zimpl Programs
	Facility location model with discrete link capacities
	Facility location model with configurations
	UMTS site selection
	UMTS azimuth setting
	UMTS snapshot model
	Steiner tree packing

	Steiner Tree Packing Instances
	List of Figures
	List of Tables
	Bibliography

