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Introduction 
Recently a rapid imaging method was proposed [1] that exploits 
the fact that sparse or compressible signals, such as MR images, 
can be recovered from randomly under-sampled frequency data 
[1,2,3]. Because pure random sampling in 2D is impractical for 
MRI hardware, it was proposed to use randomly perturbed 
spirals to approximate random sampling. Indeed, pure 2D 
random sampling is impractical, however, randomly under-
sampling the phase encodes in a 3D Cartesian scan (Fig. 1) is 
practical, involves no overhead, is simple to implement and is 
purely random in two dimensions. Moreover, scan-time 
reduction in 3D Cartesian scans is always an issue. We provide a 
method to evaluate the effective randomness of a randomly 
under-sampled trajectory by analyzing the statistics of aliasing 
in the sparse transform domain. Applying this method to MR 
angiography, where images are truly sparse, we demonstrate a 5-
fold scan time reduction, which can be crucial in time-limited 
situations or can be used for time resolved imaging 
Theory  
Medical images in general, and specifically angiograms, often 
have a sparse representation using a linear transform (wavelets, 
DCT, finite differences, etc.)[1]. Under-sampling the Fourier 
domain results in aliasing. When the under-sampling is random, 
the aliasing is incoherent and acts as additional noise 
interference in the image, but more importantly, as incoherent 
interference of the sparse transform coefficients. Therefore, it is 
possible to recover the sparse transform coefficients using a 
non-linear reconstruction scheme [1-4] and consequently, 
recover the image itself. The interference in the sparse domain is 
a generalization of a point-spread function (PSF) and is 
computed by I(n,m)=<Sig(xn),Sig(xm)> where xn is the nth 
transform coefficient, and Sig{xn} is the normalized projection of 
the transform coefficient onto the under-sampled Fourier space. 
The success of the reconstruction will depend on the sparsity of 
the coefficients and that the interference I(n,m) be small and 
have random statistics [2,3]. The interference can be used as a 
design criteria or a test for a practical randomly under-sampled 
trajectory. As an example, we analyzed the statistics of the 
interference of wavelet coefficients (See Fig. 2), leading to a 
conclusion that for images sparsified by wavelets, random 
sampling should have variable density sampling, with increased 
density toward the center of k-space.  
Methods 
Angiograms are truly sparse, with high signal from blood vessels and low background signal. To test our 
proposed trajectory, we considered an SSFP angiogram data set[6]. By post processing, we simulated a 
randomly under-sampled 3D Cartesian trajectory by removing phase encodes (Fig. 1), sampling more 
densely towards the center of k-space. We reconstructed from 5%, 9%, 13%, 20%, 30%, 50%, 80% 
percent  of the data respectively using L1 Total Variation(TV) [1-4] and compared the results to zero-
filling the missing data, and a low-resolution acquisition with the same number of phase encodes. 
Results and Discussion 
Fig 3. illustrates a region of interest in the maximum intensity projection (MIP) of the reconstructions 
for different under-sampling ratios. As expected, reconstruction by zero filling is severely degraded by 
aliasing artifacts and most vessels do not show in the MIP for high under-sampling ratio. The low 
resolution reconstruction also exhibits narrowing of vessels due to smoothing of the edges. On the other 
hand, the L1 reconstruction was able to recover the sparse signal and produces a similar quality MIP to 
the fully sampled reconstruction starting from only 20% of the data. In conclusion, L1 –penalized image 
reconstruction recovers sparse images even with severe undersampling. We also showed a method to 
evaluate random sampling schemes. Our method is computationally intensive. In the current, MatlabTM 
implementation we are able to reconstruct a 128x128x256 image in a matter of 120 minutes, this can be 
improve by newly proposed reconstruction algorithms [4,5]. This type of approach can be used either to 
speed scan time or gain more spatial or temporal resolution. 
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3D randomly under-sampled Cartesian trajectory 
Figure 2: Random under-
sampling by randomly removing 
phase-encodes 

Figure 1: Wavelet coefficients 
interference distribution. Large 
scale wavelets corresponds to low 
freq. image features, small scale 
to high freq. Top: Interference is 
random and Gaussian distributed. 
Low frequencies interfere more 
than high frequencies. Bottom:
Variable density random sampling 
“equalizes” the distributions such 
that the interference is small and 
similar for all scales. 

Figure 3: Reconstruction from 
randomly under-sampling phase 
encodes in 3D Cartesian 
acquisition. Left: Recon. from only 
low-res information. Middle: 
Recon. by zero- filling missing 
random phase encodes. Right: L1

Total Variation recon. from 
randomly under-sampled data The 
percentage represents amount of 
phase encodes used in the 
reconstructions .  
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