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Abstract

To end the largest known outbreak of Ebola virus disease (EVD) in West Africa and to prevent new transmissions, rapid

epidemiological tracing of cases and contacts was required. The ability to quickly identify unknown sources and chains of

transmission is key to ending the EVD epidemic and of even greater importance in the context of recent reports of Ebola

virus (EBOV) persistence in survivors. Phylogenetic analysis of complete EBOV genomes can provide important information

on the source of any new infection. A local deep sequencing facility was established at the Mateneh Ebola Treatment Centre

in central Sierra Leone. The facility included all wetlab and computational resources to rapidly process EBOV diagnostic

samples into full genome sequences. We produced 554 EBOV genomes from EVD cases across Sierra Leone. These genomes

provided a detailed description of EBOV evolution and facilitated phylogenetic tracking of new EVD cases. Importantly, we

show that linked genomic and epidemiological data can not only support contact tracing but also identify unconventional

transmission chains involving body fluids, including semen. Rapid EBOV genome sequencing, when linked to epidemiologi-

cal information and a comprehensive database of virus sequences across the outbreak, provided a powerful tool for public

health epidemic control efforts.
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1. Introduction

Starting in December 2013, West Africa experienced the largest

known outbreak of Ebola virus disease (EVD). Sierra Leone was

the most widely affected country, with 14,124 cases and 3,956

confirmed deaths as of 21 February 2016 (WHO 2016). In the ab-

sence of large-scale vaccination and effective antiviral drugs,

controlling the epidemic and maintaining the zero transmission

status have relied on rapid patient identification and isolation,

contact tracing and quarantine, as well as the implementation

of safe burial practices (Kucharski et al. 2015; Nouvellet et al.

2015; Fang et al. 2016).

By January 2015, the decline in new cases in the three most-

affected countries (Sierra Leone, Guinea, and Liberia) suggested

that epidemiological containment efforts were succeeding, particu-

larly in Liberia which was initially declared free of EVD by the

WHO on 9 May 2015 (WHO 2015). However, the recurrence of EVD

in Liberia (WHO 2015) and Sierra Leone (WHO 2016) indicated that

sources of new infections remained; even after all recognized

chains of transmission had been extinguished. Worryingly,

evidence is accumulating that EVD survivors may harbor and

transmit EBOV for several months after recovery (Deen et al. 2015;

Christie et al. 2015; Mate et al. 2015; Blackley et al. 2016; Sow et al.

2016; Uyeki et al. 2016) raising the possibility that transmission

through exposure to bodily fluids and/or sexual transmission can

occur at times beyond the standard quarantine periods.

To facilitate the use of phylogenetics for tracing virus

transmission, a local EBOV sequencing facility was established

in a tent at the Ebola Treatment Centre in Makeni, Sierra

Leone. The facility provided local capacity for rapid real-time

sequencing of EBOV genomes directly from clinical samples

and contributed important information on the transmission

pathways of EBOV.

2. Methods

2.1. Samples

Samples were collected from patients being cared for in Ebola

isolation and treatment centers in Makeni (Bombali district),
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Port Loko (Port Loko district), Kambia district, Kerrytown

(Western Urban district), and Koinadugu district (see Fig. 1, sam-

ple details are summarized in Supplementary Table 1). The

study was conducted in compliance with principles expressed

in the Declaration of Helsinki, and ethical approvals for the use

of residual diagnostic samples for sequencing were obtained

from the Sierra Leone Ethics and Scientific Review Committee

and the Ministry of Health of Sierra Leone. The Sierra Leone

Ethics and Scientific Review Committee approved the use of di-

agnostic leftover samples collected by EMLab and correspond-

ing patient data for this study.

2.2. Logistics

Equipment and reagents for the establishment of the sequenc-

ing facility were initially shipped to the University of

Cambridge, Cambridge, UK, for testing and repacking prior to

transport to Makeni, Sierra Leone. These materials included re-

agents for sequencing, unassembled benches, PCR cabinets,

centrifuges, general molecular biology reagents, N2 canisters

(required for Ion Torrent sequencing), and the equipment re-

quired to perform the sequencing workflow, namely an Ion

Chef liquid handling robot and an Ion Torrent PGM sequencer.

The Ion Torrent PGM sequencer and Chef were unpacked, in-

stalled and tested in Cambridge by the users with the aid of a

Thermo Fisher Scientific engineer. Calibration sequencing runs

were performed to ensure the required reagents and equipment

functioned correctly, prior to repacking and transfer to East

Midlands Airport for transport to Makeni via UK Department for

International Development-funded humanitarian aid flights.

The equipment arrived in Makeni on 15 April 2015 and was in-

stalled in a lined, air-conditioned tent in the Mateneh Ebola

treatment centre (ETC) in Makeni, Bombali district, adjacent to

the Public Health England (PHE) operated diagnostic facility. The

sequencing facility was operational from 16 April 2015 and the

first data files were transferred to the UK on 20 April 2015.

2.3. Sample preparation and sequencing

Total nucleic acid extracts were prepared from plasma obtained

from collected blood samples or buccal swabs using either the

Qiagen EZ-1 automated nucleic acid purification platform or the

QIAampmanual RNA extraction procedure. Samples were tested

for the presence of EBOV RNA using as previously described

(Trombley et al. 2010) and were considered positive if Ct values

were<40. Nucleic acid extracts from EBOV PCR-positive samples

were then subjected to reverse transcription/PCR amplification

using the Thermo Fisher Scientific Ion Ampliseq workflow ac-

cording to the protocol manufacturer with EBOV specific re-

agents and the Ion Torrent sequencing platform. Following

nucleic acid isolation, all subsequent procedures were per-

formed within physically separated PCR cabinets dedicated for

either reagent preparation or sample manipulations, with a

30min UV treatment cycle between uses. Briefly, 5–7 ml of nucleic

acid extract were reverse transcribed using the VILO reverse

transcriptase kit (Life Technologies) in a total volume of 10 ml.

Following reverse transcription, PCR amplification of the EBOV

cDNA was performed with two multiplex PCR reactions: pool 1

containing 73 EBOV-specific primer pairs and five human house-

keeping gene controls and pool 2 containing 72 EBOV-specific

primer pairs and the same five human housekeeping gene con-

trols. The amplicon sizes range from 80 to 237bp (see

Supplementary Table 2 for primer sequences and mapping posi-

tions). Following PCR amplification, primer sequences were re-

moved from the amplicons and barcoded adapters ligated

according to the protocol of the manufacturer. Amplicon purifi-

cation and size selection were performed with the AMPure DNA

purification system, followed by library quantification by qPCR

using the Ion Library Quantitation Kit. Libraries were normalized
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Figure 1. Lineages circulating in sampled regions. Districts of Sierra Leone (blue), Guinea (green), and Liberia (orange) are indicated. Pie charts are drawn over districts

from which samples of this study were collected, with size relative to the number of samples, and segment area indicating the proportion of lineages (as defined in

Figure 2) observed at that location. The number of genomes from each location was the following: Bombali: 63, Kambia: 67, Koinadugu: 5, Port Loko: 98, Tonkolili: 4,

Western Area: 182, Unknown location: 135.
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to 85pM, combined in pools of 10–24 samples per pool and tem-

plate libraries were prepared using the Ion PGM Hi-Q Sequencing

Kit on an Ion Chef Instrument (Thermo Fisher Scientific).

Libraries were subsequently sequenced on the Ion PGM System

using Ion Torrent Hi-Q sequencing reagents (500 cycles).

2.4. Data handling and genomes assembly

Short read sets were processed to remove short and low quality

reads, terminal primers were removed and the reads were

sorted to retain reads with length>125nt and median Phred

score> 30 using QUASR (Watson et al. 2013). Chimeric reads

were resolved using a Python script and the final reads were

processed by de novo assembly using SPAdes 3.5.0 (Bankevich

et al. 2012). EBOV contigs were further assembled into complete

genomes (if not already complete) using Sequencher v5.3 (Gene

Codes Corporation, USA). Conflicts were resolved by direct

counting of the motif in the short read data set. Further details

of the genome assembly process are included in the

Supplementary material.

2.5. Phylogenetic methods

All available EBOV Makona genomes were downloaded from the

NCBI Ebolavirus Resource (NCBI 2016). These 1019 genomes

were combined with the 554 new genomes generated here, and

aligned manually using the AliView alignment editor (Larsson

2014). A maximum-likelihood phylogenetic tree was inferred

from this alignment using RAxML version 7.8.6 (Stamatakis

2014) under a general time reversible (GTR) substitution model,

with among-site heterogeneity modelled using a 4-category dis-

crete approximation of a gamma distribution, as previously

described (Gire et al. 2014; Ladner et al. 2015). Robustness of the

tree topology was assessed by bootstrap analysis of 1,000

pseudo-replicates, with support values for the topology calcu-

lated using the SumTrees program version 4.0.0 of the

DendroPy package version 4.0.0 (Sukumaran and Holder 2010).

The tree was rooted on the Gueckedou-C05 genome (GenBank

accession no. KJ660348) and visualised using FigTree version

1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

From this tree, the well-supported clades were identified, in-

cluding the previously determined SL3 introduction into Sierra

Leone. Viruses derived from the SL3 introduction that were iso-

lated in Sierra Leone were extracted from the alignment. These

did not include those that were derived from a re-importation

of the virus from another country (e.g. Lineage B, which was de-

rived from a reintroduction from Guinea). A molecular clock

phylogenetic tree was inferred from these 1058 genomes using

a Bayesian Markov chain Monte Carlo (MCMC) approach imple-

mented in BEAST version 1.8.2 (Drummond et al. 2012). The

alignment was partitioned into a concatenated coding region,

containing the protein-coding sequences of the NP, vp35, vp40,

GP1, GP2, vp30, vp24, and L genes, and a non-coding inter-genic

region. The coding region was modeled under an SRD06 substi-

tution model (Shapiro et al. 2006) to allow for partitioning of co-

don positions 1þ 2 and 3, while the inter-genic region was

modeled under an HKYþC4 substitution model (Hasegawa

et al. 1985), as previously applied for molecular dating of EBOV

(Gire et al. 2014). The data were run under an uncorrelated log-

normal relaxed molecular clock (Drummond et al. 2006), and a

non-parametric Bayesian Skygrid coalescent model (Gill et al.

2013). Ten independent chains were run for a combined total of

at least 30 million states, then combined after burn-in. Burn-in

values were determined for each chain separately after

checking for convergence using Tracer version 1.6 (http://tree.

bio.ed.ac.uk/software/tracer/). The posterior tree sets were com-

bined using LogCombiner version 1.8.2, then summarised as a

maximum clade credibility tree using TreeAnnotator version 1.

8.2. This tree was visualised using FigTree version 1.4.2.

3. Results and discussion

We produced 554 contemporary EBOV genome sequences from

855 EVD samples (64% success rate) collected in Sierra Leone be-

tween December 2014 and September 2015. PCR-positive EBOV

samples were provided by EBOV diagnostic field laboratories

(PHE Makeni, PHE Port Loko, PHE Kerrytown, EML Hastings, EML

Kambia), collected primarily from the northern and western dis-

tricts of Sierra Leone (Fig. 1, Supplementary Table 1), reflecting

EVD case locations during this period (WHO 2016). Genomes

were successfully obtained from blood, buccal swabs, semen and

breast milk with successful genome yield dependent on EBOV

reads of greater than 10,000 (Supplementary Fig. 1). The se-

quenced genomes represent 4.5% of the EVD cases reported for

Sierra Leone, and 23.8% of all 2015 Sierra Leone cases (see

Supplementary Fig. 2) and provide a detailed description of EBOV

evolution during 2015. From these data we identified sources of

infection for some of the final EVD cases in Sierra Leone and in-

dicate potential routes of sexual and breast milk transmissions.

This was an unconventional use of new sequencing technol-

ogy under harsh conditions (high temperature, dust, high

humidity, unreliable power supplies, complicated reagent

transport, in a tent). Accordingly, special care was taken to en-

sure that the sequencing process was reproducible and consis-

tent with EBOV sequencing results obtained by other groups.

Furthermore, we provided quantitative data on the level of re-

sidual primer content from the amplicon sequencing method

and the potential level of sample cross contamination under

the sequencing conditions used (see Supplementary material).

Evolutionary analysis of the complete set of EBOV Makona

genomes revealed that at least nine viral lineages were circulat-

ing in Sierra Leone (Fig. 2). Eight of these lineages (A–H) were de-

rived from the SL3 variant that emerged in Sierra Leone in June

2014 (Park et al. 2015) and became the most prevalent lineage

(Tong et al. 2015). The remaining viruses were derived from a

separate introduction into Sierra Leone of the GUI-1 lineage

from Guinea (Simon-Loriere et al. 2015). By June 2015, reported

EVD cases were from infections by only three viral lineages A, E,

and F (Supplementary Fig. 3). The majority of these cases arose

from two separate outbreaks: one with lineage F viruses that oc-

curred primarily in the Port Loko and Kambia districts (80 ge-

nomes), and the other from lineage A viruses that were

identified primarily in the Magazine Wharf area of Freetown in

the Western Urban district (39 genomes). Both these outbreaks

persisted for over a month, with the phylogenetic analyses re-

vealing movement of the virus to surrounding districts. This vi-

rus movement was observed across the entire Sierra Leone

outbreak, with viruses from all lineages except B and C found in

more than one district (Supplementary Fig. 3).

The Ebola Outbreak Sequencing Support (EOSS) was estab-

lished in July 2015 as a coordinated effort from the Sierra Leone

Ministry of Health, WHO, CDC and the local sequencing facility

to rapidly sequence all new Sierra Leone EVD cases and rapidly

place them in phylogenetic context. EOSS processed 21 samples

from July-September 2015 (median 4 days, range 1–12 days,

Supplementary Fig. 4) and provided an additional level of infor-

mation to field workers tracing the source of the infection.

Three examples of the use of these sequence data follow.
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An EVD cluster occurred in late June 2015 in Mamusa, Port

Loko District. Case B, who was in the late stages of pregnancy,

had been exposed to EVD in another village (Kom Brakai) and

was under quarantine there. She fled quarantine and traveled

to the house of her aunt (case A) in Mamusa (Fig. 3a). Case B

went into labour, and died on 15 June during the birth of case

C. Cases B and C were subsequently found to be EBOV positive.

Consequently, all household contacts present at C’s birth were

placed in quarantine, including cases A, C (B’s newborn

daughter who died on 25 June), D (B’s sister), E (A’s 13-month

old daughter), and F (A’s sister). Cases A, E, and F were re-

leased from quarantine on 7 July after completing their obser-

vation period without apparent illness other than red

conjunctivae noted in A on 29 June, although no EBOV diag-

nostics were performed before release. Cases E and F subse-

quently developed symptoms of EVD on 10 July, 3 d after

completing quarantine (see timeline, Fig. 3a), prompting eval-

uation of A, who remained asymptomatic. Although a blood

sample from A was EBOV-negative on 17 July, two samples of

her breast milk were EBOV-positive on 13 and 17 July (Fig. 3a).

The full EBOV genome obtained from A’s breast milk (PL9192)

was found to phylogenetically cluster with genomes from E

(PL9150Rb) and F (PL9199Rb) (Fig. 3b). This cluster is strongly

supported and is distinct from genomes from the earlier cases

B, C, and D. We hypothesized three possible routes by which E

was infected:

Route 1: A, E, and F were infected while attending C’s birth by

direct contact with B or C.

Route 2: A was infected while attending C’s birth. A trans-

mitted the virus to E, through breastfeeding or direct contact;

the virus was subsequently transmitted onward to F during

quarantine due to close proximity of F with A or E.

Route 3: A, E, and F were infected by exposure to C or D dur-

ing the quarantine.

If Route 1 or 3 were correct, the viruses isolated from A, E,

and F would be more closely related to and cluster with viruses

isolated from cases B, C, and D.

However, the viral genome isolated from B and the two ge-

nomes from D bear distinct nucleotide changes (12,485 T->C and

8,182 A->G), that were not in the genomes of viruses obtained

from cases A, E, and F, with no evidence of mixed infections at

these genomesites (results not show), suggesting a separate trans-

mission chain. Based on these data, we therefore, concluded that

transmission scenarios Routes 1 and 3were less likely.

Although A’s viral genome contains a unique mutation

(A8358G) not shared by any other virus, analysis of A’s viral

reads shows that this was a polymorphic position with 65% of

the reads having the G, and 35% containing the A. Therefore, as

cases A, E, and F have evidence for identical viruses, and they

all share a unique mutation (C1115A), they are likely to either

all share a common direct ancestor (likely B, C, or D given the

timings and locations) or one case gave rise to the others (e.g.

case A was infected by B/C/D and transmitted to E and F) and

the data best support Route 2.

It is important to note that given the practical difficulties of

obtaining multiple samples from EVD patients and that the pri-

mary priority of field workers at that time was to contain the epi-

demic, further sampling of community members and additional

body compartments and fluids was not performed, which could

have provided clarification of the transmission route. The two

EBOV-positive breast milk samples from A, and the fact that E

was actively breastfed by A during the quarantine period, support

the possibility of breast milk transmission. However, A and E also

had close contact other than breastfeeding, and the lack of an

earlier blood sample from A does not allow us to prove that trans-

mission occurred via breast milk. Similar complexities of drawing

conclusions about EBOV breast milk transmission have been re-

ported (Moreau et al. 2015; Nordenstedt et al. 2016).

In a second cluster, on 24 July 2015, EVD case G was identi-

fied in a village in Tonkolili district which had been EVD-free

for the previous 130 d. However, at that time, there were only

three locations in Sierra Leone with on-going EBOV transmis-

sion (Magazine Wharf in Freetown, Kambia and Port Loko) in

addition to cases in Guinea. Case G reported travel from

Figure 2. Maximum-likelihood tree showing the phylogenetic context of the viruses sequenced in this study. The 554 genomes generated here are shown as red circles,

while the nine comprising lineages are highlighted with colored boxes and labeled A–H for those derived from the SL3 lineage, or GUI-1 for viruses derived from the di-

vergent Guinean lineage. The tree was rooted on Gueckedou-C05 (GenBank accession no. KJ660348), with the scale bar indicating genetic distance in units of substitu-

tions/site. Specific genomes in the three transmission vignettes (see Fig. 3), MK8878, 19560_EMLK, and PL9192c are highlighted.
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Freetown to Tonkolili on 16 July 2015, providing a hypothesis

for EBOV appearance in Tonkolili. Phylogenetic analysis con-

firmed this hypothesis; the virus genome from G (MK8878) clus-

tered with recent infections from Magazine Wharf and not with

viruses from the other locations with active transmission at

the time (Fig. 4 and Supplementary Fig. 3). Furthermore, ge-

nomes from two subsequent EVD cases from Tonkolili, H

(MK10128; G’s brother), and J (MK10173; G’s aunt), both G’s care-

givers, were closely related to the G genome expanding the

transmission chain (Fig. 4). The combined data link case G to

known infections in Magazine Wharf and exclude the possibil-

ity that this Tonkolili cluster was a re-emergence of EBOV from

previous Tonkolili cases or from an unknown transmission

chain.

There is accumulating evidence of EBOV sexual transmission

(Deen et al. 2015; Christie et al. 2015; Mate et al. 2015; Blackley

et al. 2016; Sow et al. 2016; Uyeki et al. 2016). On 29 August 2015 in

the Kambia district, a post-mortem swab from case K tested posi-

tive for EBOV, some 50 d following the last confirmed case in this

district. The viral genome from case K (020380_EMLK) clustered

with a genome from case L from a blood sample collected on 7

July 2015 (19560R_EMLK, Fig. 5a). Case Lwas an EVD survivor, who

was released from quarantine on 18 July 2015 and subsequently

had sexual contact with K during August 2015. L provided a semen

sample on 7 September 2015 from which an EBOV genome was

obtained (19560_EMLK). The viral genome obtained from L’s se-

men was identical to the virus genome in L’s initial blood sample,

collected 2 months earlier during acute EVD (Fig. 5a). The cluster-

ing of genomes from case L with those from K, and from several

secondary contacts of K (cases N, O, P, and Q) indicates transmis-

sion among these cases in Kambia (Fig. 5a). In addition, the ab-

sence of nucleotide changes between the virus genomes of the

two L samples suggests that the virus was maintained in a low

replicating state within L. Consistent with this pattern, reduced

Figure 3. (a) Mamusa Cluster timeline. Key events in the Mamusa cluster examined in (b) are summarized. (b) Maximum-likelihood tree of the Mamusa cluster showing

the phylogenetic relationship between each case’s virus genome. The genome from the case A breast milk sample (PL9192, labeled in red, GenBank accession no.

KU296401) is highlighted in red. Additional cases in the cluster include the earlier case B (most probable index case of the cluster, GenBank accession no. KU296340);

case C (the 6day-old newborn daughter of B, GenBank accession no. KU296618), and D (sister of B, includes two viruses sampled 3 d apart, GenBank accession nos.

KU296404 and KU296342). Contacts of A include cases E (13 month-old daughter of A, GenBank accession no. KU296522) and F (sister of A, GenBank accession no.

KU296371). Bootstrap support values greater than 50% are given below the respective node. The bar colors on the right indicate the place of sampling of each virus (leg-

end is shown on the left). All mutations within the case cluster are given above the relevant branch as the position in the original alignment followed by the nucleotide

change. The scale bar indicates the genetic distance in units of substitutions/site.
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virus evolutionary rate after virus re-emergence was also recently

reported (Blackley et al. 2016). Furthermore, at three positions in

the virus genome (3,993, 8,494 and 13,518), minority variants were

present in the K and M read sets that show a transition between

the majority nucleotide in L and the majority nucleotide in the vi-

ruses later in the putative transmission chain (Fig. 5b). Thus

mixed nucleotide variants at three positions in L’s semen virus

genome were consistent with L as the direct source of virus for K

andM.

An alternate transmission route might be contact of K with

unknown EVD cases in the community. However, such a hy-

pothesis would require that the virus in this unidentified con-

tact was as close, or more closely related to the viruses

sequenced from the known cases, which had only three nucleo-

tide differences between L and K. Alternately, transmission

from L to K could have occurred via non-sexual contact or with

other body fluids; however, given that L’s blood was negative

but L’s semen was genome positive, between these two possibil-

ities semen is the more likely source of K’s infection. There was

no report of sexual contact between L and M, so tentatively M

might have been infected from L’s bodily fluid or while taking

care of K. However, the phylogenetic analysis strongly supports

viral transmission between these cases (Fig. 5a), with sexual

transmission from L to K as the most likely component in the

transmission chain.

The local sequencing described here was rapid enough to be

epidemiologically useful; however, a comprehensive genome

database across the outbreak was essential to identify sources

of new infections. During the course of this project, the se-

quence data that were generated contributed more than a third

of the 1500 EBOV Makona genomes now available and represent

23.8% of the 2015 Sierra Leone cases (see Supplementary Fig. 2).

These data were made available to all groups involved in out-

break sequencing (Goodfellow et al. 2015a,b; Neher and Bedford

2015) and yielded a sufficiently comprehensive set of viral ge-

nomes to identify transmission chains in other countries and

across borders (Gardy et al. 2015).

In future epidemics, rapid and local sequencing of pathogens

at the onset and the end of the outbreak can support outbreak

investigation and control, but sequencing and data sharing dur-

ing peak transmission should also be maintained to provide

the genetic context for contact tracing and control of new cases.

With the increasing global risk of viral zoonosis, the success of

this project provides a strong incentive to establish and main-

tain local sequencing facilities throughout the world.
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case M (K’s 23-year-old daughter, 20525_EMLK, GenBank accession no. KU296487). For each cluster case, minority variants for three key positions can be found in (b).
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