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The primary biomedical literature is being generated at an unprecedented rate, and
researchers cannot keep abreast of new developments in their fields. Biomedical natural
language processing is being developed to address this issue, but building reliable systems
often requires many expert-hours. We present an approach for automatically developing
collections of regular expressions to drive high-performance concept recognition systems
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with minimal human interaction. We applied our approach to develop MutationFinder,
a system for automatically extracting mentions of point mutations from the text. Muta-
tionFinder achieves performance equivalent to or better than manually developed muta-
tion recognition systems, but the generation of its 759 patterns has required only 5.5
expert-hours. We also discuss the development and evaluation of our recently published
high-quality, human-annotated gold standard corpus, which contains 1,515 complete
point mutation mentions annotated in 813 abstracts. Both MutationFinder and the
complete corpus are publicly available at http://mutationfinder.sourceforge.net/

Keywords: Pattern learning; information extraction; biomedical natural language pro-
cessing; mutations; corpus construction; text mining; concept recognition.

1. Background

It is frequently noted that biological researchers are unable to keep pace with the
rate of publication of the biomedical literature pertaining to their field.1–4 Text
mining and biomedical natural language processing (NLP) are techniques aimed
at addressing this issue. Strong evidence for the necessity of text mining and other
automated methods of genome and proteome curation assistance comes from recent
work by Baumgartner et al.,5 who found that the current rates of biological database
curation will not provide full coverage of even just the currently sequenced genomes
for the foreseeable future. However, in almost all cases, developing good systems
requires many person-hours of manual intervention, in terms of both corpus anno-
tation and system development. Methods that accelerate the development of useful
text mining and biomedical language processing systems have the potential to facil-
itate access to data currently available only as free text in the biomedical literature.
To pursue these points, this paper investigates two hypotheses: (1) that automatic
methods can be used to learn patterns of sufficient quantity and quality in order to
match or outperform a manually built rule set; and (2) that annotation standards
and text collections sufficient for the building of high-quality corpora of mutation
mentions with good interannotator agreement can be developed.

We have recently published MutationFinder,6 a high-performance system for
extracting mentions of point mutations from the text, and a high-quality cor-
pus containing 1,515 hand-annotated mutation mentions in 813 Medline abstracts.
MutationFinder relies on the collection of regular expressions to extract mutation
mentions from the text. A unique feature of our system and its development pro-
cess is that its top-performing collection of regular expressions was generated by
an almost fully automated process which required only 5.5 hours of human inter-
action, outperforming a baseline system which used only manually constructed
regular expressions. Our corpus is unique in that it is larger (in terms of number
of mutations and abstracts annotated) and more reliable (because of its develop-
ment around clearly defined annotation guidelines, and evaluation by interanno-
tator agreement) than existing mutation corpora. Corpus annotation required 54
person-hours, outside of system development.

Our recent paper6 briefly described MutationFinder in comparison to a
baseline system. Here, we describe a generalizable methodology for designing
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high-performance, rule-based, biomedical concept recognition (CR) systems with
minimal human effort. Using MutationFinder as a case study, we demonstrate the
utility of our methodology for streamlining CR system development. We addition-
ally present a description of a manually curated corpus containing mutation men-
tions, and describe the annotation process and guidelines used in its construction
and evaluation. MutationFinder and the complete corpus are publicly available at
http://mutationfinder.sourceforge.net/

1.1. Point mutation recognition

We define “point mutation recognition” as the process of extracting a relationship
between three entities from free text: the position where a substitution occurred in
a biological sequence (i.e. a nucleic acid or polypeptide sequence), and the wild-type
and mutant entities (i.e. bases or residues). We refer to point mutation recognizers
as concept recognition systems, and point out that point mutation recognition is
similar to both named entity recognition and information extraction. Point muta-
tion mentions in abbreviated formats [e.g. “the A42G mutant”; Table 2(a)] look
like data typically targeted by named entity recognizers, while mentions in natu-
ral language formats [e.g. “alanine 42 replaced with glycine”; Table 2(c)–2(e)] look
like data typically targeted by information extraction (IE) systems. Jackson and
Moulinier7 note that IE systems attempt to fill in forms which describe events
involving several entities. All concepts recognized by point mutation recognizers
are exactly that: even mutation mentions in the abbreviated formats, although
they look very much like named entities, are references to events that relate three
entities — a pre-event state (the wild-type entity), a postevent state (the mutant
entity), and an event location (the sequence position).

Point mutation recognition systems have been the subject of several recent
publications.6,8–12 MuteXt,8 MEMA,9 and Mutation GraB10 attempt to extract
mentions of mutations paired with a specific gene or gene product from input texts.
OSIRIS11 is a web-based information retrieval system for compiling the mutation
literature using a concept-driven, mutation-recognition approach. MutationMiner12

is a system which uses mutation data from the literature to annotate protein
structures.

The MuteXt system, when tested against a manually compiled database of
GPCR mutations, was reported to achieve a precision of 87.9% and a recall of
49.5%. MEMA, when judged on 100 human-annotated abstracts, was reported to
achieve a precision of 99% and a recall of 35% for extracting gene–mutation pairs,
and a precision of 98% and a recall of 75% when extracting mutations only (i.e.
when no attempt was made to connect them with a specific gene or protein). Muta-
tion GraB, when tested on 295 unseen, manually annotated articles, was reported
to achieve a mean precision of 74% and a mean recall of 81%. When extracting
mutations alone (and tested on the MEMA corpus), Mutation GraB was reported
to achieve a precision of 97.7% and a recall of 77.3%. Because the testing schemes
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(i.e. test corpus and computed performance metrics) differ for each system, these
values are not directly comparable, except for the comparison between Mutation
GraB and MEMA.

1.2. Automatic pattern generation for concept recognition

Several previous attempts13–19 have been made to automatically generate patterns
for concept recognition systems. The AutoSlog/AutoSlog-TS systems13,14 are clas-
sic early examples, and the approach of Hovy and his colleagues15,16 has been quite
influential in recent years. These systems differ from ours in that they require either
annotated corpora,13 hand-classified documents,14 or multiple rounds of iteration
and mandatory tuning.15,16

Recently, there has also been domain-specific work on pattern learning for
biomedical texts.17–19 These approaches differ from ours in that they typically over-
generate considerably, producing large numbers of patterns whose utility is often
underevaluated and questionable.

1.3. MutationFinder

MutationFinder6 focuses on extracting mentions of point mutations without try-
ing to connect them with their gene or protein source. While at first glance the
fact that MutationFinder does not attempt to associate mutations with their
gene or gene product might appear to be a limitation, we deliberately chose this
approach in order to create modular software. Rather than simultaneously attacking
three unsolved problems (i.e. extracting mutation mentions, extracting gene/protein
names, and associating the appropriate pairs), MutationFinder’s design is based
on the UNIX philosophy of software development: “Write programs that do one
thing and do it well.”20 Our approach gives MutationFinder users the ability to
combine the output of MutationFinder with the output of, for example, the cur-
rently top-performing protein name identifier (Hakenberg et al.,21 as determined
by the BioCreAtIvE 2 evaluation). Rather than being locked into a single problem
or approach, MutationFinder users may mix and match independent tools. Source
code modifications are not required to, for example, use an alternative protein name
recognition technique.

Like the earlier mutation recognition systems,8–10 MutationFinder applies a set
of regular expressions to identify mutation mentions in input texts. Our currently
top-performing collection of regular expressions results in a precision of 98.4% and a
recall of 81.9% when extracting mutation mentions from completely blind test data.
(We cannot make a direct comparison of our performance with those of the earlier
systems, but the publication of our gold standard data set and a script for scoring
the output of mutation recognition systems make direct comparisons of mutation
recognition systems readily performable for the first time.)

Unlike the earlier systems, the 759 regular expressions driving MutationFinder
were automatically generated using a generalizable bootstrap approach, which is
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the primary subject of this article. This approach minimizes the time investment
typically associated with developing high-performance rule-based systems in the
form of manual annotation or pattern construction. Only 5.5 hours were required
by a domain expert (Caporaso) to refine an initial collection of patterns into the
input for an automated regular expression generator.

We also developed a gold standard data set, which is an additional subject of this
article, at a cost of approximately 54 person-hours split among three annotators.
It is split into development data and blind test data, and is used for optimizing
and evaluating MutationFinder. While extremely helpful for system optimization
and testing, a human-annotated gold standard data set is not a prerequisite for
developing high-performance concept recognizers by our method.

2. Performance Metrics

In our previous work,6 we used precision, recall, and F -measure on three separate
tasks for evaluating mutation recognition systems: Extracted Mentions, Normalized
Mutations, and Document Retrieval. Briefly, the Extracted Mentions task requires
that all mentions of all mutations be extracted from input text, while the Nor-
malized Mutations task requires that at least one mention of each mutation be
extracted from input text, and the Document Retrieval task requires that at least
one mention of any mutation be extracted from input text.

3. Algorithm and Application

Our approach for achieving high-performance concept recognition is based on a six-
step process for regular expression generation. Like Webclopedia15 and the Huang
et al.18 text alignment technique, we do not rely on annotated training data. Anno-
tated development and test data are useful for system optimization and testing, but
are not required for rule set development. The six steps, followed by an in-depth
discussion with examples (see Table 2 and Secs. 3.1–3.6), are as follows:

(1) Automatically compile a collection of raw patterns, or patterns likely to rep-
resent the information to be extracted. This step aims to achieve high recall
while paying little attention to precision.

(2) Refine the collection of raw patterns to eliminate false positives. This step is
intended to address the precision ignored in the first step.

(3) Process the patterns to assign terms from a semantic grammar to the entities to
be extracted. In the case of mutation extaction, the semantic classes to assign
are wild-type residue (WRES), mutant residue (MRES), and sequence position
(SPOS). We refer to the semantically annotated patterns resulting from this
step as mutation patterns.

(4) Generate regular expressions from the mutation patterns resulting from step 3.
(5) Perform post hoc analyses to optimize system precision. This does not require

human-annotated development data. Optionally, optimize system recall on



December 15, 2007 20:4 WSPC/185-JBCB 00314

1238 J. G. Caporaso et al.

Table 1. Person-hours required in each system development step.
Step numbers correspond with subsection numbers in Sec. 3.

Step Person-hours

1: Raw pattern compilation 0.0
2: Raw pattern refinement 2.0
3: Mutation pattern generation 2.5
4: Regular expression generation 0.0
5.1: System optimization: precision 1.0

5.2: System optimization: recall (optional) 18.0*
6: System testing (optional) 36.0*

Total required time 5.5

*Steps 5.2 and 6 require time for corpus development; these steps
are optional, and therefore are not included in the total time for
system development.

development data. General changes to the system can be tested or in-depth
error analyses can be performed to inform design and implementation details.

(6) Optionally,a test the system on previously unseen test data. It is critical that
these data be different from the development data.

Table 1 details the amount of time devoted to each step. Using MutationFinder
as a case study, the subsequent sections demonstrate the development of a high-
performance rule set for concept recognition using our methodology.

3.1. Step 1: raw pattern compilation (automatic)

To bootstrap our system, we began with a simple rule to identify blocks of text that
were likely to describe point mutations. These text blocks were then converted into
raw patterns. Example input texts and the resulting raw patterns are presented
in Table 2 and discussed throughout this section. This step requires no human
interaction.

3.1.1. Bootstrap rule

The development of the bootstrap rule for automatically generating raw patterns
was informed by domain knowledge. The bootstrap rule states that a block of text
might describe a point mutation if it

(1) contains at least two mentions of amino acid residues;
(2) mentions at least one positive integer in numeric characters; and
(3) does not span a sentence break.

aWhile optional for system development, this step is, however, required if one wishes to publish
performance data in their system.
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This rule was implemented by splitting input text at periods and applying two
regular expressions to each resulting “sentence.” (While more effective methods
exist for splitting sentences,22 a review of the raw patterns and an error analysis
following system development suggested that this simplistic approach is acceptable
for this application.) Two regular expressions were applied to determine whether a
sentence matched the bootstrap rule. First, an amino acid pattern (ignoring case)
matched mentions of amino acids in their three-letter abbreviations or full names;
this was required to match twice. Second, a sequence position pattern, designed to
identify mentions of specific positions in a gene or protein, matched numerically
expressed positive integers less than 10,000; this was required to match once.

3.1.2. Raw pattern generation

In a given sentence, if the amino acid pattern matched at least twice and the posi-
tion pattern matched at least once, then a raw pattern was generated by selecting
the shortest span of text that contained all of the amino acid residue and inte-
ger mentions. Amino acid mentions were replaced with RES and integer mentions
were replaced with POS. Example input texts and the resulting raw patterns are
presented for both true-positive [Table 2(a)–2(e) and 2(h)] and false-positive [Table
2(f) and 2(g)] matches.

We applied this rule to a local installation of Medline in its entirety (in Octo-
ber 2006). A total of 89,108,055 sentences from 16,333,215 Medline-record title
and abstract fields were provided as input for creating raw patterns. A total of
262,157 unique raw patterns were generated from 295,618 sentences complying with
the bootstrap rule. The most commonly occurring patterns included RESPOSRES,
RESPOS-->RES, and RESPOS to RES (Table 2(a), 2(b), and 2(c), respectively). Of
these raw patterns, 258,067 occurred only once in Medline; the remaining 4,090 pat-
terns occurred at least twice. Since raw patterns were generated from the shortest
span of text containing all of the RES and POS entities, each sentence could generate
only a single raw pattern. The complete set of patterns generated by this process
is available as supplementary material.b

As mentioned earlier, this step is intended to achieve high recall and is very
prone to false positives. Of these raw patterns, 99.7% were not used for generating
regular expressions because the vast majority represented false positives.

3.2. Step 2: raw pattern refinement (2.0 person-hours)

Many irrelevant patterns are obtained by applying the bootstrap rule to Medline.
Through a partially automated process of refinement, we reduced the number of
raw patterns from 262,157 to 634. This required 2 hours of work by an expert.

bAll supplementary material is available at http://mutationfinder.sourceforge.net/
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3.2.1. Automatic raw pattern refinement

First, to eliminate raw patterns likely to be unimportant, all raw patterns which
occurred only once in Medline were filtered out. This reduced the number of raw
patterns by 98.44%, from 262,157 to 4,090.

3.2.2. Manual raw pattern refinement: false positives

Second, the remaining 4,090 patterns were manually reviewed to determine their
relevance. If it was intuitively obvious that a pattern represented a mutation men-
tion, it was retained; otherwise, the pattern was deleted. (Questionable patterns
tended to have a low number of occurrences and, since an objective of this project
is to minimize the effort of humans in pattern development, it was decided that they
should be deleted without investing time to investigate their validity.) Following this
process, all false-positive (i.e. nonmutation) patterns were deleted.

3.2.3. Manual raw pattern refinement: nonunique patterns

Finally, raw patterns which would not provide novel mutation patterns were manu-
ally deleted. For example, the raw pattern RESPOSRES and RESPOSRES [Table 2(h)]
would not provide a novel mutation pattern because it contained two mentions of
the simpler pattern RESPOSRES [Table 2(a)]. These manual refinement steps further
reduced the number of raw patterns from 4,090 to 634, and took a total of 2 hours.

3.3. Step 3: mutation pattern generation (2.5 person-hours)

Since raw patterns could contain more than one mutation mention [e.g. Table 2(d)
and 2(e)] and since step 1 did not assign wild-type and mutant identities to each
residue mention, we needed to tag the elements to be extracted as the wild-type
residue, mutant residue, and sequence position in each raw pattern. In this step,
each remaining raw pattern was manually reviewed and edited to assign semantic
tags indicating whether a given term was the wild-type residue, mutant residue, or
sequence position entity. The resulting patterns are referred to as mutation patterns,
since they can be used to represent point mutation mentions unambiguously. Each
mutation pattern will match, at most, a single mutation.

For raw patterns containing only a single mutation mention [e.g. Table 2(a)–
2c)], the RES entry was replaced with WRES or MRES, and the POS entry with SPOS.
The decision of which RES term to be converted to WRES versus MRES was informed
by domain knowledge. In 83.13% of the mutation patterns, the first residue mention
was assigned WRES.

One hundred raw patterns contained more than one mutation mention [e.g.
Table 2(d) and 2(e)]. Semantic tag assignment was slightly more complicated for
these. The raw pattern was duplicated to appear once for each mutation mention,
and each raw pattern was edited to assign identities. This duplication of patterns
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containing more than one mutation mention resulted in an addition of 125 patterns,
from 634 raw patterns to 759 mutation patterns. In Table 2(d) and 2(e), the raw
patterns are duplicated to yield three and two mutation patterns, respectively,
corresponding to the number of mutation mentions in each.

In duplicated patterns [e.g. Table 2(d) and 2(e)], extraneous text remained that
would result in the overspecialization of a pattern. These were edited so that only
the shortest piece of text containing the WRES, MRES, and SPOS entities was retained;
and leading or trailing text was removed. (For example, in the first mutation pat-
tern in Table 2(e), the trailing text and POS were removed when the pattern was
duplicated.)

3.3.1. Automatic mutation pattern generation

We explored automating this process, and found that a large development corpus
would be required to achieve acceptable recall. Given a collection of raw patterns,
mutation patterns with greater than two occurrences of RES or greater than one
occurrence of POS were deleted. In the remaining raw patterns, the first RES mention
was replaced with WRES, the second with MRES, and the position with SPOS; this
resulted in an automatically generated collection of mutation patterns. Beginning
with a simple mutation finder that would match only wNm-formatted mutation
mentions using single-letter amino acid abbreviations, each mutation pattern was
tested to determine if it increased the F -measure of the system on the development
data. If so, that pattern was retained; otherwise, it was deleted.

Due to the infrequent occurrence of many mutation patterns in Medline, the pat-
terns actually occurring in our corpus are limited. Very few patterns end up being
retained by this method, and the resulting system is overfit to the development
data. This approach was not incorporated into our final system, but illustrates a
way to automate mutation pattern generation. Manually generating mutation pat-
terns, which took approximately 2.5 hours, is far more time-efficient than developing
a larger corpus to support the process.

3.4. Step 4: automatic regular expression generation (no manual

intervention)

Translation from mutation patterns to regular expressions is a computationally
trivial task. Each of the entity types in a raw pattern was replaced with a regular
expression to match the text strings which might appear in that slot. Residues were
matched in their three-letter abbreviation or full name, and sequence positions were
matched as positive integers between 1 and 9,999. The entities to be extracted from
the text (WRES, MRES, and SPOS) were matched using symbolic grouping expressions.
In addition to the regular expressions contained in the collection of mutation pat-
terns, an additional pattern was always added to match wNm-formatted mutation
mentions using single-letter abbreviations. This pattern was case-sensitive, and is
the only pattern that matches single-letter-abbreviated residue mentions.
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3.4.1. Automatic linguistic processing

A minor processing step was applied at this stage to generalize regular expressions.
Occurrences of either a or an were replaced with the regular expression (a|an), so
the texts “Ala42 to a glycine” and “Ala42 to an isoleucine” would both be matched
by the same regular expression.

3.5. Step 5: system optimization

After the set of regular expressions was generated and refined, it was possible to
optimize the rule set and individual rules by testing their performance on anno-
tated and unannotated corpora. For MutationFinder, two types of system opti-
mization were performed: optimization of precision and optimization of recall.
Our experience suggests that optimizing precision is essential, but that optimiz-
ing recall is optional. Optimization of precision was performed via a post hoc
error analysis and took very little time; optimization of recall required the use
of our human-annotated development data. While the error analysis itself did
not take long, approximately 18 person-hours were devoted to corpus annota-
tion. (Until this point, no annotated data has been required for system develop-
ment.) Because optimization of system recall is not required (as we will show),
we do not include the time for corpus development in our estimate of time
for system development.

3.5.1. Optimization of precision with post hoc error analysis on unannotated
data (approximately 1 person-hour)

We used an unannotated corpus of GeneRIFs23 to optimize MutationFinder’s pre-
cision. Before precision optimization, we applied MutationFinder to the complete
collection of GeneRIFs (through June 2006). We randomly selected 100 GeneRIFs
which MutationFinder identified as containing mutations. We then manually scored
MutationFinder’s Document Retrieval precision on these GeneRIFs. False positives
were categorized, and adjustments were made to avoid the most significant error
types. Three major adjustments to MutationFinder (of the six briefly presented in
our previous publication6) were made as a result of this error analysis. These are
now presented in more detail.

Prior to optimization, certain gene/protein names were commonly mistaken for
mutation mentions. For example, H4A and E2F were commonly mistaken as repre-
senting mutations. MutationFinder’s regular expression for matching wNm-format
mutation mentions with single-letter abbreviations only was modified to require
that N be greater than 9. This led to a 30% increase in precision on the same
collection of GeneRIFs [Table 3(b)]. Next, to further avoid confusion with gene
names, we required that the same regular expression be case-sensitive, only match-
ing uppercase letters. This led to an 11% increase in precision [Table 3(c)]. Third,
this error analysis led us to implement a postprocessing rule to ignore “mutations”
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Table 3. Post hoc precision estimates on a sample of 100 GeneRIFs determined
to mention point mutations by MutationFinder prior to precision optimization.
Preoptimized MutationFinder refers to an implementation of MutationFinder
that does not incorporate these three precision-optimizing rules. These data
show the relative contribution of each individual rule.

Description Precision (%)

(a) Preoptimized MutationFinder 0.58
(b) Preoptimized MutationFinder + N > 9 rule 0.88
(c) Preoptimized MutationFinder + case-sensitivity rule 0.69
(d) Preoptimized MutationFinder + wild-type �= mutant rule 0.61
(e) MutationFinder 0.97

where the wild-type and mutant entities were identical. For example, the mention
of a homozygous genotype, C1298C, was initially extracted as a point mutation.
This rule led to a 3% increase in precision [Table 3(d)].

This post hoc error analysis required only a minimal time commitment from
a human domain expert. Scoring the precision of the 100 random GeneRIFs took
approximately 10 minutes, and the resulting error analysis led to a large increase in
system precision. Prior to the implementation of these rules, the precision achieved
on GeneRIFs was 58% [Table 3(a)]; after optimization, when using the same data
set, the precision was 97% [Table 3(e)] and no false negatives were incurred. (Note
that the precision improvements displayed in Table 3(b)–3(d) are for these changes
in isolation. The optimizations are not mutually exclusive. For example, a false
positive resulting from the text “crucial for C1q binding to ligands”c is avoided by
both the N > 9 and case-sensitivity rules.)

A danger in a precision-oriented optimization step such as this is the overfitting
of rules to the test collection. Care should be taken to only incorporate rules that
make intuitive sense and are supported by the analysis. For example, rather than
requiring that sequence positions always be greater than 9, we tailored this rule
specifically to what we observed and what made intuitive sense: many gene names
appear similar to single-letter-abbreviated wNm-formatted mutation mentions, but
we do not expect to see gene names that conform to many other mutation patterns.
We tailored this rule based on domain knowledge and the results of this error
analysis. Incidentally, the remaining false positives were all cell line names that
were extracted as mutation mentions. We revisit the problem of mistaking gene
and cell line names for mutations in our discussion below.

Since we had a human-annotated corpus available for optimization, we tested
these rules on that data set. Comparison of the preoptimized and postopti-
mized MutationFinder on our development data set showed an approximate 11%
precision increase with only a 1% decrease in recall for extracting Normalized
Mutations.

cSource Entrez Gene ID: 714.
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3.5.2. Optimization of recall — optional (approximately 18 person-hours for
corpus annotation)

Recall optimization of the complete rule set generally took one of two forms. First,
the overall utility of general rules was tested (e.g. replacing occurrences of a or an
with (a|an) in regular expressions) by testing the performance of MutationFinder
on the development data with the rule alternately incorporated and not incorpo-
rated. Second, error analyses performed by looking at false negatives incurred by
the system were used to inform future decisions about system design.

The methods described in our six-step approach are biased toward high recall.
By applying the bootstrap rule to a very large corpus of relevant documents, impor-
tant patterns can be compiled without the need for much human interaction. We
found that recall optimization on our annotated development data did little to
improve the performance of our system on these same data.

Table 4 compares different approaches we applied. Table 4(a) presents the per-
formance of our best collection of regular expressions on the development data. We
now discuss the implementation details we explored in the context of their effect
on performance.

3.5.3. Utility of single-letter abbreviations

As described in Sec. 3.4, when automatically generating regular expressions we
matched amino acid residues by their three-letter or full name abbreviations, but
not by their single-letter abbreviations. As illustrated by comparing rows (a) and (b)
in Table 4, matching on single-letter abbreviations is associated with an Extracted
Mentions recall increase of 3.3 percentage points and a precision decrease of 34.2
percentage points. While this decrease in precision could likely have been reduced
by allowing one-letter abbreviations only in certain patterns (rather than globally),
the recall increase presented is the maximum that could be achieved. Because a
major emphasis of this study is to minimize the amount of time invested in manual
pattern generation and refinement, it was determined that hand-selecting patterns
would take too long to be worth a maximum of a 3.3-percentage-point increase. It is
also important to note that the Normalized Mutations recall increase was only 0.6
percentage points (data not shown), suggesting that in many practical applications
of MutationFinder the recall difference would be minimal.

Table 4. Extracted Mention performances achieved on development data by systems
built with various collections of regular expressions during system optimization.

Description TP FP FN P R F

(a) Top-performing system 456 8 94 0.983 0.829 0.899
(b) One-letter abbreviations included 474 265 76 0.641 0.862 0.736
(c) No linguistic processing of a, an 456 8 94 0.983 0.829 0.899

TP, true positive; FP, false positive; FN, false negative; P, precision; R, recall;
F, F -measure.
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3.5.4. Utility of linguistic processing

As noted in Sec. 3.4.1, some regular expressions were generalized by substituting
the words “a” and “an” with the regular expression (a|an). This processing step
resulted in no change in performance on our development corpus [see Table 4(a) and
4(c)]. Since we observed no precision degradation, but expect a recall improvement
on a larger corpus, we opted to incorporate this processing step into our system.

3.6. Step 6: system testing — optional (approximately 36

person-hours for corpus annotation)

After optimization, MutationFinder was applied to our previously unseen test data
set. Performance in terms of our three performance metrics is presented in Table 5.
As noted earlier, system testing on unseen data is not required for rule development.
We therefore do not include the time for corpus development in our estimate of time
for system development.

MutationFinder was evaluated on the blind test subset of the gold standard
corpus, which consists of 910 mutation mentions in 508 documents annotated by
annotators 1 and 2. MutationFinder achieved a precision of 0.984 and a recall
of 0.819 on Extracted Mentions on this test collection. Complete test results are
presented in Sec. 5.1 and Table 5.

3.6.1. Automatically generated versus manually generated rules

To test our hypothesis that automatically generated patterns can achieve equiv-
alent or improved performance when compared to manually generated patterns,
we compared MutationFinder with a collection of manually generated rules. These
manually generated rules were constructed by annotator 3 prior to the automat-
ically generated rules in an initial attempt to build a high-performance mutation

Table 5. Comparison of manually and automatically generated rule sets on the blind test subset of
the gold standard corpus. Counts of true positives (TP), false positives (FP), and false negatives
(FN) are presented, along with precision (P), recall (R), and F -measure (F) for the three different
performance metrics. These data can be recreated by applying versions 0 2-beta (for manually
generated rules) and 0 3-beta (for automatically generated rules) of MutationFinder to the blind
test data, and scoring with the provided performance script. All code and data are available at
http://mutationfinder.sourceforge.net.

TP FP FN P R F

Manually generated rules
Extracted Mentions 686 4 221 0.994 0.756 0.859
Normalized Mutations 352 2 124 0.994 0.740 0.848
Document Retrieval 146 0 36 1.000 0.802 0.890

Automatically generated rules
Extracted Mentions 743 12 164 0.984 0.819 0.894
Normalized Mutations 384 10 92 0.975 0.807 0.883
Document Retrieval 162 1 20 0.994 0.890 0.939
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recognition system. The test collection was blind with respect to both the automat-
ically generated and manually generated rules. The manually generated system is
available at http://mutationfinder.sourceforge.net as MutationFinder-0 2-beta.

4. Gold Standard Corpus

We constructed a gold standard data set consisting of 1,515 annotated complete
point mutation mentions in the title and abstract fields of 813 Medline records
(the gold standard corpus). To compile a corpus likely to contain many mutation
mentions, documents were randomly selected from the collection of articles cited as
primary citations for mutant Protein Data Bank24 (PDB) entries.

Three mutation types were annotated: point mutations, insertions, and dele-
tions.d The structure of each mutation annotation was based on a simple mutation
event ontology that was developed for this purpose (Supplementary Fig. 1). The
vast majority of mutations annotated were point mutations; this corpus proved
to contain too few insertion and deletion mentions to be useful for testing inser-
tion/deletion extraction systems.

Mutation annotations could be complete or partial. For example, the text “muta-
tion at alanine-64” only mentions a wild-type residue and a sequence position. If
the associated mutant residue was not present in the same document (i.e. title and
abstract), a partial point mutation annotation would be created that contained a
blank Mutant Element field. If a mention contained the information necessary to
fill the Sequence Position, Wild-type Element, and Mutant Element fields (for
a Substitution Event), the resulting annotation was complete. Comprehensive
information on the annotation process is described in our annotation guidelines,
which are provided as supplementary material.

4.1. Preprocessing

To reduce the time needed to annotate the corpus, all of the documents (with the
exception of 25, which will be discussed shortly) were preprocessed to automatically
annotate obvious mutation mentions. Mutations described in the wNm format were
automatically annotated. All automatic annotations were manually inspected for
correctness during the annotation process.

4.2. Annotation

Knowtator,25 a text annotation tool, was used for corpus annotation. Annotators
marked up mentions of mutations that were not identified in the preprocessing step,
and validated mutation mentions that were labeled during the preprocessing step.

dAlthough insertions and deletions were annotated, MutationFinder does not attempt to extract
these mutation types. These may be addressed in a future version.
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Preprocessing errors (e.g. the text “the E2F protein” erroneously annotated as a
point mutation) were repaired or deleted, as necessary.

The corpus was divided into five subcollections for the annotation process:

(1) 25 abstracts, preprocessed, annotated by all annotators;
(2) 25 abstracts, not preprocessed, annotated by all annotators;
(3) 254 abstracts, preprocessed, annotated by annotator 1;
(4) 254 abstracts, preprocessed, annotated by annotator 2; and
(5) 255 abstracts, preprocessed, annotated by annotator 3.

Subcollections 1 and 2 were used to calculate interannotator agreement (IAA); by
preprocessing only subcollection 1, we could determine what effect, if any, prepro-
cessing had on the annotation process. The 50 documents in subcollections 1 and
2 were randomly selected from the full corpus and added (randomly dispersed) to
each annotator’s annotation set (subcollections 3, 4, and 5). Some bias may have
been introduced by not preprocessing subcollection 2 (because these documents
were sometimes readily identifiable), but we considered it important to understand
the effect (if any) of preprocessing on interannotator agreement.

4.3. Annotation guidelines

To guide the annotation process and promote continuity between annotators, a
draft set of annotation guidelines was constructed prior to the annotation process.
Meetings among the annotators were periodically conducted, whereby difficult cases
were discussed and the annotation guidelines adjusted. Final annotation guidelines
are provided as supplementary material.

4.4. Annotation quality assurance

After the completion of the annotation process, each of the annotators indepen-
dently performed a review and consistency check of their entire annotation set
based on the finalized set of annotation guidelines.

4.5. Interannotator agreement

Interannotator agreement (IAA) was calculated in a pairwise manner using the same
metrics that were used to evaluate MutationFinder. Each annotator’s data set was
alternately treated as the gold standard; and the average F -measure (harmonic
mean of precision and recall) was calculated for Extracted Mentions, Normalized
Mutations, and Document Retrieval.e IAA was calculated over all complete point

eAn alternative approach to calculating interannotator agreement in the corpus construction lit-
erature is the Kappa metric.26 Kappa attempts to take into account the likelihood of chance
agreement between annotators. We do not use it here for a variety of reasons. A number of
authors have pointed out various deficiencies of Kappa for annotation tasks like ours, ranging
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Table 6. Mean pairwise interannotator agreement (IAA). Mean pairwise F -measure is
presented, using three evaluation metrics, on the 25 documents in subcollection 1 (PRE-
PROCESSED), the 25 documents in subcollection 2 (NOT PREPROCESSED), and the
50 documents in the union of subcollections 1 and 2 (ALL IAA).

Task PREPROCESSED NOT ALL IAA
PREPROCESSED

Extracted Mentions 0.949 0.951 0.950
Normalized Mutations 0.916 0.967 0.941
Document Retrieval 0.926 1.000 0.961

mutations, and the mean pairwise IAA was 95.0% for Extracted Mentions. Com-
plete IAA data is presented in Sec. 5.2 and Table 6.

4.6. Division of gold standard into development and test data

Annotator 3 (Caporaso) had the role of both corpus annotator and primary devel-
oper of MutationFinder. To avoid overfitting MutationFinder to the gold standard
corpus, the corpus was divided into development and test subsets.

The development subset of the gold standard was composed of documents
from subcollections 1, 2, and 5 (i.e. the 305 documents that were annotated by
annotator 3). The test subset was composed of documents from subcollections 3
and 4 (i.e. the 508 documents that were not annotated by annotator 3). For a
detailed breakdown of the gold standard corpus and the division between develop-
ment and test data, see Table 7.

Table 7. Corpus contents. Contents of the development (DEV) and test (TEST) sets
derived from the generated gold standard corpus. For the three mutation types that
were annotated, the number of complete annotations is presented, followed by the
number of partial annotations in parentheses. The vast majority of annotations were
point mutations.

DEV TEST TOTAL

Documents 305 508 813
Documents containing mutation mentions 111 212 323
Documents not containing mutation mentions 194 296 490
Point mutation annotations (partial) 605 (56) 910 (150) 1515 (206)
Insertion annotations (partial) 0 (0) 0 (3) 0 (3)
Deletion annotations (partial) 4 (0) 10 (5) 14 (5)

from the difficulty in deciding how to calculate chance agreement27 to the widespread difficulty
in interpreting it.28 More salient to the evaluation of the work described here is the fact that, as
Hripcsak and Rothschild29 have demonstrated, when the number of negative instances in a set
of data far outnumbers the number of positive instances, chance agreement approaches zero and
Kappa is essentially equivalent to the pairwise F -measure between arguments. This characterizes
very well the situation in this task, where the number of tokens (roughly equivalent to that of
words) in the corpus that are instances of mutation mentions is far outnumbered by the number
of tokens that are not instances of mutations.
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The development corpus was used for informing decisions about which patterns
and rules should be included in the system. The test set served as a completely
blind test for MutationFinder. Evaluation was only performed using the test data
following system development and optimization.

5. Results

We address two hypotheses in the article: (1) that automatic methods can be used
to learn patterns of sufficient quantity and quality in order to match or outperform
a manually built rule set, and (2) that annotation standards and text collections
sufficient for the building of high-quality corpora of mutation mentions with good
IAA can be developed. We now present data supporting both of these hypotheses.

5.1. Manually versus automatically constructed rules

Our initial attempt at building a high-performance concept recognition system
involved manually compiling rules informed during annotation of the development
corpus by annotator 3. This annotation process required approximately 18 hours to
complete, and was an important step in the development of the manually compiled
rule set. Our automatic approach required only 5.5 person-hours for rule develop-
ment, and achieved a higher F -measure than the manually constructed rule set
when tested on data that were blind with respect to both rule sets (Table 5). Since
statistical tests have not yet been performed, we conclude that automatically gen-
erated rule sets can achieve performance that is at least equivalent to manually
generated rule sets. In our case, the automatically constructed rule set took less
than 1/3 of the time required for compiling the manually constructed rule set.

In an additional test of MutationFinder’s automatically constructed rule set, we
applied MutationFinder to the full-text corpus recently published with Mutation
GraB10 (Table 8). For this analysis, we combined their three development and three
test corpora into a single test corpus. Our Normalized Mutations metric is equiva-
lent to their “Cited Mutation” metric. Since Lee et al.10 only present performance
data on this corpus for the more ambitious task of extracting associated pairs of
mutations and genes/proteins, a direct comparison with their system cannot be

Table 8. Performance of MutationFinder on the Mutation GraB corpus. Counts of true
positives (TP), false positives (FP), and false negatives (FN) are presented, along with
precision (P), recall (R), and F -measure (F) for the three different performance metrics.
This corpus did not annotate mutation mentions, so Extracted Mentions cannot be calcu-
lated. All code and data, including a translation of the corpus that is compatible with our
performance script, are available at http://mutationfinder.sourceforge.net.

Automatically generated rules TP FP FN P R F

Normalized Mutations 3572 177 837 0.952 0.808 0.874
Document Retrieval 503 1 26 0.998 0.951 0.974
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performed at this time. The nearly identical performance of MutationFinder on the
Mutation GraB corpus and on our blind test data (Table 5) further suggests that
MutationFinder’s performance will scale well to unseen data.

Our automated pattern generation approach yielded 759 patterns. The fre-
quency of these patterns in the literature roughly matched a power-law (Zipfian)
distribution, and the resulting regular expressions in our regex.txt file (available
on the project web site) are listed in order from most commonly matching to least
commonly matching. While most of the very high-frequency regular expressions
were included in the manually generated pattern set, it is the compilation of the
lower-frequency patterns that is truly valuable. These patterns could be compiled
manually, but the time required would be prohibitive.

5.2. Interannotator agreement (IAA)

A total of 1,515 complete point mutation mentions were annotated in the 813 docu-
ments. The mean pairwise IAA, when comparing Extracted Mentions calculated on
the fifty documents annotated by all three annotators, was 95%. Similar IAA results
were obtained when calculating over the preprocessed versus non-preprocessed data;
preprocessing does not appear to have an effect on IAA. We expect that the observed
differences are not statistically significant (see Table 6). The resultant gold standard
corpus is available at http://mutationfinder.sourceforge.net.

6. Discussion and Future Directions

6.1. Error analysis

6.1.1. Precision limitations

MutationFinder achieved very high precision on all of the data sets on which it was
tested. There were, however, several categories of residual errors. In some cases,
MutationFinder extracted other entities, such as genes, proteins, or cell lines, whose
names appeared similar to mutation mentions. Additionally, MutationFinder occa-
sionally incurred false positives due to promiscuous pattern matching; for example,
in the text “the transfer of a proton from the catalytic cysteine to a His 207-Asp
205 diad via a system of ordered water molecules,”f H207D was extracted as a point
mutation because MutationFinder’s pattern WRES SPOS-MRES was matched.

To quantify the problem of extracting gene or cell line names as mutations, we
generated lists of gene names and cell line names to provide as input to Mutation-
Finder. A list containing 2,706,089 unique gene names was constructed by parsing
out the symbol, official symbol, full name, and synonyms for each gene record
in the Entrez Gene gene infog file. A collection of 8,102 unique cell line names
was compiled from three online sources.30–32 We supplied these lists as input to

fSource PMID: 10841779.
gftp://ftp.ncbi.nih.gov/gene/DATA/gene info.gz.
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MutationFinder, and counted the number of gene and cell line names which Muta-
tionFinder erroneously identified as mutation mentions. Only 679 (0.025%) of the
gene names and 30 (0.370%) of the cell line names were identified as mutations by
MutationFinder, leading us to conclude that these false positives will be rare in
practice.

The H207D example presented above represents a false-positive mutation men-
tion extracted from our development corpus. Promiscuous patterns do not appear
to be overly problematic for us at this stage, in part due to the post hoc error
analysis presented in Sec. 3.5.1. Since post hoc error analyses of precision are not
dependent on the availability of annotated data, we expect that in most cases prob-
lematic patterns can be easily identified and removed or modified, as we did with
MutationFinder. An explicit fault model33 is helpful for the sometimes surprisingly
difficult task of error analysis. Cohen et al.34 described the use of a fault model in
designing test suites for a biomedical named entity recognition system, and Johnson
et al.35 described the design of a fault model for post hoc error analysis of ontol-
ogy linking systems. A strength of our approach is that it is very easy to review,
modify, and delete patterns. (We retained the pattern that caused the H207D error,
but modified other patterns as discussed earlier.)

6.1.2. Recall limitations

MutationFinder did not achieve the full recall that we believe it is capable of (with
high precision maintained). We performed an error analysis by reviewing all false
negatives incurred by MutationFinder on our development corpus at the Document
Retrieval level. Errors fell into four categories, and in some circumstances a single
error fell into more than one category. First, in five cases, mutations were missed due
to the presence of intervening text in the patterns. For example, the text “His-554
of IIAMtl was mutated to glutamine”h describes the mutation H554Q. The first
mutation pattern presented in Table 2(d) comes close to matching this mention,
except that there is intervening text in the input: “of IIAMtl”. Second, in four
cases, mentions were missed because patterns did not comply with the bootstrap
rule (e.g. a mutation mention was split across sentence boundaries). Third, two
errors arose due to the presence of compound complex coordinationsi being used to
describe several mutations at once. For example, if the patterns in Table 2(e) were
applied to the text “Ala-42 was mutated to Gly, Phe, Leu, and Trp”, we would only
extract two of the four mutations (i.e. A42G and A42F). Finally, two more errors
arose due to our exclusion of single-letter-abbreviations when matching mutation
mentions in all patterns except WRESSPOSMRES.

The first three of these limitations could be avoided by modifying Mutation-
Finder’s rule set, while the fourth represents an underlying difficulty in concept

hSource PMID: 16443929.
iPhrases where a noun phase is meant to be associated with each element in a list.
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recognition. The problem of intervening text can be addressed by applying the
method presented by Huang and colleagues18 (by attempting to align patterns with
text), or by syntactically analyzing the text and allowing optional extensions to the
patterns. In the example provided above, we might try specifying that a preposi-
tional phrase may be optionally present in the pattern. While syntactic processing
may be necessary to address these few remaining problems, the complexities intro-
duced by its application (perhaps even increasing the complexity of the pattern
language beyond regular expressions) can at best address a relatively small num-
ber of errors. Limitations arising from the bootstrap rule could also be addressed.
In our error analysis, two of these four errors arose because a mutation mention
was split across two sentences. By rebuilding raw patterns, but allowing for occur-
rences of residues and sequence positions in neighboring sentences, we could obtain
patterns that matched these mentions. Next, by adding an additional syntactic
processing step to step 4, compound complex coordinations could be generalized
to allow a variable number of intermediate residue mentions. The mentions missed
due to single-letter-abbreviated residue mentions, however, represent a more inher-
ent problem: the trade-off between precision and recall that must be made when
developing a concept recognizer. As discussed in Sec. 3.5.3, a large precision hit is
incurred by matching single-letter-abbreviated residue mentions, while only a small
increase in recall is achieved. Without investing a large amount of time to inves-
tigate when single-letter abbreviations should be accepted, mentions of this type
would always be missed by MutationFinder to maintain precision.

If higher recall is required than is initially achieved when applying our rule-
learning methodology to other tasks, we recommend performing error analyses
to identify false negatives and addressing those that cause the most significant
problem first (at the expense of additional person-hours for system development).
Recall optimization, however, will often require some sort of annotated test data.
If resources are unavailable for corpus development, Craven and Kumlien36 recom-
mend approaches for rapidly developing weakly annotated data. Based on our error
analysis, we conclude that false negatives, in many cases, can be avoided through
additional syntactic and other processing in step 4 of our approach. We expect that
recall optimization will not be necessary in many applications, and discuss this
further in Sec. 6.3.

6.2. Generation of patterns for other concept recognition tasks

To apply our methodology of developing patterns for extracting different types of
events or relationships, raw patterns would need to be compiled with an alternate
bootstrap rule. For example, we will examine the problem of extracting descrip-
tions of protein transport events37 from the biomedical literature. Imagine that
we would like to design a system to extract a TRANSPORTED-PROTEIN, a SOURCE,
and/or a DESTINATION from unseen text. Our bootstrap rule could specify that
if a protein and a cellular location are mentioned in a single sentence, then a
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Table 9. Hypothetical patterns which might be generated for a protein trans-
port event extraction system. These examples were manually obtained from
GeneRIFs describing protein transport events.

Input text (Entrez Gene ID) Pattern

(a) Bcl-xL from the cytosol to the TRANSPORTED-PROTEIN from the
outer mitochondrial membrane SOURCE to the DESTINATION

(598)

(b) MDMX is transported to the cell TRANSPORTED-PROTEIN is
nucleus upon DNA damage transported to the cell

(4194) DESTINATION

(c) Stau2(59) is exported from the TRANSPORTED-PROTEIN is exported
nucleus by two distinct from the SOURCE

pathways (171500)

protein transport event may have been described. Named entity recognizers could
be applied to identify sentences complying with this rule. Both a protein-name
recognizer and a cellular-location recognizer would be required to match at least
once. Raw patterns could then be generated from complying sentences and manu-
ally converted into transport patterns. Example texts and patterns are presented
in Table 9. This example differs from MutationFinder to illustrate how the system
could be modified to handle the extraction of incomplete events [see Table 9(b)
and 9(c)].

Recognizing mutations in text is relatively simple compared to recognizing pro-
tein transport events, and applying our approach to more complex concept recog-
nition problems may require more work or result in lower performance. We plan to
apply our methodology to generate more complex patterns and report on its utility
in future publications.

6.3. Optionality of recall optimization

We optimized MutationFinder’s precision and recall to construct a high-
performance mutation recognition system. Our findings are consistent with the
hypothesis that the construction of rule sets for mutation recognition is largely
automatable. We conclude that our approach, being recall-oriented, does not require
recall optimization, although it can be helpful. Precision optimization, on the other
hand, is necessary. This is convenient: precision optimization can be performed inex-
pensively via post hoc analyses, while recall optimization typically requires more
costly human-annotated data.

MutationFinder achieves high recall prior to optimization [Table 4(a) and 4(c)].
While an error analysis has suggested four causes of false negatives, we expect that
for many practical applications, expending additional effort to optimize recall may
not be worthwhile. Our tests of MutationFinder involved collections of abstracts
or GeneRIFs as corpora. We expect that, if MutationFinder were evaluated on
annotated full-text, the Normalized Mutation recall would be higher than if it
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were evaluated on abstracts alone (although precision may be adversely effected).j

We reason that when a mutation is the subject of an article, it is likely to be
mentioned more than once. With each additional mention of a specific mutation, the
chances of it being matched by a pattern increase. As full text continues to become
more available, we expect that if higher recall is required, MutationFinder could
be applied to full text versus abstracts alone. Additionally, as we have previously
noted,6 for most practical concept recognition applications, extracting at least one
instance of each targeted event is sufficient (i.e. the Normalized Mutations task is
more important than the Extracted Mentions task).

Taken together, the already high recall achieved by our approach, the increasing
availability of full text, and the generally greater significance of extracting normal-
ized information as opposed to individual mentions support our claim that recall
optimization (with human-annotated data) of systems developed by our approach
is not required.

6.4. Association of mutation mentions with genes or proteins

MutationFinder extracts mentions of point mutations from the literature with high
precision and recall. An even more useful system would associate mutations with
genes or proteins. We plan to address this next, and we predict that our pattern
learning approach will scale well to this problem. By using MutationFinder as an
entity recognizer and by employing a high-performance gene/protein name recog-
nizer, we can learn patterns for extracting these associations from the literature.
In addition to providing a useful concept recognition system, this future work will
provide insight on automatically learning patterns to extract associated entity men-
tions from text.

7. Conclusions

An unprecedented quantity of biomedical text is available via Medline, and full-text
journal publications are becoming increasingly available to the public. Biomedical
language processing offers hope for managing this ever-increasing literature base,
but it has been noted that “[k]nowledge-based NLP systems will be practical for
real-world applications only when their domain-dependent dictionaries can be con-
structed automatically.”13 We have presented one mechanism, along with a case
study, illustrating how Medline can be utilized to make data currently available
only in the biomedical literature more accessible to researchers.

We have presented the methodology employed to develop MutationFinder,
our high-performance system for extracting point mutation mentions from the

jIn our test on the Mutation GraB corpus, we did notice a slight decrease in precision when
MutationFinder was tested on full text, compared with the precision on abstracts in our test col-
lection. We plan to perform a post hoc error analysis of MutationFinder using the Mutation GraB
corpus to identify the cause of the additional false positives. Since abstracts were not annotated
separately in this corpus, we were not able to test our abstract versus full-text hypothesis on this
data set.



December 15, 2007 20:4 WSPC/185-JBCB 00314

1256 J. G. Caporaso et al.

biomedical literature; our publicly available mutation corpus, which should prove
valuable for enabling direct comparisons between mutation recognition systems; and
several measures of MutationFinder’s performance, beyond what was presented in
our previous MutationFinder publication. Our methodology is extensible to other
concept recognition goals, and provides a means for achieving high precision and
recall while minimizing the investment of time in corpus development (when train-
ing and testing machine-learning–based systems) or system development (when
manually developing rule-based systems). This work additionally highlights the sig-
nificance of studying mutation recognition from free text: the mutation recognition
problem is a useful model for text mining from biomedical text in general, and it
appears to provide insights that can be generalized to other biomedical domains.
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