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Abstract

Background: Previous studies have reported volatile organic compounds (VOCs) in breath as biomarkers of breast cancer
and abnormal mammograms, apparently resulting from increased oxidative stress and cytochrome p450 induction. We
evaluated a six-minute point-of-care breath test for VOC biomarkers in women screened for breast cancer at centers in the
USA and the Netherlands.

Methods: 244 women had a screening mammogram (93/37 normal/abnormal) or a breast biopsy (cancer/no cancer 35/79).
A mobile point-of-care system collected and concentrated breath and air VOCs for analysis with gas chromatography and
surface acoustic wave detection. Chromatograms were segmented into a time series of alveolar gradients (breath minus
room air). Segmental alveolar gradients were ranked as candidate biomarkers by C-statistic value (area under curve [AUC] of
receiver operating characteristic [ROC] curve). Multivariate predictive algorithms were constructed employing significant
biomarkers identified with multiple Monte Carlo simulations and cross validated with a leave-one-out (LOO) procedure.

Results: Performance of breath biomarker algorithms was determined in three groups: breast cancer on biopsy versus
normal screening mammograms (81.8% sensitivity, 70.0% specificity, accuracy 79% (73% on LOO) [C-statistic value],
negative predictive value 99.9%); normal versus abnormal screening mammograms (86.5% sensitivity, 66.7% specificity,
accuracy 83%, 62% on LOO); and cancer versus no cancer on breast biopsy (75.8% sensitivity, 74.0% specificity, accuracy
78%, 67% on LOO).

Conclusions: A pilot study of a six-minute point-of-care breath test for volatile biomarkers accurately identified women with
breast cancer and with abnormal mammograms. Breath testing could potentially reduce the number of needless
mammograms without loss of diagnostic sensitivity.
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Introduction

Breast cancer is the most commonly diagnosed cancer in

women, in whom it is second only to lung cancer as a cause of

cancer death [1]. The National Cancer Institute estimated that

more than 232,000 US women would be diagnosed with breast

cancer in 2013 and nearly 40,000 will die of the disease [2]. In

order to reduce the number of breast cancer deaths, many

countries have established screening mammography programs to

detect and treat early-stage disease [3]. However, screening

mammography may be associated with an increased risk of

radiation-induced breast cancer, as well as with overdiagnosis and

overtreatment [4,5]. Many women decide not to take the test even

when it is readily available, and screening mammography is

frequently underutilized. Several factors may influence this

decision, including fear of pain and radiation exposure, as well

as ethnicity, poverty, and level of education [6–9].

These limitations of screening mammography have stimulated

the search for new tools to identify early-stage breast cancer

without any discomfort or risk [10]. Members of our group have

previously reported a breath test for volatile organic compounds

(VOCs) employing gas chromatography (GC) and mass spectrom-

etry (MS) that identified sensitive and specific biomarkers of breast
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cancer. Multivariate models containing as few as five breath

VOCs accurately predicted the presence or absence of breast

cancer [11–13]. Other researchers have also reported evidence of

breath VOC biomarkers of breast cancer employing a variety of

different approaches including GC MS [14–16], exhaled breath

condensate [17], electronic noses [18–21], and sniffing dogs

[22,23].

In recent years, the clinical value of breath testing has been

increasingly recognized in other applications such as urea breath

tests for detection of Helicobacter pylori infection and nitric oxide

breath concentrations for monitoring the severity of bronchial

asthma [24]. Clinical studies have also demonstrated breath VOC

biomarkers in other diseases, including lung cancer [25,26],

pulmonary tuberculosis [27,28], radiation exposure [29], and

heart transplant rejection [30].

The objective of this study was to test the hypothesis that a rapid

point-of-care breath test could detect breath biomarkers of breast

cancer. We tested this hypothesis in a multicenter clinical study

with the BreathLink system that collects, concentrates, and assays

breath VOCs in approximately six minutes. The BreathLink

system was previously reported to identify breath biomarkers of

active pulmonary tuberculosis [31].

Materials and Methods

Clinical sites
Three breast cancer treatment centers participated in the study:

Saint Michael’s Medical Center, Newark, NJ, Swedish Medical

Center, Seattle, WA, and Maastricht University Medical Center,

Maastricht, the Netherlands.

IRB approval and informed consent
The Institutional Review Board (IRB) at all collaborating sites

approved the research. All subjects gave their signed informed

consent to participate.

Human subjects
Two groups of subjects were studied.

a. Normal healthy women attending for a screening

mammogram. Subjects were included if they were female,

aged . = 18 years, understood the study, were willing and able to

give signed informed consent to participate, and could donate a

breath sample during 7-day period prior to screening mammog-

raphy. Subjects were excluded if they had a previous history of

breast cancer, cancer at any other site, breast biopsy, abnormal

mammogram or palpable breast mass. The screening population

at Maastricht University with a negative mammogram including a

subset of women with increased risk for developing breast cancer

because of BRCA 1 or 2 positivity, or high incidence of breast

cancer in the family without known mutation.

b. Women with an abnormal screening mammogram

referred for breast biopsy. Subjects were included if they

were female, aged . = 18 years, understood the study, were

willing and able to give signed informed consent to participate,

and had been referred for breast biopsy because of an abnormal

screening mammogram (BIRADS 3–5) or a palpable breast mass.

Point-of-care breath test
The BreathLink system been described previously [31]. In

summary, subjects wore a nose-clip and respired normally for

2.0 min, inspiring room air from a valved mouthpiece, and

expiring into a breath reservoir. A microbial filter prevented

contamination of the reservoir (efficiency .99.9% for bacteria and

.99.8% for viruses) (Vital Signs, Totowa, NJ). The mouthpiece

and filter were discarded after a single use; they presented low

resistance to expiration, so that subjects could donate breath

samples without effort or discomfort. Alveolar breath VOCs were

pumped from the breath reservoir through a sorbent trap where

they were captured and concentrated. VOCs in a similar volume

of room air were separately collected and concentrated in the same

fashion. Breath VOCs were analyzed with a portable gas

chromatograph (GC) coupled to a surface acoustic wave (SAW)

detector. The analyzer was calibrated daily with an external

standard, a mixture of C6 to C22 n-alkanes (Restek Corporation,

Bellefonte, PA 16823, USA). Each breath test comprised collection

and analysis of separate samples of breath and room air. The time

from commencement of breath collection to completion of GC

analysis was six minutes. Files containing anonymized chromato-

graphic data and electronic case report forms were stored locally

on the BreathLink, then encrypted and transmitted via internet to

a server at the Menssana Research Breath Research laboratory in

Newark, NJ, USA, where they were decrypted and stored for

analysis.

Analysis of data
Chromatograms and results of mammograms and biopsies were

transmitted to Schmitt & Associates, Newark, NJ, who analyzed all

data independently without any participation by the study

sponsors. The principles of the method have been described in

reference [32]. In summary, each chromatogram was converted

into a series of data points derived from the SAW detector signal

(3013 scans/min) The alveolar gradient (i.e. abundance in alveolar

breath minus abundance in ambient room air) was then

determined [31].

Identification of biomarkers and construction of
predictive algorithm

Biomarkers were identified and algorithms were developed

independently in three groups: women with breast cancer on

biopsy compared to women with normal screening mammograms,

normal versus abnormal screening mammograms (BIRADS 1–2

versus BIRADS 3–6), and cancer versus no cancer on breast

biopsy. The methods have been described previously [32]. In

summary, chromatograms were permuted using multiple Monte

Carlo simulations to identify the chromatographic peak segments

that identified disease with greater than random accuracy. The

alveolar gradients of all chromatographic peak segments were

compared in disease and control groups and ranked as candidate

biomarkers according to their C-statistic values i.e. the AUC of the

Table 1. Patient characteristics.

Screening mammography group (n = 130)

Normal (BIRADS 1–2) 93

Abnormal (BIRADS 3–6) 37

Breast biopsy group (n = 114)

Cancer negative 79

Cancer positive 35

Invasive ductal carcinoma 20

Ductal carcinoma in situ 8

Invasive lobular carcinoma 5

Sarcomatoid carcinoma 1

Atypical papillary lesion 1

doi:10.1371/journal.pone.0090226.t001
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receiver operating characteristic (ROC) curve [33]. The underly-

ing statistical distribution of each chromatographic peak segment

was determined with multiple Monte Carlo simulations by

randomly permuting subjects between disease and control groups,

and performing 40 estimates of the C-statistic value. Differences

between the C-statistic values obtained with correct diagnosis and

statistic obtained with random permutations of diagnosis identified

the chromatographic peak segments that were apparent biomark-

ers, because they identified the disease group with better than

random accuracy [34,35]. The chromatographic peak segments

identified as biomarkers of disease were employed to construct a

multivariate predictive algorithm with weighted digital analysis

(WDA) [36].

Cross-validation of predicted outcomes
A repeated leave-one-out (LOO) bootstrap method was

employed in order to provide a robust and conservative estimate

of prediction error [37]. One subject at a time was removed from

the total data set, and the remaining data set was used to derive an

algorithm employing multiple Monte Carlo simulations and WDA

as described above. The left-out subject was used to calculate the

discriminant value based on the algorithm, and results from all

subjects were combined in a ROC curve

Results

Human subjects
244 subjects fulfilled recruitment criteria and provided techni-

cally usable breath chromatograms. Their characteristics are

shown in Table 1. No adverse effects of the breath test were

reported.

Identification of biomarkers and construction of

predictive algorithms. Following correction for multiple

signals from a single biomarker generated by adjacent SAW

detector scans, fewer than ten significant biomarkers were detected

in each comparison group.

Women with breast cancer on biopsy versus women with

normal screening mammograms (BIRADS 1–2 versus

BIRADS 3–6). Figure 1 displays outcomes of Monte Carlo

simulations in upper panel, and the performance of breath

biomarker algorithms in the middle panel: 81.8% sensitivity,

70.0% specificity, 79% accuracy (C-statistic value. Cross-valida-

tion of predicted outcomes in the lower panel displays LOO ROC

curve with AUC = 0.73.

Women with normal versus abnormal screening

mammograms. Figure 2 (left panel) displays ROC curve with

sensitivity = 86.5%, specificity = 66.7%, and AUC = 0.83; LOO

ROC curve AUC was 0.62.

Women with cancer versus no cancer on breast

biopsy. Figure 2 (right panel) displays ROC curve with

sensitivity = 75.8%, specificity = specificity = 74.0% and AUC

= 0.78; LOO ROC curve AUC was 0. 0.67.

Expected outcome of screening. Table 2 shows the

expected outcome of screening one US million women for breast

cancer with the breath test. These predictions employ the

following assumptions: test sensitivity = 81.8%, specificity

Figure 1. Breath test outcome in healthy women (normal
screening mammogram) versus women with breast biopsy
positive for cancer. Identification of breath biomarkers (upper
panel): A list of candidate breath biomarkers of disease was obtained
by segmenting chromatograms into a time series of alveolar gradients,
where the alveolar gradient comprised detector response in breath
minus corresponding detector response in room air. The diagnostic
accuracy of each candidate biomarker was quantified as the area under
curve (AUC) of its associated receiver operating characteristic (ROC)
curve. This figure displays the number of candidate biomarkers (y-axis)
as a function of their diagnostic accuracy (x-axis). The ‘‘correct’’ curve
employed the correct assignment of diagnosis (normal mammogram or
cancer on biopsy). The ‘‘random’’ curve employed multiple Monte Carlo
simulations comprising 40 random assignments of diagnosis in order to
determine the random behavior of each candidate biomarker. The
horizontal separation between the ‘‘correct’’ and ‘‘random’’ curves
varies with the amount of diagnostic information in the breath signal.
Where the number in the ‘‘random’’ curve declines to ,1, its vertical
distance from the ‘‘correct’’ curve identifies the excess number of
candidate biomarkers that identified the disease group with greater
than random accuracy. The number of apparent biomarkers with
greater than random accuracy exceeded 30, but several segments were
closely adjacent in the time series, consistent with approximately 10
biomarker peaks in the chromatogram. Similar analyses were also
performed in normal versus abnormal screening mammograms and
cancer versus no cancer on breast biopsy in order to develop separate
algorithms. Diagnostic accuracy of the breath test (lower panel): The
ROC curve displays the breath test’s accuracy in distinguishing healthy
women with a normal screening mammogram from women whose
breast biopsy was positive for cancer. The breath test employed a
multivariate predictive algorithm derived from the biomarkers with

greater than random accuracy that were identified with the Monte
Carlo simulations in the left panel. Sensitivity and specificity values were
determined from the point on the ROC curve where their sum was
maximal. Cross-validation of predicted outcomes is shown in red ROC
curve. A repeated leave-one-out bootstrap method was employed to
estimate the prediction error (method described in text).
doi:10.1371/journal.pone.0090226.g001
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= 70.0% (Figure 1) and prevalence of 3.95 breast cancers per 1000

screening mammograms [38].

Discussion

This study tested the hypothesis that a rapid point-of-care

breath test could detect breath biomarkers of breast cancer. The

main finding in the study group was that the test identified women

with breast cancer with 79% accuracy. The breath test also

distinguished between normal and abnormal mammograms with

83% accuracy and between breast biopsies read as positive or

negative for cancer with 78% accuracy.

The hypothesis was supported by the consistency of these

findings with previous reports that laboratory-based breath tests

employing GC MS identified breath biomarkers of breast cancer

and abnormal mammograms [11–13]. The accuracy of rapid

point-of-care breath testing was comparable to screening mam-

mography with digital or film imaging (78% and 74% accuracy

respectively) [39]. The fundamental point of difference between

the tests is that mammography detects altered anatomy, while

breath testing detects altered biochemistry.

The hypothesis was further supported by its rational basis in

biology. Breath biomarkers of breast cancer have been linked to

increased oxidative stress in breast cancer tissue, where an

activated phenotype in stromal fibroblasts causes increased

secretion of hydrogen peroxide, a powerful oxidant [40].

Oxidative stress is accompanied by increased production of

reactive oxygen species that peroxidate polyunsaturated fatty

acids in cell membranes, liberating alkanes such as pentane and

alkane derivatives that are expired in the breath [15] [41,42]. In

addition, the abundance of VOCs in breath may be modulated by

induction of polymorphic cytochrome p450 mixed oxidase such as

CYP2E1 enzymes [43]. Breast cancer is accompanied by

upregulation of several cytochrome p450 enzymes including

aromatase, which increases the tissue concentration of estradiol

and activates a large number of carcinogenic genes via estrogen

receptor-alpha in malignant epithelial cells [44]. These upregu-

lated cytochrome p450 enzymes may also accelerate the degra-

dation of circulating endogenous VOCs, causing detectable

changes in the composition of breath. The effect of the size or

the stage of the tumor was not analyzed in this report because the

total number of cancers was too small to permit statistically

meaningful stratification of the data.

Our previous reports of breath biomarkers of breast cancer

identified candidate VOCs with GC MS. The main VOC

biomarkers included alkanes and alkane derivatives e.g. tridecane,

tetradecane, and dodecane, 2,7,10-trimethyl, all of which were

consistent with downstream products of lipid peroxidation induced

by oxidative stress [13]. The candidate biomarkers also included a

number of benzene derivatives whose origin is not known. This

study employed a rapid point-of-care breath test employing gas

chromatography with a surface acoustic wave detector (GC SAW)

that was previously reported to identify breath biomarkers of

active pulmonary tuberculosis [31]. The main advantage of GC

SAW over GC MS is its suitability for point-of-care breath testing

because of its rapidity, robustness, ease of use, and lower cost.

However, the SAW detector responds only to the mass of VOCs in

breath and unlike MS, does not provide information about their

chemical structure. Future studies will focus on determination of

the Kovats Indices (i.e. relative chromatographic retention times)

of the breath VOC biomarkers observed with GC SAW, in order

to correlate biomarkers with those observed using GC MS.

As Table 3 illustrates, other researchers have also reported

breath VOC biomarkers of breast cancer consistent with products

of oxidative stress e.g. pentane. Where other breath VOC

biomarkers of breast cancer have been reported, these differences

may have arisen in part from an artifact of analysis with1D GC

MS. Breath VOC separation with a newer technique, 2-

dimensional GC, resolves ten times as many peaks as 1D GC

i.e. 2,000 VOCs in a sample versus 200 [45]. It is likely that many

apparently ‘‘pure’’ breath VOC biomarkers that were previously

observed with 1D GC MS in breath were actually co-eluting

mixtures of several different VOCs e.g. breath hexane observed

with 1D GC MS was resolved by 2-dimensional GC into a mixture

of seven different VOCs that included hexane and six other

VOCs. As a consequence, previous studies employing 1D GC MS

may have erroneously reported the chemical structure of apparent

biomarkers of breast cancer.

Modern breath assays with highly selective technologies can

detect more than 2,000 different VOCs in a single sample of

Figure 2. Breath test outcomes in screening mammography and in breast biopsy. Identification of breath biomarkers, determination of
diagnostic accuracy of the breath test, and LOO cross-validation of predicted outcomes were performed in the same fashion as described in Figure 1.
Sensitivity and specificity values were determined from the point on the ROC curve where their sum was maximal. The left panel displays comparison
of women with normal and abnormal screening mammograms, and the right panel displays comparison of women with cancer and no cancer on
breast biopsy.
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breath, providing a powerful new tool for biomarker discovery

[29,45]. However, this benefit has been accompanied by an

increased statistical risk of mistakenly identifying spurious

biomarkers amongst a large number of candidates. This problem

has generated some picturesque metaphors in the breath research

community: ‘‘Finding the needles in a haystack’’ can yield

‘‘voodoo biomarkers’’ by ‘‘seeing faces in the clouds’’. In order

to minimize this problem, a predictive multivariate algorithm

should first, be derived in a training set employing only those

biomarkers identified with high statistical significance, and second,

the algorithm should be validated in an independent predictive set.

In this comparatively small pilot study, the multiple Monte Carlo

simulations identified a statistically significant set of candidate

biomarkers that were cross-validated with a repeated leave-one-

out bootstrap method. However, these findings will require

validation in larger future studies.

The major technical challenge to screening programs for breast

cancer is the low prevalence of disease in populations at average

risk, and the resulting low yield of true-positive findings. In a study

of more than two million screening mammograms, the mean

cancer detection rate for individual radiologists was 3.95 cancers

per 1000 examinations [38] i.e. the pre-test a priori likelihood of

finding cancer on a screening mammogram was only 1 in every

250 tests. The results of this study suggest that that a positive result

on a breath test can enrich the screened population nearly

threefold for risk of breast cancer, while a negative result could

safely exclude 99.9% of all women with the disease. This could

dramatically reduce needless exposure to radiation, because the

overwhelming majority of screened women are cancer-free

(99.61%), but they are exposed to the risks and discomforts of

mammography in order to learn that their test result was negative.

A cancer-negative mammogram is a needless procedure, but this

can only be known after the event.

Breath biomarkers in this study group identified abnormal

screening mammograms with 100% sensitivity and 33% specificity

(Figure 2). If this finding is confirmed in validation studies, a

breath test could potentially identify all women who will have an

abnormal screening mammogram while safely excluding a third of

population who will have a normal result and do not require

further testing. However, further studies will be required to

confirm these findings in larger numbers of subjects.

In addition, the chromatographic peak segments that were

identified as biomarkers of disease contained no information about

the chemical structure of the VOCs detected, since the SAW

detector responded only to mass of eluting compounds. Another

goal of future studies will be to determined the Kovats Index

values of these biomarkers by comparing their retention times to

those of known n-alkane standards, and comparing them to the

Kovats Index values of VOCs whose structures have been

identified by mass spectrometry.

We conclude that a rapid point-of-care test for biomarkers in

breath accurately identified women with breast cancer and with

abnormal mammograms, and distinguished between breast

biopsies read as positive or negative for cancer. These findings

Table 2. Expected outcome of screening for breast cancer with breath test.

CANCER STATUS

Positive Negative
Pre-test value
(%)

Post-test
value (%) Enrichment factor

TEST positive TP = 3,231 FP = 298,815 PPV 0.395 1.070 2.708

RESULT negative FN = 719 TN = 697,235 NPV 99.605 99.897 1.003

Total 3,950 996,050

The table summarizes the expected outcome of screening one million women in the USA with a breath test, assuming test sensitivity = 81.8% and specificity = 70.0%
(Figure 1, middle panel), and prevalence of breast cancer is 3.95 cancers per 1000 (based on mean cancer detection rate of screening mammography) [44]. TP = true
positives, FP = false positives, FN = false negatives, and TN = true negatives. PPV and NPV are positive and negative predictive value respectively, where PPV = TP/
(TP+FP), NPV = TN/(TN+FN), and enrichment factor = post-test value/pre-test value.
doi:10.1371/journal.pone.0090226.t002

Table 3. Summary of previous reports by other investigators of breath biomarkers of breast cancer.

Author #1 Assay method Outcome

Hietanen [15] GC Increased pentane in breast cancer

Mangler [14] GC MS Specific pattern of 5 VOCs in breast cancer: 3-methylhexane, decene, caryophyllene, naphthalene,
and trichloroethylene

Patterson [16] GC MS Clustering patterns in 383 VOCs classified breast cancer with 77% accuracy; 72% sensitivity, 64%
specificity

Peng [20] Nanosensor array And GC MS Differentiated between ‘healthy’ and ‘cancerous’ breath and different cancer types

Stolarek [17] Fluorimetry Increased H2O2 level in exhaled breath condensate in breast cancer

McCulloch [22] Sniffing dogs Detected breast cancer with sensitivity 88% and specificity 98%

Shuster [18] Nanosensor array Statistically significant differences between benign and malignant breast conditions

Xu [21] Nanosensor array Detected breast cancer with four VOCs: heptanal, acetophenone, isopropyl myristate and 2-
propanol.

Where assay techniques were employed that separated VOCs with gas chromatography (GC) and identified them with mass spectrometry (MS), a number of breath VOC
biomarkers were consistent with products of oxidative stress e.g. pentane, hydrogen peroxide, and alkane derivatives including heptanal and propanol.
doi:10.1371/journal.pone.0090226.t003
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of a comparatively small pilot study should be interpreted with

caution, and will require validation in larger studies. However, if

these findings are confirmed in future studies, breath testing could

be employed as a complementary procedure ancillary to

mammography with the potential to reduce the number of

needless procedures and reduce the costs of discovering new cases

of breast cancer.
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