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Abstract

Background: The determination and regulation of cell morphology are critical components of cell-cycle control,

fitness, and development in both single-cell and multicellular organisms. Understanding how environmental factors,

chemical perturbations, and genetic differences affect cell morphology requires precise, unbiased, and validated

measurements of cell-shape features.

Results: Here we introduce two software packages, Morphometrics and BlurLab, that together enable automated,

computationally efficient, unbiased identification of cells and morphological features. We applied these tools to

bacterial cells because the small size of these cells and the subtlety of certain morphological changes have thus far

obscured correlations between bacterial morphology and genotype. We used an online resource of images of the

Keio knockout library of nonessential genes in the Gram-negative bacterium Escherichia coli to demonstrate that cell

width, width variability, and length significantly correlate with each other and with drug treatments, nutrient

changes, and environmental conditions. Further, we combined morphological classification of genetic variants with

genetic meta-analysis to reveal novel connections among gene function, fitness, and cell morphology, thus

suggesting potential functions for unknown genes and differences in modes of action of antibiotics.

Conclusions: Morphometrics and BlurLab set the stage for future quantitative studies of bacterial cell shape and

intracellular localization. The previously unappreciated connections between morphological parameters measured

with these software packages and the cellular environment point toward novel mechanistic connections among

physiological perturbations, cell fitness, and growth.

Keywords: Microbiology, Cell biology, Cell morphology, Cell shape, Imaging, Chemical genomics, Principal

component analysis, Segmentation, Microscopy, Computer vision

Background

Cell shape varies widely across bacterial species and has

been linked to a diverse range of processes including adhe-

sion, motility, pathogenicity, and differentiation [1]. The

cell wall, a polymer network of sugar strands crosslinked

by short peptides, is both necessary and sufficient for defin-

ing a particular cell shape [2]. The precise morphology and

size of a cell is determined by the equilibrium between

cell-wall mechanics and the turgor pressure caused by the

high concentration of osmolytes inside the cell. Cell shape

is maintained via feedback between the spatial pattern of

cell-wall synthesis and the cell’s current geometry. In many

rod-shaped organisms, especially those that grow by insert-

ing cell wall material along the cylindrical region of the

cell, the spatial pattern of growth is dictated by the cyto-

skeletal protein MreB [3], an actin homolog that forms fila-

ments bound to the inner membrane [4]. Cell volume is

positively linked with fitness [5] and increases exponen-

tially with growth rate on different nutrient sources that
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vary growth rate over a wide range [6]. Moreover, in long-

term evolution experiments with Escherichia coli, cell vol-

ume more than doubled in all evolved lines after 10,000

generations [7]. Thus, an outstanding challenge in biology

is to understand the mapping between genotype and mor-

phological phenotypes.

To achieve such an understanding requires accurate

quantification of cell morphology, particularly for very

subtle changes such as the sub-micron curvature prefer-

ence of MreB [3]. Several computational tools were previ-

ously developed to quantify cell shape [8] in order to

investigate intracellular organization and size homeostasis.

The first software to interpolate cell contours at subpixel

resolution was PSICIC [9], which has generally been ap-

plied to precisely quantify the subcellular localization of

proteins. Simulations of point spread functions and their

effects were combined with diffraction-limited imaging to

achieve generational tracking and superior cell-division

classification using ObjectJ [10, 11]. Another software

package, Microbetracker, enabled segmentation of cells

within a dense population [12]; Microbetracker and its

successor Oufti [13] were recently used to investigate the

relationships among growth rate, elongation, and division

in E. coli [14] and Caulobacter crescentus [15, 16]. For

rod-shaped bacteria, most quantitative studies involving

cell size have essentially studied the dynamics of cell

length, since cell width is generally maintained during

elongation. However, E. coli B/r cells that experienced a

nutrient upshift from minimal to rich medium increased

in cell width progressively over a few doublings [17, 18],

consistent with bulk measurements linking growth rate

and cell volume [6]. Further, mutations in MreB [5] and

key cell-wall synthesis enzymes such as PBP2 [19] have

been identified that alter cell width, and sublethal doses of

antibiotics such as A22, which depolymerizes MreB, or

mecillinam, which inhibits PBP2, lead to cell-width

increases in a concentration-dependent manner [20]. Fi-

nally, osmotic shock subtly alters cell width [21], signifying

a change in turgor pressure. These data are evidence that

the cell’s ability to determine its width may be important

for its regulation of cell growth and fitness. While power-

ful for many applications, packages such as PSICIC,

Microbetracker, and MicrobeJ [22], the latter of which has

an elegant interface for tracking lineages and measuring

sub-cellular localization [22–24], require a relatively large

number of parameters; measurements of cell width are

sensitive to the values of these parameters. Critically, our

ability to link these subtle shape changes to underlying ge-

notypes and chemical environments relies on accurate,

unbiased morphological characterization.

The Keio collection of single, nonessential gene dele-

tions in E. coli BW25113 is a powerful resource for discov-

ering the phenotypes of genes of unknown function [25].

A visual screen of the qualitative shapes of the knockouts

in this collection revealed only one mutant that was obvi-

ously non-rod-shaped [26]. ∆rodZ cells are round, and it

was subsequently found that RodZ interacts with MreB

[26–28]. By profiling mutants from the Keio collection

across hundreds of chemical treatments and environ-

mental conditions, the functions of several genes have

been discovered [29], such as the lipoprotein co-factors

LpoA/B that activate the bifunctional penicillin binding

proteins PBP1A/B, respectively [30]. This chemical-

genomics approach can be used to cluster genes whose

functions are related by virtue of a common pathway.

Given previous discoveries of close connections

between cell size and growth rate [6] and size and

fitness [5], measuring cell shape and size in distinct

environments will likely reveal the mechanisms of

growth regulation. Moreover, imaging data may consti-

tute a phenotype vector for individual cells or popula-

tions of cells containing multiple morphological

features such as cell width and length, curvature, and

polar morphology [31]. A preliminary analysis of cell

shape classified mutants in the Keio collection as short,

normal, long, or very long (https://shigen.nig.ac.jp/

ecoli/strain/resource/keioCollection/list). However, de-

tailed features such as cell width, size variability, or

polar morphology have been difficult to accurately

measure due to computational and software limitations.

To quantify various aspects of cell morphology, a

software platform must accurately and robustly identify

changes in cell width and curvature, ideally with high com-

putational efficiency on imaging datasets from large librar-

ies of strains. The focus of many existing software packages

has been on defining a cell contour that can be used for

comparing intracellular localization patterns or for comput-

ing the dynamics of a global parameter such as cell length.

Datasets estimating local cell geometry with high accuracy

can enable machine-learning tools to identify low-

dimensional representations of cell shape and may reveal

novel biological principles connecting cell shape to other

behaviors. Principal Component Analysis (PCA) was previ-

ously harnessed to analyze the cell contours of populations

of cells, leading to the identification of cell-shape modes in

the bacterium C. crescentus [32] and in keratocytes [33].

For C. crescentus, PCA enabled the clustering of MreB mu-

tants [34], while for keratocytes, distinct PCA modes were

strongly correlated with motility characteristics such as

speed or turning [33]. In previous studies, we developed

software tools to analyze cell shape in a variety of contexts.

Using phase-contrast images, we measured the changes in

cell width and length resulting from point mutations in

MreB [5]; we verified that the changes in cell width corre-

lated with the distance between peaks in fluorescence of a

membrane dye on opposite sides of the cell [5]. In another

study, we previously measured the curvature of E. coli cell

contours and showed that MreB localized to concave
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regions of the cell [3], targeting new cell-wall growth to

these locations and straightening the cell. When we mea-

sured the correlations among cell size, cytoskeletal dynam-

ics, and cell twisting for cells with a range of sizes

generated via genetic or chemical perturbations, we found

that cells systematically altered cell-wall structure as cell

width increased [20]. In a morphological screen of the

effects of depleting essential genes in B. subtilis, partial

depletion led to cell-width outliers that highlighted both

shape actuators (involved in cell-wall synthesis) and modu-

lators (e.g., involved in DNA replication) [35]. However, the

molecular mechanisms that regulate cell size are currently

relatively unknown, motivating an unbiased examination of

a genomic-scale library.

Here we present cell-shape measurement tools in a user-

friendly, computationally efficient MATLAB-based package

called Morphometrics. This software segments cell contours

from phase contrast images, fluorescence labeling of the cell

surface, or cytoplasmic fluorescence, without assumptions

about cell shape or size. Once cells have been identified, cell

contours are determined via a straightforward, essentially

parameter-free algorithm that yields robust measurements

of cellular dimensions and contour curvature, allowing for

automatic characterization of mutants with subtle variations

in morphology. Since judging the accuracy of contour de-

tection requires the ability to measure cell shape from im-

ages of cells with known size, we also present a separate

software platform, BlurLab, that generates simulated fluor-

escence microscopy images [36]. While other software tools

have been developed to generate fluorescence images for

predefined shapes and structures [37], BlurLab addresses

arbitrary distributions of fluorescent molecules in space and

time and has the capacity to mimic a wide variety of tech-

niques, features, and sources of noise in light microscopy.

In the current investigation, we used Morphometrics to

measure cell size from phase contrast and fluorescence im-

ages, and BlurLab to validate our measurements and to de-

termine the relative shifts in cellular dimensions between

imaging modalities. We then applied Morphometrics to

quantify cell shape and size across ~14,000 images of the

Keio collection, revealing an inverse correlation between cell

width and the robustness of cell-shape maintenance. Finally,

we demonstrated that cell-shape parameters such as width

and length correlate with particular chemical sensitivities.

Ultimately, we envision that Morphometrics and Blurlab

will provide fast, reproducible quantification of cell shape as

well as the ability to test quantitative models, thus comple-

menting canonical tools for biochemistry and cell biology.

Implementation and Results

Assessment of the consistency of cell contours

determined by different imaging modalities

To facilitate quantitative analysis of contours from cells

with a wide variety of shapes and sizes, we sought to

implement an algorithm that made no assumptions about

specific cell shapes and that extracted a parameter-free con-

tour not subject to user biases. The Morphometrics algo-

rithm can be conceptualized in two stages. First, with a

small number of user-defined parameters, discrete ‘objects’

are detected as contiguous groups of pixels through water-

shed and distance-transform segmentation. Second, a

smooth parameter-free contour defining the boundary of

each object is calculated by treating the image intensity as a

metric surface on which contour ‘energy’ can be minimized,

with the segmented object boundary as an initial contour

guess. Further information about the algorithm can be

found in the Morphometrics user manual included with the

software download. Three types of images can be used for

contour detection: i) phase contrast images, in which the

cell interior appears dark; ii) interior fluorescence images,

e.g. from uniformly distributed cytoplasmic fluorescent pro-

teins; and iii) peripheral fluorescence images, e.g. from

membrane dye. Calculating the magnitude of the image

gradient transforms the first two image types into an inten-

sity map similar to that given by a fluorescence marker on

the surface, which constitutes the common basis for

calculating contours.

After optional image scaling, contrast adjustment, and

background removal, the software offers multiple algo-

rithms for segmenting contiguous groups of pixels (objects)

that meet specified constraints on size and intensity. Each

object is checked against criteria for false-positive detection

based on the ratio of interior to boundary pixel intensities

and, depending on user input, these objects may be linked

with objects in other frames for tracking across a set of

time-lapse images (see examples in the Morphometrics user

manual). Parameters may be tested on individual images

before being applied to the processing of large data sets. Ul-

timately, each segmented region serves as a seed to begin

contour fitting. Once a contiguous object composed of

discrete pixels is identified, a contour is calculated by treat-

ing the intensity features of the object as an interpolated

energy landscape and then fitting a closed-loop contour in

continuous coordinates to the minima of that energy land-

scape. From the cell contours, Morphometrics can be used

to calculate an interior mesh; for rod-shaped cells, this

mesh defines a cellular coordinate system with a midline

and associated perpendicular meshlines that connect the

two sides of the cell, thereby also measuring local cell width

along the midline. The contour is also used to calculate

one-dimensional profiles such as curvature (a measure of

the radius of the circle that best fits the contour surround-

ing a particular point and whether the contour is concave

or convex), fluorescence signals along the cell boundary

(e.g., membrane dye, surface markers [3], or membrane-

bound proteins [38]), or fluorescence signals along the in-

terior centerline of the cell, among other features. Optical

shifts between fluorescence imaging channels can be
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corrected by translating the contour coordinates by an

amount appropriate to the particular imaging system; these

translation values can be determined visually using the in-

cluded post-processing contour viewing software.

To illustrate the capabilities of Morphometrics for con-

tour detection, we stained E. coli cells expressing cyto-

plasmic GFP with the surface marker Alexa 594-

conjugated Wheat Germ Agglutinin [3] and imaged the

cells using phase contrast and epifluorescence micros-

copy (Fig. 1a, top). Morphometrics successfully seg-

mented isolated and dividing cells (Fig. 1a, middle) from

all three imaging modalities (phase contrast (PC), inter-

ior fluorescence (IF), and peripheral fluorescence (PF)),

leading to three sets of contours, with the PF contour

exterior to the IF contour as expected (Fig. 1b). The

meshlines for these cells (Fig. 1c) define a cellular grid

that can be associated with regions of the contour or cell

midline that show positive or negative curvature (Fig. 1a,

bottom).

From these cells and their associated meshline

grids, we measured width profiles along the midline,

obtaining values that increased from 0 at the two

poles to ~1 μm near the middle of the cell (Fig. 1d).

As previously reported [39], there was little intracellu-

lar variability in cell width along the midline away

from the poles, and all three profiles showed similar

variability (Fig. 1d). The contour measurements repre-

sented an approximately cylindrical body with hemi-

spherical endcaps (Fig. 1d), although all three contour

measurements displayed slight variations in curvature

(Fig. 1e) that were previously shown to correlate with

MreB localization [3, 40].

a

b

d

c

f

g

e

Fig. 1 Quantitation demonstrates consistency among contour measurements from different imaging modalities, despite small differences. a E. coli

cells imaged using phase contrast (PC), interior fluorescence (IF) from cytoplasmic GFP, and peripheral fluorescence (PF) from the surface marker Alexa

594-Wheat Germ Agglutinin. Top: original images; middle: segmentation output from Morphometrics; bottom: extracted contours and meshlines. The

pole from which all contours are measured is marked by orange and maroon dots for the beginning and end of the contours, respectively. Meshlines

are colored cyan if the cell contour has positive (outward) curvature at both endpoints, maroon if the contour has negative curvature (inward) at both

endpoints, and yellow if the contour has opposite signs of curvature (indicating a region where the cell body curves). Scale bar: 5 μm. b Overlay of the PC,

IF, and PF cell outlines from (a). c Branching mesh (top) and centerline mesh (bottom) of the cells in (a), using the PF contours. These meshes are used to

measure width profiles along the cell. d Comparison of the single-cell width profiles from pole to pole among all three imaging modalities for the cell on

the left in (a). PC contours consistently estimate larger widths than PF or IF contours. e The PC, IF, and PF contours have similar curvature profiles, with

slight differences consistent with width differences in (d). f Differences in cell-length measurements among imaging modalities are consistent across a wide

range of cell lengths. In the legend, the first and second modality for each color correspond to the measurements along the y- and x-axes, respectively.

Black line is y = x. g In cell area measurements, differences in length between imaging modalities shown in (f) are exacerbated due to width-dependent

offsets in cell widths between imaging modalities, as shown in (d)
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PC, IF, and PF images are expected to provide distinct

positions of cell boundaries. Across many cells, there were

strong correlations among length measurements from the

three modalities; lengths from PC images were consistently

larger than those from IF or PF images by ~400 nm

(Fig. 1f). Similar comparative behavior was observed in cell

width measurements (Additional file 1: Figure S1). The

combined effects of shifts in width (Fig. 1d, Additional

file 1: Figure S1) and length (Fig. 1f ) led to an increasing

divergence in the area measurements of the three

imaging modalities across many cells (Fig. 1g). Nonethe-

less, all three imaging modalities were highly correlated,

indicating a consistent picture of cellular dimensions that

can be applied to wide variety of organisms. To demon-

strate the utility of Morphometrics for unbiased contour

detection across a wide range of object shapes, we

analyzed PF images of the root tissue of Arabidopsis

thaliana plants (Fig. 2a), PF (Fig. 2b) and PC images

(Fig. 2c) of curved rod-like Caulobacter crescentus, PC

images of red blood cells (Fig. 2d), brightfield images of

budding yeast Saccharomyces cerevisiae (Fig. 2e), PC

images of dense Pseudomonas aeruginosa communities

(Fig. 2f ), transmission electron microscopy images of

Neisseria gonorrhoeae (Fig. 2g), PC images of branched

Bifidobacterium breve DSM20213 (Fig. 2h), brightfield

images of zebrafish (Fig. 2i), and IF images of filamentous

E. coli (Fig. 2j). In all cases, Morphometrics successfully

segmented the cells or organisms, regardless of shape or

imaging modality.

Simulated fluorescence microscopy for validation of

quantitative analyses

Given the differences in cellular dimensions extracted from

PC, IF, and PF data (Fig. 1), we wondered which modality

accurately represented cell size. Other experimental meth-

odologies with higher resolution such as electron micros-

copy still do not provide a “true” measure of cell size, since

sample preparation likely perturbs the cell, for example by

disrupting turgor pressure. To identify a strategy for com-

paring measurements with known geometric parameters,

we developed BlurLab, a software package that generates

simulated fluorescence images. BlurLab takes as input a set

of locations of fluorescent molecules and convolves these

locations with a point spread function (PSF) to generate a

simulated image. The PSF can be directly measured for a

particular microscope and objective using sub-diffraction-

limited particles such as quantum dots or fluorescent beads;

alternatively, BlurLab can generate a PSF for a given set of

objective parameters (numerical aperture, wavelength, mag-

nification, index of refraction, and pixel size). BlurLab can

also mimic camera noise, thermal noise, and shot noise,

yielding simulated images that are more realistic for head-

to-head comparison with experimental images. Additional

BlurLab functionalities include simulation of imaging at

other focal planes for creating z-stacks, modeling total in-

ternal reflection fluorescence imaging, boxcar averaging of

positions during simulated time-lapse imaging to account

for particle motion during the exposure interval, simulating

mean-field and stochastic photobleaching, and simulating

Fig. 2 Morphometrics achieves unbiased contour extraction across a wide range of cell shapes and object types, including densely packed communities

and tissues. a Contours extracted from the root-tip cells of an A. thaliana plant expressing a YFP-fusion to the membrane protein LTI6B, showing that

Morphometrics is capable of segmentation of a complex tissue. Scale bar: 15 μm. b, c Contours extracted in PF mode (b) or PC mode (c) from FM4-64-

labeled C. crescentus cells. d Contours extracted in PC from approximately spherical hypotonic red blood cells. e Contours extracted in PC from the

budding yeast S. cerevisiae. f Contours extracted in PC from a densely packed P. aeruginosa community. g Contours extracted from transmission electron

microscopy images of N. gonorrhoeae. h Contours extracted in PC from branched B. bifidum DSM20213 cells. i Contours extracted from bright-field

microscopy of live zebrafish Danio rerio. j Contours extracted in IF from filamentous E. coli expressing cytoplasmic GFP
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fluorescence recovery after photobleaching. Detailed de-

scriptions of these functionalities and examples can be

found in the BlurLabmanual.

To validate cellular dimensions and morphological fea-

tures of E. coli cells, we used BlurLab to generate sets of

uniformly distributed molecules at high density on the sur-

face of cylinders with hemispherical endcaps over a range

of cell widths and lengths. For an in silico cell with width

1 μm, we also simulated images of the same cell at focal

planes up to 500 nm above and below the cell midplane

(Fig. 3a). As the cell goes out of focus, the image attributes

used for contour fitting become blurred by the PSF. None-

theless, a bright boundary, the signature of surface-bound

fluorescence, was evident in each image (Fig. 3a). We then

applied Morphometrics to each simulated image and suc-

cessfully resolved a cell contour at each z-offset. The width

measured from these cell contours peaked at the midplane

and monotonically decreased as the offset from the cell

midplane increased (Fig. 3b). These data illustrate the im-

portance of midplane focus, and provide an estimate of the

deviation in width measurement when using out-of-focus

cells. Interestingly, these data also show that the measured

cell width (magenta line in Fig. 3b) is more robust to

changes in the focal plane than the actual cell width at a

given focal plane (black line in Fig. 3b).

Next, we examined the contours extracted from

simulated images of in silico cells with different widths

(Fig. 3c). The error in the extracted contour was practically

zero for widths greater than 2 μm, but increased as cell

width decreased (Fig. 3d). The extracted contours were

smaller than the true midplane contours because the cell

curvature introduced light from out-of-focus planes in

Fig. 3 Simulated fluorescence images permit quantification of the accuracy of cell-geometry measurements. a Simulated fluorescence images of

uniform surface labeling of an in silico cell with width 2r = 1 μm and length 4 μm. The focal plane of each image relative to the cell midplane is

indicated. Scale bar: 5 μm. b The measured width (magenta) of the middle cell in (a) at different offsets relative to the midplane, does not vary as

strongly as the actual width (black) at that focal plane. c-e BlurLab permits the precise quantification of errors in geometry measurements from

extracted contours and meshlines (c), width profiles (d), and curvature profiles (e) for cells of different radii r. Scale bar in (c): 5 μm. The colors of

the meshlines in (c) are maintained in (d, e). Dashed curves in (d, e) are the actual values for the in silico cells. (f, g) Width (f) and area (g) display

a systematic bias for narrow cells relative to the lines of equal measured and actual area (black). This bias is negligible for cells with width above

~1.5 μm. h Conceptual flow chart of the utility of BlurLab for quantitative comparison of experimental and simulated images to test the validity of

an underlying model (here, measurements of cell size and geometry)
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which the cellular cross-section had a smaller width; for cell

widths much larger than the wavelength of light used for

imaging, this curvature became negligible (Fig. 3d). To de-

termine the accuracy of other geometric measurements, we

computed the curvature along the cell contour. The curva-

ture along a 2-μm in silico cell was relatively accurate

everywhere except in the transition region between the cy-

linder and the hemispherical end caps (Fig. 3e), where the

PSF blurred the step-function curvature into a smooth

transition. For a 1-μm in silico cell, the curvature remained

accurate along the cylindrical portions of the cell (where

the measured curvature was close to zero), although there

was a slight overestimate of the curvature at the ends of the

cell (Fig. 3e); this error was exacerbated as the cell width

was further narrowed (Fig. 3e). We note that these system-

atic morphological errors with decreasing cell size result

from the limitations of light imaging at wavelengths com-

parable to the cell size, not from imprecision in fluores-

cence simulation or contour detection.

To evaluate the overall bias, we used BlurLab to compute

the difference between the actual and measured widths and

areas for in silico cells 400 nm to 8 μm in width and a

range of cell lengths in the peripheral fluorescence modal-

ity. The error in the width asymptotically approached zero,

and was essentially undetectable in cells with width above

~1.5 μm (Fig. 3f). Error in area behaved in a similar fashion,

regardless of cell length (Fig. 3g), indicating that PF mea-

surements provide an accurate measure of cell length with-

out systematic bias. This application illustrates the intended

purpose and power of BlurLab: to assess the accuracy of

imaging data in the context of a particular model by con-

sistently comparing analyses of both experimental and sim-

ulated images (Fig. 3h).

Morphological analysis of a genomic library of

nonessential gene deletions

To demonstrate the efficacy of Morphometrics for rapid

quantification of bacterial morphology, we analyzed

~14,000 images of the Keio collection, a collection of

single knockouts of all non-essential genes in E. coli

[25]. We obtained phase contrast images from the Na-

tional BioResource Project and segmented isolated cells

from each strain in an unbiased manner (Methods).

Mean cell width varied from ~0.8 to 1.2 μm, and mean

cell length varied from ~2.5 to 4 μm (Fig. 4a, Additional

file 2: Figure S2). Interestingly, mean cell width and

length were strongly correlated with each other (R =

0.39, Student’s t-test: p < 0.001, Fig. 4a), as were mean

cell width and length standard deviation (Additional file

3: Figure S3). From our data, we determined the distri-

butions of morphological parameters such as mean

width and length across the population of cells for each

strain. Moreover, we utilized the meshing of each cell to

measure the local cell width (distance across the cell at

each point along the contour), from which we calculated

the mean variability in cell width within individual cells

in the population. Both the standard deviation across the

population (Fig. 4b) and the intracellular fractional width

variability (Additional file 4: Figure S4) increased with

mean cell width, indicating that cells are increasingly un-

able to maintain cell width as they widen. Interestingly,

although wild-type E. coli cells increase in cell size with

nutrient-induced increases in growth rate [6], we found

no significant correlations between maximal growth rate

(as determined by microplate growth curves in [41]) and

cell width (Fig. 4c) or length (Fig. 4d). We note that

these results are not contradictory; for example, a previ-

ous study showed that cell size is not correlated with

growth rate within a population of cells [14].

To identify other morphological correlations across

the library or in particular strains, we aligned 150 cell

contours from each strain of the Keio collection for

which at least 150 contours were available in order to

calculate an average cell shape, and performed PCA on

the covariance matrix to identify significant shape varia-

tions. The first two, three, and four PCA modes

accounted for 97.3%, 99.0% and 99.3% of variation in cell

shape, respectively (Fig. 4e–h), and by far the greatest

amount of variation was accounted for by a mode that

clearly captured elongation (Fig. 4e). This result, which

is not surprising for rod-shaped growth, indicates that

length changes are the most significant source of shape

variation within the Keio library. Nonetheless, the next

three modes representing cell bending, widening, and ta-

pering, respectively (Fig. 4f–h), have potential for reveal-

ing cells or strains that are shape outliers. Mean width

strongly correlated with PCA mode 3 (width, R = 0.998,

Student’s t-test: p < 0.001) and with the projection from

mode 1 (length, R = 0.43, Student’s t-test: p < 0.001)

(Fig. 4e, bottom), as expected based on the correlation

between length and width noted above (Fig. 4a). There

was also a significant correlation between mean width

and mode 4 (tapering, R = 0.49, Student’s t-test:

p < 0.001) (Fig. 4h, bottom), potentially indicating a

connection between cell-width determination and cell div-

ision. Our analysis demonstrates that most of the variation

in cell shape is captured by length and width, although

other morphological features such as tapering may be in-

formative for characterizing certain outlier strains. PCA of

the correlation matrix, which involves rescaling that

avoids heavy skewing by cell length variation, led to an in-

creased emphasis on cell width, bending, and tapering in

the decomposition, with the mode corresponding to the

largest eigenvalue representing tip morphology (Additional

file 5: Figure S5). Taken together, correlations among

features suggest underlying feedback between elongation

and division in rod-shaped cells [42].
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Identification of chemical sensitivities correlated with

cellular dimensions

Given the range of cellular dimensions across the Keio

library and the correlations between morphological

observables, we wanted to systematically probe the

physiological significance of cell size. We previously found

that the MreBA53T mutation led to wider cells during

growth in a variety of carbon sources; cells harboring this

mutation had a large gain in fitness when competed

against the parental strain in glucose-rich medium [5].

However, the change in fitness was carbon-source

dependent, with neutral fitness in lactose and a reduction

in fitness in galactose [5]. We also previously observed

that sublethal treatment with the MreB inhibitor A22 led

to a dose-dependent increase in cell width in wild-type E.

coli MG1655 cells [20]. Based on these data and the in-

crease in width variability with increasing mean cell width

across the Keio collection detected here (Fig. 4c), we

Fig. 4 Morphological analysis of the Keio collection reveals correlations between morphological features but not with growth rate. Contours from >150

cells per Keio deletion strain were extracted from images acquired from the NBRP repository and used to compute the mean length and width and

standard deviation of cell width across each population. In (a-d), white circles and error bars were obtained by binning strains by mean width or length;

blue lines are the fit to binned averages. R is Pearson’s correlation coefficient. a-b Heatmaps of the number of strains with geometry parameters in each bin

show that mean length (a) and standard deviation of mean width (b) are positively correlated with mean width. c-d Neither mean width (c) nor mean

length (d) are correlated with maximal growth rate, as measured from microplate growth curves in [41]. e-h Top: Representations of the PCA modes around

the mean shape. Modes 1–4 represent elongation, bending, width, and tapering, respectively. Bottom: scatter plots of the proportion of modes 1–4 and

mean cell width of each strain demonstrate that width is correlated with variation represented by modes 1, 3, and 4
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hypothesized that wider cells may be more sensitive to A22

than thinner cells, and more generally that morphological

observables may be predictive of the severity of phenotypes

in certain environments or chemical treatments.

To test these hypotheses, we made use of an existing

chemical genomics dataset [29] in which the Keio collec-

tion was grown as colonies on agar plates in 324 conditions

including media, drugs, dyes, detergents, metal stresses,

and hormones. From the colony sizes, a statistic called an

S-score was previously computed to represent the severity

of the growth phenotype in each condition [29]; a positive/

negative S-score indicates more/less growth than expected

based on the changes to wildtype in the condition of inter-

est (Fig. 5a). We compared our quantification of cellular di-

mensions with the previously reported S-scores from

treatment with 0.5 μg/mL A22 for each knockout, and de-

tected a significant correlation between cell width and S-

score (Fig. 5b, Pearson correlation coefficient R = −0.10,

Student’s t-test: p < 10−6), consistent with our hypothesis.

We then wondered whether other chemical or environ-

mental perturbations were correlated with mean cell width

or length. We calculated the correlation coefficients of

these quantities with each of the 324 condition datasets

(Fig. 5c) and determined statistical significance with a

Bonferroni correction for multiple hypothesis testing

(Methods). For cell width, A22 treatment was the most sig-

nificant negative correlate; six other compounds (ignoring

differences in concentration) also exhibited significant

negative correlation (Additional file 6: Table S1) [29]. Of

these compounds, three also targeted cell-wall synthesis

(the β-lactam cefaclor, the peptide bacitracin, and the

amino acid derivative D-cycloserine), possibly indicating in-

hibitory effects similar to those of A22. The list also in-

cluded compounds targeting the membrane or proton

motive force (the Ca2+-channel inhibitor verapamil and the

detergent taurocholate) and translation (50S inhibitor

erthyromycin) (Fig. 5d), indicating potential links between

cell-width control and other metabolic processes.

There were 15 unique conditions for which the knock-

outs had S-scores with significant positive correlation with

cell width (Additional file 6: Table S2) [29], indicating that

wider cells were less sensitive. These conditions target a

broader range of cellular processes, including DNA/RNA,

stress, and fatty acid metabolism in addition to the ribo-

some and cell-wall and membrane synthesis (Additional

file 6: Table S2) [29]. Carbonyl cyanide m-chlorophenyl

hydrazone, a proton ionophore that inhibits oxidative

phosphorylation, was positively correlated at all tested

concentrations (Additional file 6: Table S2) [29]; interest-

ingly, we observed in a separate study that this ionophore

increases bending rigidity, which is an expected outcome

of increased cell width based on the mechanics of a thin

cylindrical shell. There was also a compound (theophyl-

line) with an unknown target that exhibited a significant

positive correlation with cell width (Additional file 6:

Table S2) [29], indicating that cell-size profiling may be an

effective tool for associating chemical exposure with the

molecular pathways that control cell morphology.

We next considered correlations of S-scores with cell

length. Six conditions were associated with significant nega-

tive correlations (Fig. 5cii): high iron, treatment with the

cell-wall inhibitor ceftazidime, and four carbon-source limi-

tations, which may reflect the known coupling of cell size

with nutrient-dependent growth rate [6]. Of the eight con-

ditions positively correlated with length (Fig. 5cii), several

involved ribosomal inhibitors (n = 3), inhibitors of fatty acid

and membrane synthesis (n = 2), or DNA/RNA synthesis

(n = 1). In some cases, correlations indicated differences in

the underlying mode of drug action; for example, the ceph-

alosporin cefaclor was positively correlated with cell length,

while the structurally similar compound ceftazidime was

negatively correlated with length.

Given that the observed correlations between cell size

and S-scores involved chemicals with many target pro-

cesses, we conjectured that the correlations for subsets

of strains deleted for genes with similar functions may

yield further insight into the relationships between cell

size and cellular processes. We separated genes into 23

Clusters of Orthologous Groups, a common classifica-

tion scheme [43]. As compared to the correlations from

the full library (Fig. 5c), we detected higher correlations

between cell size and S-scores within some of these gene

clusters (Fig. 5d,e; Additional file 6: Table S3) [29]. A22

again was significantly (Student’s t-test) and negatively

correlated with cell width for strains harboring deletions

of genes associated with signal transduction mechanisms

(Fig. 5ei), indicating that signaling pathways, such as

those activated in response to stress, may respond to the

changes in cell width caused by A22 treatment. Al-

though the COG for cell-cycle control, cell division, and

chromosome partitioning comprises only 34 genes, sen-

sitivity to the division inhibitor verapamil nevertheless

exhibited a strong and significant correlation of −0.92

with cell width (Fig. 5eii), while S-scores for minocycline

sensitivity of knockouts of genes involved in nucleotide

metabolism and transport were positivity correlated with

cell width (R = 0.47, Fig. 5eiii). Surprisingly, for the large

number of strains carrying deletions of genes of un-

known function (COG class S, n = 918 genes), mean cell

width was negatively correlated with sensitivity to low

iron stress and the folic acid synthesis inhibitor sulfame-

thizole (Fig. 5d). Strains harboring deletions in genes in-

volved in amino-acid transport and metabolism had

mean cell lengths that were negatively correlated with

sensitivity to four carbon-source starvations (Fig. 5d),

while cells harboring deletions in genes involved in tran-

scription and post-translational modification, protein

turnover, and chaperones had lengths positively correlated
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Fig. 5 (See legend on next page.)
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with ribosomal inhibitor sensitivity (Fig. 5eiv). As with cell

width, strains deleted for genes of unknown function had

lengths both positively and negatively correlated with

some treatments (Additional file 6: Table S4) [29], further

supporting the importance of these genes to cell shape.

Taken together, our correlation analyses based on the entire

Keio collection and subdivided into Clusters of Orthologous

Groups suggest that a variety of intracellular factors, beyond

those controlling cell-wall synthesis or turgor, contribute to

the cell’s determination of its size, and that responses to

some extracellular perturbations have general connections

with cell size (Fig. 5d). These correlations were revealed

through precise and automated measurements of cellular

dimensions that were enabled by our open-source software

packages Morphometrics and BlurLab.

Discussion and Conclusions

Quantifying subtle connections among environmental

conditions, cellular morphology, and genetics is a crucial

step in uncovering new biological roles for genes and their

corresponding phenotypes. Microscopy is a powerful

workhorse for establishing these connections, but the

spatial constraints of light microscopy and our computa-

tional assumptions limit the set of measurable morpho-

logical perturbations. We developed Morphometrics and

BlurLab to expand the utility of multiple imaging modal-

ities and to minimize the presence of bias in image-based

analyses. Here, we applied our software to bacteria, which

are a technically challenging class of organisms to explore

with quantitative image processing due to their small size

and strong connections among fitness, genotype, and

morphology. We envision that combining the morpho-

logical measurement techniques of Morphometrics with

the unbiased hypothesis testing of BlurLab will enable the

quantitative and automated characterization of libraries

targeting cell morphology (such as libraries constructed

through error-prone PCR mutagenesis of genes that affect

cell morphology [5] and the set of Keio mutants with a

range of cell lengths and widths (Fig. 4)) as well as the

growing collection of genomic libraries, including knock-

out libraries of Salmonella typhimurium [44] and

transposon-based libraries of the pathogen Pseudomonas

aeruginosa [45] and the gut commensal Bacteroides the-

taiotaomicron [46]. The relationships we discovered

among cell length, cell width, and width variability (Fig. 4)

across the genomic-scale Keio collection suggest general

links between cellular physiology and cell size [42].

Screens that used the Keio collection to reveal new pheno-

types previously focused on growth [29] or envelope perme-

ability [47], both of which naturally led to studies of cell

shape. Since Morphometrics is sensitive to small morpho-

logical variations and can rapidly analyze tens of thousands

of images, it crucially enables forward genetic screens for

genes or mutations that affect a morphological phenotype.

The relatively high throughput and unbiased morpho-

logical characterization of Morphometrics make it well-

suited to the study of morphological and functional

connections in genomic libraries, to the screening of en-

vironmental conditions like carbon sources, osmolytes,

and antibiotics, and to analyses of dynamic cell-cycle

data via time-lapse imaging [48]. Similarly, new rules of

cellular homeostasis encoded by time-dependent morph-

ology in many organisms [14–16, 49] will be accessible

with our software, particularly when spatial resolution is

limited. It remains to be seen to what extent detailed

measurements of cell morphology will be sufficient to

uncover relationships among genotypes, chemical treat-

ments, and cell morphology (Fig. 5); in some cases, lack

of shape variation or degeneracies in shape phenotypes

may make identification of a morphological signature

challenging. For instance, drug treatments and attendant

mutations could lead to global changes in gene expres-

sion such as a stress response that result in similar non-

specific changes in cell morphology (e.g. filamentation).

While we have focused on bacteria, Morphometrics is

amenable to morphological analysis of any organism for

(See figure on previous page.)

Fig. 5 Morphological parameters predict certain chemical sensitivities. (a) Schematic of S-score interpretation and strategy for correlating with

cell-shape parameters. Gene-condition pairs that result in bigger (smaller) colonies, normalized to the size of a wild-type colony in the same

condition, than expected based on average size across all conditions have positive (negative) S-scores. (b) (i) After 0.5 μg/mL A22 treatment,

S-scores of Keio-collection knockouts were negatively correlated with mean cell width across populations of cells of each strain, indicating that

wider strains are generally more sensitive to A22. (ii) S-scores after treatment with 0.075 μg/mL ceftazidime, a cephalosporin division inhibitor,

were negatively correlated with cell length, indicating that longer cells are more sensitive to ceftazidime. p-values computed with Student’s t-test.

(c) The distribution of correlation coefficients with (i) mean cell width and (ii) length across the 324 conditions screened in [29]. Red bars highlight

conditions with statistically significant correlations, Bonferroni corrected for multiple hypothesis testing. (d) Connections between Clusters of Orthologous

Groups (COGs) and drugs that target particular processes. A connection is defined by a statistically significant correlation between cell width (dashed lines)

or length (solid lines) and S-scores for knockouts of genes within the COG class indicated in the rectangles. (e) Examples of COG-specific correlations, with

the colors of the dots and best-fit line the same as the appropriate COG rectangle in (d). p-values computed with Student’s t-test. (i) Sensitivity to

0.5 μg/mL A22 is negatively correlated with cell width in knockouts of genes related to signal transduction. (ii) Sensitivity to 1.0 μg/mL verapamil

(calcium channel blocker) is negatively correlated with cell width in knockouts of genes related to the cell cycle. (iii) Sensitivity to 0.2 μg/mL minocycline

(protein synthesis inhibitor) is positively correlated with cell width in knockouts of genes related to nucleotide metabolism and transport. (iv) Sensitivity to

0.05 μg/mL gentamycin (protein synthesis inhibitor) is positively correlated with cell length in knockouts of genes related to post-translational modification,

protein turnover, chaperone functions
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which high-contrast images can be obtained, especially

walled organisms like plants (Fig. 2a) [50] and fungi (Fig. 2e)

[51]. Morphometrics has relatively few parameters and

makes no assumptions about object morphology, strengths

that are important considerations when tuning algorithms

to examine new organisms with poorly understood morph-

ology and growth cycles and when developing custom

scripts for post-processing, such as the detection of spatial

and temporal morphological correlations [3], detailed

localization studies [3], and testing of biophysical models

[39]. The small size of bacteria leads to a smaller visual dy-

namic range, which makes human observers more prone to

apophenia (seeing meaningful patterns in random data).

BlurLab has a wide array of potential applications in defin-

ing null hypotheses about fluorescence imaging data, such

as the expected distribution of a uniform surface label at

the poles versus the lateral walls of a rod-shaped cell, the

integrated intensity of a homogeneous cytoplasmic label

such as 4′,6-diamidino-2-phenylindole (DAPI) as a function

of cell size (given that wider cells have a greater fraction of

the cell volume at the edges of the focal plane), and the

level of noise in cytoplasmic distributions as a function of

molecule number for testing whether noise is spatially het-

erogeneous. BlurLab can be coupled to any analysis plat-

form, and should have growing utility given recent

genome-scale screens of fluorescence localization [48, 52].

We note that evaluations of null hypotheses should also be

important for eukaryotic cells, for which it is equally critical

to connect molecular models to diffraction-limited fluores-

cence images [53].

For large data sets, image processing must be efficient

in terms of computational resources and speed. The data

structures, algorithms, and graphical user interfaces of

Morphometrics and Blurlab are designed to exploit opti-

mized image processing algorithms in MATLAB and to

allow users to easily construct seamless custom scripts for

data analysis [3]; these packages also take advantage of

the large body of user-generated algorithms online (e.g.

the MATLAB File Exchange). Additionally, high-level

programming languages reduce the barrier to acquire

coding skills and ensure that the varied and general needs

of the quantitative imaging community for custom ana-

lysis can be met. Speed limitations in MATLAB can be re-

solved by recoding computationally intensive subroutines

in C, as we did in Morphometrics. While Morphometrics

and BlurLab enable new levels of precision and quantita-

tive morphological characterization, like any analysis soft-

ware they have certain limitations. Ultimately, the

precision of contours from Morphometrics is limited by i)

image quality, specifically spatial resolution, signal-to-

noise, evenness of illumination, dynamic range of

intensities, and degree of saturation; and ii) sample char-

acteristics such as object contrast, the proximity of ob-

jects and attendant overlap in the light fields, the degree

of blurring due to motion, and, where fine segmentation

is desired, the number and degree of construction points

in the image outline. As a general rule of thumb, images

that are visually difficult to segment will be difficult for

Morphometrics to segment. BlurLab is a simulator for lin-

ear optical microscopy, but specific nuances of an optical

system or objective, atypical or time-dependent noise

sources, camera chip-specific noise, and sample-

dependent effects (e.g. absorption, quenching, or a

sample’s index of refraction) all reduce the accuracy of

simulation. Similar limitations will very likely apply to

any image analysis or simulation software.

The importance of quantitation in cell biology will con-

tinue to increase, and the small size of bacteria and lack of

organelles make both Morphometrics and BlurLab espe-

cially important for identifying subtle localization and

morphological phenotypes in these organisms. However,

despite the breadth and versatility of Morphometrics and

BlurLab, significant challenges for computational image

processing remain, including reconstruction of three-

dimensional morphology in both static and dynamic envi-

ronments, segmentation and tracking of dense and/or

highly dynamic groups of objects, and the development of

algorithms to process different imaging modalities such as

fluorescence recovery after photobleaching, total internal

reflection fluorescence, and super-resolution imaging.

Morphometrics and BlurLab should serve as a foundation

for developing new software to address these challenges.

Precise quantification of cell morphology in bacteria

and eukaryotes will undoubtedly be a valuable tool for

mapping genotype-phenotype relationships. Extending the

analysis of static images carried out here to the dynamic

response of cells to perturbations, for instance in micro-

fluidic chambers, can further reveal the physiological basis

of a particular phenotype, such as the mechanism of cell

death during entry into stationary phase in an E. coli mu-

tant with disrupted lipid homeostasis [54]. Excitingly, cell

morphology can even serve as a diagnostic tool for asses-

sing cellular states in diseases such as cancer. To fully ex-

ploit the information obtained through these studies, we

must develop and implement computational tools with

high levels of accuracy and precision and couple them to

methods for validation and compelling visual display. As

demonstrated here, Morphometrics and BlurLab consti-

tute an important step toward meeting these goals.

Methods

Single-cell imaging

Wild-type MG1655 E. coli cells expressing cytoplasmic

GFP and a kanamycin resistance cassette from plasmid

pZS21-GFP (gift from Tom Silhavy, Princeton University)

were labeled with the N-acetylglucosamine- and sialic acid-

specific lectin Wheat Germ Agglutinin conjugated to

Alexa-594 (Life Technologies). Five milliliters of cells were
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grown in lysogeny broth (LB) with shaking at 37 °C to ex-

ponential phase (optical density at 620 nm ∼ 0.5). One milli-

liter of cells was washed with fresh LB via centrifugation

(10,000 g) and resuspension in 1 mL of LB and subse-

quently diluted 1:10 into 1 mL of fresh LB. Twenty-five mi-

croliters of a once-frozen 1 mg/mL fluorescent Wheat

Germ Agglutinin stock solution were added, and the sam-

ple was briefly vortexed. Cells were incubated with the lec-

tin for 20 min (approximately one cell cycle) with shaking

at 37 °C in the dark. After incubation, cells were washed

twice with fresh LB to remove excess lectin, and 5 μL of la-

beled cells were deposited onto a LB + 1% agarose pad,

allowed to air dry on the pad, and promptly sealed with a

#1.5 coverslip in a 125-μL FastWell (Grace BioLabs).

Labeled cells were imaged on a Nikon Eclipse Ti-E

inverted fluorescence microscope with a 100X (NA 1.40)

oil-immersion objective (Nikon Instruments). Images were

collected using an Andor DU885 EMCCD camera (Andor

Technology). Cells were maintained at 37 °C during imaging

with an active-control environmental chamber (Haison-

Tech). Images were collected using μManager v. 1.3 [55].

Imaging of the Keio collection

Images were obtained from the NBRP. In brief, to obtain

these images, strains from the Keio collection were inocu-

lated in LB with 30 μg/mL kanamycin and grown over-

night in 96-well plates at 30 °C. Cells were then diluted in

LB plus 30 μg/mL kanamycin and grown for 2 h at 37 °C.

After reaching exponential phase, cells were harvested via

centrifugation and resuspended in LB. These cells were

mounted on poly-lysine-coated cover-slips, fixed with

methanol, washed with water, and stained with (4′,6-dia-

midino-2-phenylindole).

Analysis of Keio images

Keio collection images from the NBRP (1–3 per strain)

were analyzed using Morphometrics. Cells with segmen-

tation errors were filtered by only including contours

with two identifiable points of high curvature (corre-

sponding to the poles). This filtering eliminated segmen-

tation errors, which we evaluated with manual curation

(data not shown). Cell length and width were calculated

according to a mesh representation of the cell contour

computed by Morphometrics. Subsequent analyses only

included strains for which 150 cells passed the above fil-

tering step (2465/4353 strains).

PCA

Shape-variation modes were calculated from cell contours

using PCA. Briefly, the center of mass and principal axes

were calculated from the cell contour and the coordinates

were shifted and rotated to a common alignment. Then,

300 equally spaced points were sampled from the cell con-

tour using linear interpolation. A mean cell contour was

subtracted from each contour and principal components

were calculated using the eigenvalue decomposition of the

covariance matrix between contour coordinates.

Statistical analyses

For comparing cell morphology to chemical sensitivity

(Fig. 5), Pearson’s correlation coefficient between the mean

cell width or length against the S-score across all strains

was calculated for each chemical condition. The statistical

significance of each correlation was calculated with a Stu-

dent’s t-distribution, Bonferroni-corrected with the number

of conditions.

Additional files

Additional file 1: Figure S1. Width measurements were similarly

consistent as length and area across imaging modalities, despite small

differences. (A) Differences in width measurements among imaging

modalities displayed the same behaviors as length (Fig. 1f) and area

(Fig. 1g) across a wide range of cell widths. In the legend, the first and

second modality for each color correspond to the measurements along

the y- and x-axes, respectively. Black line is y = x. (B) Histograms of cell

widths in (A) as measured by each imaging modality. (PDF 132 kb)

Additional file 2: Figure S2. For all strains used for PCA, the analyzed

population had a broad distribution of cell lengths. (PDF 412 kb)

Additional file 3: Figure S3. Morphological analysis of the Keio

collection reveals correlations between cell width and length standard

deviation. Contours from cells from each Keio deletion strain were

extracted from images acquired from the NBRP repository and used to

compute the length and mean width along the cell midline for each cell.

The standard deviation of cell length for each strain represents the

natural variation in length due to progression through the cell cycle. As

expected based on the correlation of mean width and length (Fig. 4a),

mean width was correlated with length standard deviation. White circles

and error bars were obtained by binning strains by mean width; blue

lines are the fit to binned averages. R is Pearson’s correlation coefficient;

p-value was computed with Student’s t-test. (PDF 112 kb)

Additional file 4: Figure S4. Morphological analysis of the Keio

collection reveals correlations between cell width and intracellular width

variability. Contours from cells from each Keio deletion strain were

extracted from images acquired from the NBRP repository and used to

compute the mean width and width profile across each cell. For each

cell, we then computed the standard deviation of the width profile

divided by the mean width to obtain the intracellular width variability.

White circles and error bars were obtained by binning strains by mean

width; blue lines are the fit to binned averages. R is Pearson’s correlation

coefficient; p-value was computed with Student’s t-test. (PDF 111 kb)

Additional file 5: Figure S5. Scaled PCA avoids emphasis on large cell

length variation. PCA of the correlation matrix attributes greater variation

to width, bending, and tapering modes than unscaled PCA (Fig. 4e–h).

(A) Representations of the PCA modes around the mean shape. Mode 1

represents tip morphology. Modes 2–4 represent bending, widening, and

tapering, respectively. (B) Scatter plots of the proportion of modes 1–4

and mean cell width of each strain demonstrate that width is correlated

with variation represented by each of modes 1–4. (PDF 685 kb)

Additional file 6: Table S1. Conditions in chemical genomics screen

from [29] that exhibit negative correlation between mean cell width and

S-score with p-value less than 0.000154 (Bonferroni multiple-hypothesis

correction to p < 0.05 across 324 conditions; see Methods). Table S2.

Conditions in chemical genomics screen from [29] that exhibit positive

correlation between mean cell width and S-score with p-value less than

0.000154 (Bonferroni multiple-hypothesis correction to p < 0.05 across 324

conditions; see Methods). Table S3. Pairs of COGs and conditions in

chemical genomics screen from [29] that exhibit correlations between
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mean cell width and S-scores with p-value less than 0.000154 (Bonferroni

multiple-hypothesis correction to p < 0.05 across 324 conditions; see

Methods). *: description from [29] and generously provided by Athanasios

Typas. Table S4. Pairs of COGs and conditions in chemical genomics

screen from [29] that exhibit correlations between mean cell length and

S-scores with p-value less than 0.000154 (Bonferroni multiple-hypothesis

correction to p < 0.05 across 324 conditions; see Methods). *: description

from [29] and generously provided by Athanasios Typas. (DOCX 101 kb)
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