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ABSTRACT 
The main aim of landscape analysis has been to quantify the 
‘hardness’ of problems. Early steps have been made towards 
extending this into Genetic Programming. However, few attempts 
have been made to extend the use of landscape analysis into the 
prediction of ways to make a problem easy, through the optimal 
setting of control parameters. This paper introduces a new class of 
landscape metrics, which we call ‘Genotype-Fitness Correlations’. 
An example of this family of metrics is applied to six real-world 
regression problems. It is demonstrated that genotype-fitness 
correlations may be used to estimate optimum population sizes for 
the six problems. We believe that this application of a landscape 
metric as guidance in the setting of control parameters is an 
important step towards the development of an adaptive algorithm 
that can respond to the perceived landscape in ‘real-time’, i.e. during 
the evolutionary search process itself. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Parameter learning.  

General Terms: Algorithms, Performance, Design, Theory 

Keywords: Landscape, real-world, genotype-fitness correlation, 
control parameters 

1. INTRODUCTION 
’ theorem asserts that, when averaged across all possible problems, 
all search algorithms have the same performance [32]. One 
implication of this assertion is that matching an algorithm to a 
problem is necessary in order to give good performance. Much 
research into the nature of individual problems has focused on 
‘adaptive landscapes’ [16, 33]. In particular, the ‘ruggedness’ or 
smoothness of a landscape is known to affect algorithm 
performance. Smooth landscapes are generally amenable to simple 
hill-climbing algorithms while rugged landscapes generally require 
the injection of a stochastic or more complex search element into 
the search procedure. 

This paper moves towards filling three gaps in problem landscape 
research. The first is the lack of a satisfactory measure of landscape 
ruggedness for Genetic Programming (GP) problems. The second is 
the scarcity of research into ‘real world’ problems. The third is the 
lack of a link between theory and practice [25]. We attempt to fill 
these gaps by showing that measures of landscape smoothness may 
be used directly to predict the optimal value of a control parameter, 
population size, for a variety of ‘real-world’ problems. 

The landscape metric that we introduce measures the extent to 
which changes in the genotype lead to changes in the fitness 
function. If small changes in genotype correspond to small changes 
in fitness while large genotype changes correspond to large fitness 
changes the landscape may be regarded as smooth. On the other 
hand if the two quantities are uncorrelated the landscape is rugged. 
We use a particular measure of inter-tree distance that is closely 
related to the genetic operators in which we are interested. 
Similarly, we use a measure of fitness change that scales well for 
the types of problem (regression problems) in which we are 
interested. However, the aim is to introduce a class of metrics which 
share the property that they are calculated as correlations between 
genotypic distance and fitness changes during a genetic operation. 

In this paper we demonstrate that genotype-fitness correlations may 
be calculated ‘offline’, i.e. independently of an evolutionary run. 
However, in principle these correlations may be calculated in real-
time, i.e. during the evolutionary process. This raises the prospect of 
an adaptive evolutionary algorithm that alters its control parameters 
in response to the prevailing landscape. If an indicator of problem 
hardness, i.e. landscape ruggedness, can be calculated during an 
evolutionary run, it should be possible to adapt the evolutionary 
algorithm to suit the landscape. Calculating a single (non-adaptive) 
parameter to describe the problem hardness assumes an isotropic 
landscape. In contrast, an adaptive algorithm has the obvious 
advantage that the landscape experienced can vary during the course 
of a run and control parameters will be adjusted accordingly. 

 As genotype-fitness correlations are calculated for a particular 
genetic operator, different values may be obtained for each operator. 
This allows a comparison of different operators and an investigation 
into the relationship between different operators’ correlations and 
the values of various control parameters. Specifically, we 
demonstrate that genotype-fitness correlations are a good predictor 
of optimum population size during a GP run. This finding is an 
important step in moving landscape metrics from predicting 
problem hardness into predicting optimum control parameters. 
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This section has provided an overview of the paper. Section 2 
provides a review of the background to our research, covering the 
two strands that we aim to bring together: theoretical research into 
problem landscapes (Section 2.1) and practical investigations aimed 
at optimizing control parameters (Section 2.2). Some approaches 
that combine theoretical and practical aspects are also covered 
(Section 2.3).  Section 3 describes how we calculate the genotype-
fitness correlation we have used for our research. Section 4 defines 
the problem tasks that we have used to test our metric and Section 5 
reports the results of these tests. Section 6 is a discussion of the 
consequences of our findings. Section 7 is a conclusion and 
suggested further research. Section 8 contains acknowledgements 
and Section 9 is a list of references. 

2. BACKGROUND 
2.1 Landscape Metrics 
Developments within the theoretical field may be traced back at 
least to Kauffman’s treatment of ‘correlated’ landscapes [16]. 
Problems with a totally smooth landscape may be solved trivially by 
a mutation-only single-step hill-climber. On the other hand rugged 
landscapes contain many local optima and a simple hill-climber will 
not improve after reaching a local optimum. Such landscapes 
require operators that can ‘jump beyond the correlation lengths in 
the underlying landscape’ (Kauffman, [16]). This is equivalent to 
jumping from a hill into some other part of the search space. This 
could be another hill or a valley, possibly with lower fitness. Such 
jumps are valuable in avoiding becoming trapped in local optima. In 
this analogy, the correlation length is equivalent to the width of the 
hills. 

Manderick et al. [20] assessed the relationship between correlation 
length and GA performance using the auto-correlation function and 
genetic operator correlation as tools. The auto-correlation is the 
correlation between pairs of points separated by a specified distance 
[31]. Thus different auto-correlations may be obtained for points 
separated by one mutation, two mutations, and so on. Genetic 
operator correlations, on the other hand, are calculated for specific 
genetic operators. Different correlations may therefore be obtained 
for individual genetic operators. Manderick et al found that the most 
effective operators took steps that remained within the correlation 
length of the landscape. 

The conclusions of Kauffman and Manderick are somewhat 
contradictory. Kauffman argues that one should jump beyond the 
correlation length whereas Manderick’s results suggest that one 
should stay within it. This conflict may be related to the well-known 
need for both exploration and exploitation [12]. Exploration may be 
visualised as a jump to another hill (or valley) whereas exploitation 
is the process of climbing up the current hill. The need to balance 
the two suggests that an intermediate jump-size should be optimal, 
allowing both exploration and exploitation. 

Jones and Forrest [15] introduced a measure that enabled 
comparisons between the difficulties of different problems. They 
calculated a ‘fitness distance correlation’ (FDC) as the correlation 
between the fitnesses of sampled individuals with the distances of 
these individuals from the global optimum. Assuming that the 
objective should be maximised they observed that easy problems 
generally had FDC values below -0.15, hard problems had FDC 
values between -0.15 and +0.15 and deceptive problems had FDC 
values above 0.15. The main drawback of FDC is that it requires the 

location and fitness of the global optimum to be known. For real-
world problems this is almost never the case. 

Altenberg [2, 3] pointed out the need to use measures that are 
related to the genetic operators. Manderick’s auto-correlation and 
Jones’ distance measure do not meet this criterion for operators 
other than single-step mutation. Altenberg argues that the 
evolvability of a population, that is the proportion of offspring that 
are fitter than their parents, is a better guide to GA performance. 
However, he suggests that the amount of improvement in fitness, as 
well as the frequency of improvement, should be taken into account 
when predicting performance [3]. As with correlation lengths there 
seems to be an optimum evolvability. This is because more cautious 
operators may give higher evolvability statistics. Thus, as the step 
size tends towards zero the evolvability is expected to approach 0.5. 
This is because offspring will have very similar fitnesses to parents, 
with the same number of offspring better and worse than their 
parents, at least in the early stages of an evolutionary run. Larger 
step sizes are likely to have lower evolvability. However they have 
a better chance of producing large improvements in fitness. 
Rechenberg [26] and Back et al [4]  found that an evolvability of 0.2 
gave the most rapid improvement on a variety of tasks. 

Predictive statistics have rarely been applied to genetic 
programming (GP). This is perhaps due to the difficulty in defining 
problems with tunably defined landscapes, in contrast to the GA 
field where NK landscapes [16] have been extensively studied. 
Altenberg [1] has suggested that GPs may evolve evolvability 
through the construction of structures that facilitate further 
improvement. The best way to measure evolvability was considered 
to be the correlation of parent and offspring fitnesses: in order for 
progress to be made, the action of genetic operators on ‘good’ 
parents must have a high probability of producing offspring that are 
also good. 

A concept related to correlation length, the ‘error threshold’, has 
been applied to GP by Ochoa et al. [23]. The error threshold is the 
mutation rate beyond which ‘structures obtained by the evolutionary 
process are destroyed more frequently than selection can reproduce 
them’. Ochoa et al postulate that the optimum mutation rate would 
be one close to the error threshold and would therefore balance the 
demands for exploration and exploitation. 

The FDC has been extended into GP through the use of tree-based 
edit distance measures [8, 10, 21]. The edit distance between a pair 
of individuals is calculated by overlaying the individuals and 
counting the minimum number of node changes that would have to 
be made to transform one individual into the other. 

Vanneschi and co-workers [28, 29] have used the negative slope 
coefficient (NSC) to predict problem hardness. They plot offspring 
fitness against parent fitness using data generated with the Hastings-
Metropolis algorithm. They split the data into bins and plot the 
median point within each bin. The points are then connected and the 
slope of each line segment calculated. Negative gradients are 
considered to be an indication of problem hardness since they are a 
sign of deception: fitter parents are likely to give less fit offspring 
within a region with a negative slope. This approach may be seen as 
an extension of Altenberg’s evolvability measure. Unfortunately the 
results have been found to be highly dependent on the method used 
to ‘bin’ data. Some success has been achieved with ‘size-driven 
bisection’ [29] but this approach requires the arbitrary setting of 
parameters to guide partitioning. 
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2.2 Control Parameter Prediction 
The practical task of predicting optimal control parameters for real 
world problems has generally been pursued separately from the 
theoretical description of predictive parameters. While a fixed 
mutation rate of 1/ string_length is believed to give reasonable 
results with a variety of datasets it has been found that the optimum 
mutation and crossover rates decrease with population size [13, 14]. 
More complex interactions between control parameters have been 
observed by some researchers [22, 24]. 

Banzhaf et al [5] applied four different mutation rates between 5% 
and 80%, with crossover occurring the rest of the time. They used a 
fixed population size (3000 individuals) and trees of fixed size. The 
performance on two classification tasks was assessed using the 
classification accuracy and the proportion of good runs (those 
within the top 5% of all runs) as performance indicators. It was 
found that a 50-50 balance of crossover and mutation gave the best 
results on these tests. 

Luke and Spector [18, 19] similarly varied the crossover-mutation 
rates and also varied the population size. They used four different 
tasks (Boolean 6-multiplexer, lawnmower, artificial ant and 
symbolic regression) to assess the various runs. They found that a 
crossover rate of 0.6-0.7 gave the best results although the change in 
performance in response to changes in the crossover-mutation 
balance was small. 

2.3 Combined Approaches 
A small number of recent studies have combined the theoretical and 
practical strands of research by relating a chosen landscape metric to 
algorithm performance. Corne and co-workers have used finite state 
machines to simulate the progress of search algorithms on problems 
including MAX-ONES and NKp landscapes [9, 27]. This enables 
them to predict the effect of altering the values of control parameters 
such as mutation rate, population size and tournament size on the 
performance of a GA. 

Burke et al [7] consider a number of population descriptors and their 
use as predictors of GP performance. Their primary aim is to look at 
the efficacy of diversity measures in predicting performance during 
the course of a GP run. They sidestep the requirement in FDC to 
know the global optimum by calculating edit distances to the best 
individual found so far. They find that the average edit distance 
between the population of individuals and this individual correlates 
well with the best fitness achieved. Burke et al make the observation 
that regression problems have weaker correlations between diversity 
measures and fitnesses than other types of problem suggesting that 
the diversity measures that they used did not capture some features 
of these problems. 

3. GENOTYPE – FITNESS 
CORRELATIONS 
We introduce a new type of measure that we believe is a good 
indicator of GP landscapes; our measure is the correlation between 
step size in genotypic space and the change in phenotypic fitness. 

The distance measure that we have used is related to those used by 
de Jong [10] and others [8, 21, 30]. First we overlay a pair of trees. 
Starting at the root node we then count the number of identical 
nodes between the trees. If and when we reach a node that differs 
between the trees we ignore the subtree below that node and 

backtrack to the next uncounted node. The distance between the 
trees is then calculated as 

(1) 

where nmax is the number of nodes in the larger of the 2 trees and 
nsame is the number of nodes which the 2 trees have in common. 

 

 

 

 

 
 
 
 
 
 

Figure 1. These trees have a distance of 1/3 if normalised w.r.t. 
the smaller tree, 7/9 if normalised w.r.t. the larger tree. 

Our distance metric differs from earlier measures in two ways. First 
it is normalised with respect to the larger of the pair of trees, i.e. the 
denominator in equation (1) is nmax rather than nmin. The reason for 
this is that we wanted trees of very different sizes to have a large 
inter-tree distance. This can only be achieved by normalising with 
respect to the larger tree. For example, the trees in Figure 1 have an 
inter-tree distance of 7/9 using our method and 1/3 if normalised 
with respect to the smaller tree. 

The second way in which our distance metric is novel is that 
subtrees below differing nodes are ignored. We have chosen to do 
this for a number of reasons. There is a practical reason, which is 
that the distance may be calculated more quickly. This is important 
because one aim is to design a distance metric that is easy and quick 
to calculate: if the metric is too cumbersome to calculate the 
improvement in performance may be negated by the computational 
demands of the metric. Secondly, it gives more emphasis to root 
nodes. This is illustrated by Figure 2. The 2 trees differ only by the 
root node and therefore have a distance of 1/3 if all nodes are 
considered. However, our method gives a distance of 1.0. All nodes 
are considered to be different since the trees differ at the root node. 
It has been shown that nodes closer to the root of a tree generally 
have more effect on phenotypic behaviour and that an emphasis on 
these nodes is desirable [11]. The final reason for ignoring subtrees 
below differing nodes is that we wanted a distance metric that 
would relate closely to the genetic operators being investigated. In 
this study we have used subtree mutation and subtree crossover as 
the only genetic operators. For this reason it is difficult to 
interconvert 2 individuals that differ only at points near the roots of 
the trees. Our distance metric has worked well with the genetic 
operators used within this study. However, if alternative operators, 
such as point mutation, were under investigation it is likely that an 
alternative distance metric would be a superior indicator of 
phenotypic variation. 

 

 

d = (nmax –nsame)/ nmax 
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Figure 2. These trees have a distance of 1/3 if all nodes are 
compared, 1 if sub-nodes below a differing node are ignored. 

For every mutation or crossover operation the parent-offspring 
distance, dPO, was measured. In the case of crossover, two different 
parent offspring distances were calculated. We distinguished 
between parent 1, which was defined as the parent that provided the 
root node, and parent 2, which provided the replacement subtree. 

In addition to calculating the parent-offspring genotypic distance, 
the ratio of parent to offspring fitness was calculated for each new 
offspring. This ratio, RPO, is more precisely defined in (2). 

(2) 

The use of a logarithmic scale was used because the fitness function, 
f, was the mean square error of each predictor. This value varied 
across several orders of magnitude so logarithmic scaling was used. 
Again, parent 1 and parent 2 were distinguished for crossover giving 
rise to two different RPO values, RPO,1 and RPO,2. 

Our fitness-distance measure differs in several ways from those used 
by previous authors. It is the ‘distance’ (R measure) between parent 
and offspring, not the distance to the global optimum used by Jones 
and Forrest [15] nor even that to the best-solution-so-far used by 
Burke [7]. Further, our fitness-distance measure is not a measure of 
evolvability because it does not matter whether the offspring is more 
or less fit than its parent(s): it is the log of the ratio of the larger to 
the smaller fitness in either case. It should also be noted that we 
consider the whole landscape reachable by the operator, rather than 
calculating median or mean values as in some alternative 
approaches [29]. 
An important property of RPO and dPO is that they are both distance 
metrics, and therefore have the following properties- 

• When parent and offspring are identical they have the 
value 0. In all other circumstances RPO and dPO are 
positive. 

• Both measures are symmetric, i.e. RPO = ROP and dPO = 
dOP. 

• Both measures meet the triangle inequality, i.e. RXY + RYZ 
≥ RXZ and dXY + dYZ ≥ dXZ 

This is commensurate with the view of the quantities as step sizes 
i.e. estimates of the distances traveled during a genetic operation in 
fitness space and genotype space, respectively. 
The correlation between RPO and dPO, which we call the genotype-
fitness correlation (GFC), is defined by (3), in which n is the 
number of samples used in the calculation and sR and sd are the 
standard deviations of RPO and dPO respectively. 
 

(3) 

We believe that the GFC is an indicator of the smoothness of the 
landscape. If it has a very high value the landscape experienced is 
highly correlated. In this situation, most individuals are located in 
regions where the operator in question moves around on the side of 
a hillside but does not jump beyond the correlation length of the 
landscape. On the other hand, if this value is very low, most 
individuals are located in uncorrelated regions. These could be 
either very rugged landscapes or neutral landscapes [6].  

4. PROBLEM DEFINITION 
A series of tests was performed in order to find out whether the GFC 
could be used to predict optimum control parameters, i.e. those 
parameters that give the lowest mean square error (MSE) within a 
fixed number of fitness evaluations. Six tasks were identified and 
many GP runs were carried out on each task using a range of control 
parameters, with MSEs calculated for every run. In parallel to these 
runs, calculations of GFC were made for each task. The relationship 
between GFC values and final fitnesses (MSEs) was then 
investigated. 

The function set comprised four arithmetic functions: addition, 
subtraction, multiplication and protected division. Generated trees 
had a maximum depth of 17 and length of 250. A tournament of size 
2 was used for selection and the population was evolved in steady-
state mode. 

All of the problems studied were regression tasks using real-world 
or pseudo real-world data and they are readily available on the 
Internet. Two (Boston and kin32nh) were obtained from the Delve 
repository at Toronto University1. The remaining datasets were 
obtained from Luis Torgo’s repository at the University of Porto2. 
The data size and dimensionality (number of predictor variables) are 
given in Table 1. 

Table 1. Dataset properties 

dataset size dimensionality 
auto mpg 392 7 

Boston 506 13 

cart 40768 10 

delta ailerons 7129 5 

kin32nh 8192 32 

machine 209 6 

 
Two control parameters were varied during the investigation: the 
crossover/mutation balance and the population size. All offspring 
were either mutated or recombined from their parent(s), i.e. no 
cloning occurred. The crossover rate was varied in steps of 0.1 
between 0.2 and 0.9. Mutation took place in all other cases, giving 
corresponding mutation rates that varied between 0.8 and 0.1. The 
population size comprised the set of values {5, 6, 7, 8, 9, 10, 20, 30, 
40, 50, 60, 70, 80, 90, 100, 200, 300, 400}. These parameter sweeps 
give rise to 144 different training regimes. 100 GP runs were carried 
out using each regime. 

                                                                 
1 http://www.cs.toronto.edu/~delve/data/datasets.html 
2 http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html 

( )( )
( ) dR

n

i
ii

ssn

ddRR
GFC

1
1

−

−−
=
∑
=

RPO = log(max(fparent,foffspring)/min(fparent,foffspring)) 
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Each run was conducted for 20,000 evaluations, equivalent to 
between 50 and 4000 generations depending on the population size. 
Only two operators were used: single-point subtree mutation and 
single-point subtree crossover. Mutation and crossover points were 
selected randomly and only one individual was created in each 
operation. In the case of crossover the parent that provided the root 
node was identified as ‘parent 1’ and the second parent as ‘parent 
2’3, with the two parents selected through separate tournaments. It is 
expected that parent 1 will have a larger influence on the fitness of 
the offspring. We used Langdon’s ‘length neutral’ mutation operator 
[17]. It fixes the length of the replacement subtree to be between 
50% and 150% of the length of the removed subtree, thereby 
limiting the appearance of program bloat. Correlation calculations 
were carried out separately for each operator. 

The measures of fitness step size and genotype step size were those 
defined in section 3. The performance of the algorithms was 
assessed as the mean square error (MSE), averaged over 100 runs of 
a particular training regime. 

GFC calculations were carried out separately. These involved the 
creation of a random population of 100 solutions followed by the 
repeated application of a single genetic operator to randomly 
selected solutions, i.e. a random walk was performed across the 
whole population. Each walk was continued for 1000 evaluations 
and separate walks were conducted for the mutation and crossover 
operators. 100 runs were performed and quoted values have been 
averaged over all runs. 

The time taken to calculate a parent-offspring distance was of the 
order of 10 µs on a 2.4GHz PC. This is negligible compared to the 
time required for fitness evaluation: even for the smallest dataset 
(machine) this was of the order of 10 ms on the same computer. 

All code has been produced in-house in the Java programming 
language. Programs were executed via Condor, a workload 
management system that distributes processing across a pool of 
computers. 

5. RESULTS 
5.1 Control Parameters 
Figures 3 and 4 show the variation in mean MSE with, respectively, 
crossover rate and population size. In the crossover rate plane 
(Figure 3) there is a bowl shape with the lowest values of mean 
MSE occurring for medium values of crossover rate and high values 
occurring for both high and low rates of crossover. All problems 
show a preference for high crossover rates (above 0.5) and perform 
particularly badly for low crossover rates. A crossover rate of 0.6 is 
within the optimum range for all datasets except Cart (for which it is 
the second best rate). This suggests that there is an optimal 
crossover rate that, for the domains studied, is largely independent 
of problem landscape. 

 

                                                                 
3 This procedure differs slightly from standard GP crossover, in 

which 2 offspring are produced and both parents will provide 
the root node of one offspring. 
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Figure 3. Variation in MSE with crossover rate, normalized to 

the minimum MSE achieved. 
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Figure 4. Variation in MSE with population size, normalized to 

the minimum MSE achieved. 
Table 2. Optimum control parameters 

dataset optimum 
crossover rate 

optimum 
population size 

auto mpg 0.6-0.8 90-200 

Boston 0.5-0.6 90-100 

cart 0.7 90-200 

delta ailerons 0.3-0.8 70-100 

kin32nh 0.6-0.8 3-6 

machine 0.5-0.6 50-70 

 

The MSE varies less smoothly in response to population size (see 
Figure 4), although a bowl shape is again seen for all datasets except 
kin32nh. However, the minimum occurs at very different values for 
different datasets. 

Table 2 shows the optimum population size and crossover rate for 
each dataset. When comparing the values for different population 
sizes, the values have been averaged across all crossover rates. 
Similarly, when comparing different crossover rates, values for the 
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different population sizes have been averaged.4 In cases where there 
are several parameters that give results which are almost as good as 
each other (average MSE within 1% of each other) a range of 
optimum values has been supplied. 

5.2 Correlation Statistics 
Table 3. Mean GFC values, with S.D. Calculation method used 
a population of 100 and random selection for 1000 evaluations.  

dataset 
crossover 

GFC 
(parent 1) 

crossover 
GFC 

(parent 2) 

mutation 
GFC 

auto mpg 0.134±0.055 0.124±0.037 0.216±0.067 

Boston 0.175±0.065 0.120±0.033 0.196±0.069 

cart 0.052±0.046 0.084±0.035 0.120±0.060 

delta ailerons 0.157±0.063 0.125±0.036 0.206±0.064 

kin32nh 0.308±0.066 0.181±0.046 0.304±0.079 

machine 0.182±0.064 0.135±0.039 0.218±0.076 

 
Table 3 shows the calculated GFC values. For crossover, GFC 
values were calculated separately for parent 1 and parent 2 (see 
Section 3). Figures 5 and 6 plot the midpoint of the range of optimal 
population sizes against these values. Figure 7 is the corresponding 
plot using mutation GFCs. The Pearson coefficients for the plots are 
0.92, 0.88 and 0.83 for, respectively, crossover (parent1), crossover 
(parent 2) and mutation. The high degree of linearity of these plots 
indicates that the optimum population size may be estimated from a 
single GFC by assuming a simple linear model. 
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Figure 5. The midpoint of the optimal population range plotted 
against the crossover GFC (parent 1) for 6 different datasets. 

                                                                 
4 This procedure assumes that the two parameters have orthogonal 

effects. In order to test that this was the case, two-way analysis 
of variance (ANOVA) tests were performed. They indicated 
that interactions between crossover rate and population size 
could be ignored for all datasets except machine and kin. For 
these 2 datasets the effects due to either crossover rate or 
population by themselves were very much higher than their 
combined effect. 
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Figure 6. The midpoint of the optimal population range plotted 
against the crossover GFC (parent 2) for 6 different datasets. 
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Figure 7. The midpoint of the optimal population range plotted 

against the mutation GFC for 6 different datasets. 
This finding is very pleasing but also slightly surprising. It is 
intended that further work will investigate the extent to which the 
linear relationship holds. For example, as the GFC increases we 
might expect the optimum population size to approach 1 
asymptotically (implying a hill-climber), while as the GFC 
approaches 0 we would expect the optimum population size to 
approach the total number of evaluations (random search). It is 
possible that the ‘true’ relationship between GFC and optimum 
population size is exponential but that a straight line gives a 
reasonable approximation for most real-world problems. The 
investigation of additional datasets with GFCs outside the range 
included here is required to test the range of applicability of the 
linear approximation. 

6. DISCUSSION 
The results obtained indicate that the GFC is a very useful 
predictive tool. It has been calculated using just 1000 evaluations, 
averaged over 100 runs. However, for the datasets studied, a linear 
model is able to predict reliably which population size will give the 
best performance at the end of a run lasting 20,000 evaluations. 
Overall, the number of evaluations carried out on each problem was 
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nearly 300 million (100 runs of 20,000 evaluations each on 144 
different control parameter combinations). In contrast, each GFC 
has been obtained from just 100,000 evaluations. 

The power of GFCs as a predictive tool is dependent upon an 
assumption that population size is linearly related to GFC. 
Additional datasets are required to further test this hypothesis. 
However, we believe that the GFC as it stands gives useful guidance 
concerning optimum population sizes.  

In future work we hope to show that the calculation of GFCs 
‘online’, i.e. during an evolutionary run, may have a further benefit. 
If carried out online they require negligible additional computation: 
fitness values would be calculated already for the purposes of 
selection and the genotype distance calculation is very fast. They 
could therefore be incorporated into an adaptive GP that altered its 
control parameters in response to the landscape experienced. The 
results reported in Section 5 imply that an adaptive population size 
would be more profitable than an adaptive crossover/mutation rate. 

The negative correlation between GFC and population size has been 
demonstrated but the reasons for the relationship are not yet certain. 
We suspect that it is related to the need to maintain diversity and the 
associated need for a balance between exploration and exploitation. 
If diversity is lost too early in an evolutionary run, the population is 
likely to settle in a local optimum, i.e. the exploration phase is too 
short. On the other hand, too much diversity may be linked to a 
failure to converge within the time allowed, i.e. the exploration 
phase is too long, allowing little time for exploitation. With all 
datasets the lowest diversities are observed for small populations 
(which are evolved for a large number of generations). It has been 
shown that these small populations are optimal for problems with a 
high GFC, i.e. those with smooth landscapes, whereas problems 
with rugged landscapes are solved more effectively by evolving a 
large population for a small number of generations. This implies, as 
one might have expected, that it is best for problems with smooth 
landscapes to use exploitation whereas those with rugged landscapes 
are solved more effectively using a high level of exploration.  

7. CONCLUSIONS AND FURTHER WORK 
This study has described a novel family of metrics, known as 
genotype-fitness correlations (GFCs), that provide a useful measure 
of GP landscape. A particular metric, suitable for the investigation 
of regression problems using subtree mutation and crossover, has 
been used to measure the ruggedness of the landscape for six 
different regression tasks. It has been shown that the GFC is a good 
guide to the optimal population size, with (for a given number of 
evaluations) rugged landscapes showing a preference for large 
populations while smoother landscapes are more effectively 
conquered using smaller populations. 

Obtaining the GFC ‘offline’, as we have done here, is useful for 
giving an indication of optimal population size before carrying out 
an evolutionary run. In future work we intend to show that GFCs 
can also be obtained in ‘online’ mode, using information collected 
during an evolutionary run. This raises the prospect of an adaptive 
evolutionary algorithm based on these ideas, capable of adjusting its 
control parameters as it experiences different landscapes. 

We plan to extend GFCs to other genetic operators such as tree-
based point mutation or single-point binary string crossover. This is 
likely to involve the definition of new types of GFCs, suited to the 
particular operators under investigation. 

While a crossover-mutation ratio of 0.6 was found to work well 
within this study, this might not be the case for other mutation 
operators, such as swap or point mutations. In cases where the 
optimal crossover-mutation ratio varies, it is hoped that it will 
become possible to predict the best balance between different 
operators using GFCs. 
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