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Abstract

We study a model of the cortical macrocolumn consisting of a collection of in-

hibitorily coupled minicolumns. The proposed system overcomes several severe

deficits of systems based on single neurons as cerebral functional units, notably lim-

ited robustness to damage and unrealistically large computation time. Motivated

by neuroanatomical and neurophysiological findings the utilized dynamics is based

on a simple model of a spiking neuron with refractory period, fixed random exci-

tatory interconnection within minicolumns, and instantaneous inhibition within one

macrocolumn. A stability analysis of the system’s dynamical equations shows that

minicolumns can act as monolithic functional units for purposes of critical, fast de-

cisions and learning. Oscillating inhibition (in the gamma frequency range) leads

to a phase-coupled population rate code and high sensitivity to small imbalances

in minicolumn inputs. Minicolumns are shown to be able to organize their collec-

tive inputs without supervision by Hebbian plasticity into selective receptive field

shapes, thereby becoming classifiers for input patterns. Using the bars test, we crit-

ically compare our system’s performance with that of others and demonstrate its

ability for distributed neural coding.

Keywords: Cerebral Cortex, Columnar Organization, Neural Dynamics, Stability

Analysis, Neural Coding, Hebbian Plasticity, Unsupervised Learning
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1 Introduction

Simulations of artificial neural networks (ANNs) are a standard way to study neural

information processing. Although a large amount of data about biological neural

networks is available there remain uncertainties regarding the way in which neurons

process incoming action potentials, the way the neurons are interconnected, and

the way in which interconnections change dynamically over time. These uncertain-

ties have generated a broad variety of different models of neural networks. They are

based on different assumptions for connectivity (e.g., feed-forward or symmetrically

interconnected), neuron models (e.g., McCulloch-Pitts, integrate-and-fire, Hodgkin-

Huxley), and different modification rules for synaptic weight changes (e.g., Heb-

bian learning, back-propagation). ANNs like the Hopfield network (Hopfield, 1982;

Hopfield and Tank, 1986) or perceptrons afford deep functional insight on the ba-

sis of mathematical analysis that (1) allowed the networks to be successful in vari-

ous technical applications and (2) influenced our views on learning and information

processing in biological neural networks significantly. By now, it has become ob-

vious, however, that the classical ANNs fall short in modeling the generalization

abilities or computation times of biological networks. Many important reactions

in the brain take place in times so short that individual neurons had time to trans-

mit only very few or just a single action potential (see Nowak and Bullier (1997)

and Thorpe et al. (1996) for reaction times in the visual system). If graded signals

are to be processed, models based on a single neuron rate code fail to model the

measured reaction times. Further, most ANNs do not reflect biologically plausible

connectivity because they were motivated by the view that biological information

processing is continuously distributed over the cortical surface or that information

is processed strictly feed-forward through layers of equal neurons. However, in the

last decades a large amount of anatomical and physiological data was accumulated

suggesting that the cortex is hierarchically organized in cellular columns as princi-

pal building blocks (see Mountcastle (1997) and Buxhoeveden and Casanova (2002)

for overviews and Jones (2000) for a critical discussion). Columnar organization is

advantageous (1) with respect to implementation of a neural population rate code

able to overcome the computational speed limitations of single neuron rate codes

and (2) with respect to connectivity and robustness. With evolutionary growth of the

brain, individual building blocks had to connect to more and more other elements.

Groups of neurons can support many more connections than individual neurons and

a network based on neural columns as principal units can be expected to be much

more robust against the loss of connections or drop-out of neurons. In the cerebral

cortex of mammals neural columns can be identified on different scales. The mini-

column is believed to be the smallest neural entity consisting of several tens up to

a few hundred neurons, which are stacked orthogonally to the cortical surface (Pe-

ters and Yilmaze, 1993). The minicolumns themselves combine to what is called a

macrocolumn or segregate (Favorov and Diamond, 1990) (see Mountcastle (1997)

for an overview). Like minicolumns, macrocolumns can be identified both anatom-

ically and physiologically (Favorov and Diamond, 1990; Elston and Rosa, 2000;

Lubke et al., 2000) and are shown to process stimuli from the same source such as
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an area of the visual field or a patch of a the body surface (Favorov and Whitsel,

1988; Favorov and Diamond, 1990). In the primary somatosensory cortex of the

cat macrocolumns were found to contain approximately 80 minicolumns. Although

mini- and macrocolumns are best studied in primary sensory areas they are found

in higher cortical areas as well (Peters et al., 1997; Constantinidis et al., 2001) and

are believed to represent the basic building blocks of all areas of cortices of higher

vertebrates (Mountcastle, 1997; Buxhoeveden and Casanova, 2002). The main part

of a minicolumn is a collection of excitatory cells grouped around bundles of den-

drites (Peters and Yilmaze, 1993) and axons (Peters and Sethares, 1996). Together

with physiological findings (Thomson and Deuchars, 1994) this suggests that the

excitatory cells of a minicolumn are mutually strongly interconnected (Mountcastle,

1997; Buxhoeveden and Casanova, 2002). For inhibitory feedback double-bouquet

cells and basket (clutch) cells play a central role (DeFelipe et al., 1989, 1990; Peters

and Sethares, 1997; Budd and Kisvarday, 2001). Dendritic branch and axonal field

analysis suggests that the inhibitory cells are stimulated by the activities within the

excitatory cells of their minicolumn and project back to a number of minicolumns

in their neighborhood.

In this paper we study a model of the macrocolumn which is motivated by the

above findings. We model the macrocolumn as a collection of inhibitorily coupled

minicolumns which consist themselves of a collection of randomly interconnected

excitatory neurons. The excitatory neurons are modeled explicitly. The neuron

model is a very abstract one but it takes into account the neurons’ spiking character.

The assumptions made allow for a detailed mathematical analysis which captures

the basic properties of the neuron dynamics. It turns out that the spiking character

of the neurons in combination with the columnar interconnection structure and fast

inhibitory feedback leads to a dynamics with ideal properties for computing input

mediated by afferent fibers to the macrocolumn. We will show that in the absence of

input the macrocolumn dynamics possesses stationary points, i.e. states of ongoing

neural activity. The number of these depends exponentially on the number of mini-

columns. The stability of the stationary points is controlled by a single parameter

of inhibition and changes at a single critical value of this parameters. The sys-

tem is operated by letting the inhibition parameter oscillate about its critical value.

An isolated macrocolumn is hereby successively forced to spontaneously break the

symmetry between alternate stationary points. If the dynamics is weakly coupled to

input by afferent fibers which are subject to Hebbian plasticity, a self-organization

of minicolumnar RFs is induced. The self-organization makes the macrocolumn to

a decision unit with respect to the input. The result of a decision is identified with

the active state of the macrocolumn at the maximum of one inhibitory oscillation

(or ν-cycle). Possible ν-cycle periods may be very short, suggesting cortical oscilla-

tions in the γ-frequency range as their biological correlates and allowing very rapid

functional decisions.

The macrocolumn model will be shown to be able to classify input patterns and

to extract basic features from the input. The latter capability is demonstrated using

the bars test (Földiák, 1990) and it can be shown that the presented model is com-

petitive to all other systems able to pass the test. During the bars test a system has
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to learn the basic components of input patterns made up of superpositions of these

components. In the superpositions the components do not add up linearly which

presents an additional difficulty. Systems passing the test must be able to represent

an input pattern by exploiting constituent combinatorics. The passing of the bars

test can be seen as a prerequisite for systems which are intended to handle large

and varying natural input because natural input is expected to be most efficiently

represented by combining elementary features.

The presented network owes its computational abilities to the properties of the

internal macrocolumnar neuron dynamics, which itself is emergent from the colum-

nar interconnection structure, the spiking nature of neurons, and background oscil-

lation. The network reflects, on the one hand, major properties of biological neural

information processing and is, on the other hand, competitive to a class of systems

which focus on functional performance in tasks of basic feature extraction. In com-

bining these two aspects the system distinguishes itself from all other column-based

systems, e.g., (Fukai, 1994; Favorov and Kelly, 1996; Somers et al., 1995; Fransen

and Lansner, 1998; Lao et al., 2001) and systems whose ability of extracting basic

input constituents was demonstrated using the bars benchmark test, e.g., (Földiák,

1990; Saund, 1995; Dayan and Zemel, 1995; Marshall, 1995; Hinton et al., 1995;

Harpur and Prager, 1996; Frey et al., 1997; Hinton and Ghahramani, 1997; Fyfe,

1997; Charles and Fyfe, 1998; Hochreiter and Schmidhuber, 1999; O’Reilly, 2001;

Spratling and Johnson, 2002).

In Sec. 2 we define the macrocolumn model and analyze its dynamical proper-

ties. In Sec. 3 we introduce Hebbian plasticity of afferents to the macrocolumn and

study the resulting input driven self-organization of the minicolumns’ RFs. In Sec. 4

the computational abilities of the system are systematically studied for the problem

of pattern classification and for the bars problem. In Sec. 5 we finally discuss the

system’s general properties in comparison with systems which were applied to the

bars problem and discuss our system’s relation to neuroscience.

2 Neural Dynamics of the Macrocolumn

We first define and analyze the dynamics of a model of a single minicolumn and

than proceed by studying the dynamical properties of the macrocolumn as a set of

inhibitorily coupled minicolumns.

2.1 Model of the Minicolumn

A minicolumn we take to consist of excitatory neurons which are randomly intercon-

nected as motivated by the above mentioned findings (see Mountcastle (1997) and

Buxhoeveden and Casanova (2002) for review). The excitatory neurons are modeled

as McCulloch-Pitts neurons with a refractory period of one time step. The dynam-

ics of a minicolumn consisting of m neurons is described by the following set of
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difference equations (i = 1, . . . ,m):

ni(t + 1) = H(
m∑

j=1

Tij nj(t) − Θ) · H(1 − ni(t))
︸ ︷︷ ︸

refraction

, H(x) :=

{

0 if x ≤ 0
1 if x > 0

. (1)

For the interconnection Tij we assume that each neuron receives s synapses from

other neurons of the minicolumn. We further assume that the dendrites and axons

interconnect randomly such that a natural choice for the probability to receive a

synapse from a given neuron is 1
m

(compare Anninos et al. (1970)). The synaptic

weights we take to be equal to the constant c. Note that for any choice of c the

threshold Θ can be chosen such that the resulting dynamics is the same. Without

loss of generality we therefore choose c = 1
s

such that 1
m

∑m
i,j=1 Tij = 1. To further

analyze the dynamics we describe equations (1) in terms of the activation probability

of a neuron, p(t), at time t. The probability depends first on the number of received

inputs and second on the probability that the neuron was active in the preceding time

step. Due to the interconnection (Tij) the probability fbn(x) of a neuron to receive x

non-zero inputs from its pre-synaptic neurons is given by the binomial distribution

fbn(x) =

(

s

x

)

px(1 − p)s−x. (2)

For s ≫ 1 the distribution can be approximated by a Gaussian probability density

(theorem of Moivre-Laplace) of the form

fg(x) =
1√
2π σ

e−
1

2
(x−a

σ
)2 , a = sp, σ =

√

sp(1 − p) . (3)

The probability pA(t + 1) that a neuron receives enough input to exceed threshold

at (t + 1) is thus given by the integration of all fg(x) at t with x > Θ
c

= sΘ. The

probability p(t + 1) that the neuron is activated at time (t + 1) further depends on

the probability pB(t+1) that it is not refractory at (t+1). The probability pB(t+1)
is directly given by the complement of the probability that the neuron was active the

time step before, pB(t + 1) = (1 − p(t)).
To further analyze the dynamics so called coherence effects are to be consid-

ered, i.e. effects which are caused by repeating (cycling) neural activity states.

Such effects are a direct consequence of the random but fixed interconnection ma-

trix (Tij) and thus interdependent neural activation and refraction probabilities. As

we will discuss at the end of the section, the coherence effects can be suppressed,

e.g., by neural threshold noise. If the effects are sufficiently suppressed, we can

assume the probabilities pA(t + 1) and pB(t + 1) to be approximately independent,

p(t + 1) = pA(t + 1) pB(t + 1). The assumption permits a compact description of

dynamics (1) in terms of the activation probability p(t) (see Appendix for details):

p(t + 1) = Φs(
p(t) − Θ

√

p(t) (1 − p(t))
) (1 − p(t)) , (4)

where Φs(x) = 1√
2π

∫√s x
−∞ e−

1

2
y2

dy is the Gaussian error integral parameterized

by s. The inhibitory feedback to the minicolumnar activity is modeled indirectly
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as a rise of the threshold Θ. It is taken to be present already in the next time step

and to be equally sensed by all neurons, which can be motivated by the axonal

distribution of inhibitory double-bouquet neurons (DeFelipe et al., 1990; Peters and

Sethares, 1997). The inhibitory neurons receive input from the excitatory neurons

of the minicolumn. The inhibitory feedback we choose to depend linearly on the

over-all activity, 1
m

∑m
i=1 ni(t), of the minicolumn,

Θ = ν
1

m

m∑

i=1

ni(t) + Θo = ν p(t) + Θo , (5)

where ν is the proportionality factor of inhibition and Θo the constant threshold of

the neurons. The choice represents a natural approximation of the feedback and

allows for a further analytical treatment. Inserting (5) into (4) we get:

p(t + 1) = Φs(
(1 − ν) p(t) − Θo
√

p(t) (1 − p(t))
) (1 − p(t)) . (6)

The difference equation (6) can be shown to possess a point of non-zero stable sta-

tionary activity for a wide range of parameters s, Θo, and ν, given by:

Ps,Θo

ν := max { p | p = Φs(
(1− ν) p−Θo√

p (1−p)
) (1 − p)} . (7)

Ps,Θo

ν (or Pν for short) can be numerically determined and its value is in good agree-

ment with activity probabilities obtained by directly simulating (1) with inhibition

(5). The dynamics (1) with (5) has to be simulated with additional neural thresh-

old noise in order to suppress the coherence effects mentioned above. Fluctuations

of the inhibitory feedback caused by a finite number of simulated neurons, m, also

contribute to the noise but are on their own for a wide range of parameters not suf-

ficient for an appropriate suppression of the effects. Note that the coherence effects

are most efficiently suppressed if the interconnection matrix (Tij) is re-randomized

at each time step. In this case the assumption p(t + 1) = pA(t + 1) pB(t + 1) and

also the computation of pA(t + 1) via the binomial distribution can be adopted from

(Anninos et al., 1970). There the matter is thoroughly discussed for a dynamics with

another type of inhibition, but the essential arguments carry over to our dynamics.

Neural threshold noise as an alternative to re-randomization was first described in

(Lücke et al., 2002). In specific simulations with fixed interconnections and thresh-

old noise we have validated that their behavior closely matches that of simulations

with successively re-randomized interconnections, which shows that the analytical

results are also applicable for the biologically realistic case of fixed interconnections,

as used in this work.

2.2 Model of the Macrocolumn

As motivated by the distribution of synapses of inhibitory neurons (DeFelipe et al.,

1989, 1990; Peters and Sethares, 1997; Budd and Kisvarday, 2001) the macrocol-

umn is modeled as a collection of inhibitorily coupled minicolumns. With the same
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assumption as above the dynamics is given by the following set of k m difference

equations,

nα
i (t + 1) = H(

m∑

j=1

Tα
ijn

α
j (t) − I(t) − Θo) · H(1 − nα

i (t)) , (8)

where α = 1, . . . , k counts the minicolumns, i = 1, . . . ,m the neurons of the mini-

column, and where I(t) denotes a time dependent inhibition. Note that equation

system (8) assumes that there are no direct connections between excitatory neurons

of the different minicolumns. For a fixed α the interconnection (Tα
ij) is of the same

type as in the previous section. By the statistical considerations of Sec. 2.1 we can

replace the k m difference equations by a set of k difference equations in terms of

activation probabilities pα of neurons of different minicolumns:

pα(t + 1) = Φs(
pα(t) − I(t) − Θo
√

pα(t)(1 − pα(t))
) (1 − pα(t)) . (9)

The inhibitory feedback I(t) is modeled as the maximum of the over-all activities

in the minicolumns, pβ = 1
m

∑m
i=1 n

β
i (t),

I(t) = ν max
β=1,...,k

{pβ(t)} , (10)

where the maximum operation is assumed to be implemented by the system of in-

hibitory neurons of the macrocolumn. The maximum operation can be biologically

implemented in various ways (Yu et al., 2002). Some possibilities are based on

shunting inhibition (compare also Reichardt et al. (1983)) whereas others use sub-

tractive inhibition. On the functional side, inhibition proportional to the maximal

minicolumnar activity (10) results in a qualitatively different and favorable behav-

ior compared to a dynamics with inhibition proportional to the average activity as

was studied in (Lücke et al., 2002). The dynamical difference and its functional

implications will be further discussed later in this section.

2.3 Stability Analysis

The dynamical properties of the macrocolumn model can now be studied with a sta-

bility analysis of a system of k coupled non-linear difference equations (α = 1, . . . , k):

pα(t + 1) = Φs(
pα(t) − ν maxβ{pβ(t)} − Θo

√

pα(t)(1 − pα(t))
) (1− pα(t)) =: Gα(~p(t)) (11)

First note that the system possesses the following set of potentially stable stationary

points,

Q = {~q | ∀i = 1, . . . , k (qi = 0 ∨ qi = Pν) } , (12)

e.g., for k = 3, (0, 0, 0), (Pν , 0, 0), (0,Pν , 0), . . . , (Pν ,Pν , 0), . . . , (Pν ,Pν ,Pν),
where Pν is given in (7). The magnitude of Q is |Q| = 2k. The vector with small-

est norm, e.g., (0, 0, 0), will be called ~qmin, and the vector with largest norm, e.g.,
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(Pν ,Pν ,Pν), will be called ~qmax. The set of Q without the trivial stationary point

~qmin will be denoted by Q+, Q+ = Q− {~qmin}. To analyze the stability of the sta-

tionary points in Q we first approximate I(~p) = ν maxβ{pβ} with a differentiable

function:

Ĩρ(~p) := ν





k∑

β=1

(pβ)ρ





1

ρ

⇒ lim
ρ→∞

Ĩρ(~p) = I(~p). (13)

A stationary point ~p is stable if and only if the magnitudes of all eigenvalues of the

Jacobian of ~G(~p) (see (11)) are smaller than one. Thanks to symmetries of equation

system (11) and to the substitution by Ĩρ(~p) the eigenvalues can be computed in

general and are, in the limit ρ → ∞, given by1:

λ0 = 0 , λ1 =
1

2
√

Pν (1 − Pν)
(1 − ν +

1 − 2Pν

Pν

Θo) Φ′
s(h(ν)) − Φs(h(ν))

λ2 =
1

2
√

Pν (1 − Pν)
(1 + (1 − 2Pν) ν +

1 − 2Pν

Pν

Θo) Φ′
s(h(ν)) − Φs(h(ν))

where h(ν) =
(1 − ν)Pν − Θo
√

Pν (1 − Pν)
.

If for a given vector ~q ∈ Q, l(~q) is the number of non-zero entries, then λ0 is of

multiplicity (k− l(~q)), λ1 is of multiplicity 1, and λ2 is of multiplicity (l(~q)−1). For

fixed parameters s and Θo the magnitudes of all eigenvalues are smaller than one for

ν smaller than a critical value νc. For ν > νc, λ2 gets larger than one, which implies

that all ~q ∈ Q with l(~q) ≥ 2 become unstable. Hence, a set of (2k−k−1) stationary

points of Q+ lose their stability at the same value νc. In Fig. 1 and 2 the properties

of the dynamics are visualized using bifurcation diagrams. The critical value νc can

be computed numerically and is, for s = 15 and Θo = 1
s
, given by νc ≈ 0.69.

For k = 2 the set Q+ consists of three non-trivial stationary points, which are all

stable for ν < νc. Apart from the points in Q+ there exist two unstable stationary

points, which are numerically computed and are given by the dotted lines in Fig. 1.

For small values of ν the unstable points lie in the vicinity of the anti-symmetric

stable stationary points (Pν , 0) and (0,Pν), which indicates that they attract only

a small volume of neighboring phase space. For increasing ν the unstable points

approach the symmetric stable stationary point ~qmax = (Pν ,Pν), which indicates

that the phase space volume of points attracted by ~qmax gets gradually smaller. In

the point of structural instability, ν = νc, ~qmax finally loses its stability when it meets

the unstable stationary points in a subcritical pitchfork bifurcation.

To visualize the crucial and analytically derived property that (2k−k−1) station-

ary points of Q+ lose their stability for the same value of ν, the bifurcation diagram

of a network for k = 3 is given in Fig. 2. In the diagram all stationary points of Q+

1Due to the symmetries in the equations we get, for ~q ∈ Q, a symmetric Jacobian ~G′(~q) which

eigenvalues are simple functions of the Jacobian matrix entries. The explicit equations for the eigen-

values can then be obtained by long but straight forward calculations.
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Figure 1: Bifurcation diagram of equation system (11) for parameters s = 15,

Θo = 1
s

and k = 2. The points of Q+ = {(Pν , 0), (0,Pν), (Pν ,Pν)} are plotted to-

gether with the two unstable points of the dynamics. To obtain a 2-dimensional bifur-

cation diagram the stationary points for given ν are projected onto the 1-dimensional

space with normal vector 1√
2
(1, 1). The only stationary point not plotted is ~qmin be-

cause it projects onto the same point as ~qmax. The solid lines mark stable stationary

points, the dotted lines mark unstable points.

are plotted and we find for ν < νc the set’s (2k − 1) stable stationary points. Apart

from the points in Q+ we get a number of unstable stationary points, which all lie,

for small ν, at the same distance from ~qmax and in the vicinity of the other points of

Q+. As ν increases, the unstable points are getting closer to the stable points with

l(~q) ≥ 2 non-zero entries and for ν = νc these stable points of Q+ lose their stability

when they are met by the unstable points in subcritical bifurcations.

Note that an inhibition proportional to the mean minicolumnar activity instead

of the maximum as in (10) results in a dynamics whose stationary points lose their

stability for different values of ν (compare also Lücke et al. (2002)). This dynamic

property is reflected by eigenvalues of the dynamics’s Jacobian which depend on

l(~q) for Ĩρ(~p) with 0 < ρ < ∞.

2.4 Input

For the neuron dynamics (8) we have gained, by our stability analysis, far reaching

insight into the dynamical properties of the macrocolumnar model. The knowledge

can now be exploited to investigate the dynamical behavior of the system if it is

subject to perturbations in the form of externally induced input. As is customary
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Figure 2: Bifurcation diagram of equation system (11) for parameters s = 15,

Θo = 1
s
, and k = 3. For each ν the stationary points of the 3-dimensional phase

space are projected to the plane given by the normal vector 1√
3
(1, 1, 1). The vectors

p1, p2, and p3 are projections of the trihedron of the phase space onto this space. The

only stationary point of the system which is not plotted is ~qmin because it projects

onto the same point as ~qmax. The unstable stationary points are plotted as dotted

lines, the stable stationary points, which are always elements of Q+, are plotted as

solid lines. For ν < νc all elements of Q+ are stable but for ν > νc only k = 3 stable

points remain. All other stable points lose their stability in subcritical bifurcations

for the same value of ν.

in biology, we will denote the positive contribution of a presynaptic neuron to the

input of the postsynaptic neuron excitatory postsynaptic potential (EPSP) and we

will say that a neuron emits a spike at time t if it is active at time t. For the dynamics

as investigated in the previous section there are essentially three different modes of

operation possible:

• For ν > νc the macrocolumn can serve as a memory unit being able to stabilize

k different macroscopic states, i.e. stable stationary points of equation system

(11). The switching between the states is possible by sending a sufficiently

large quantity of EPSPs to the respective minicolumn.

• For ν < νc the macrocolumn is able to stabilize 2k − 1 different macroscopic

states. The transition between the states would be possible by inducing a suffi-

ciently large quantity of EPSPs to an appropriate subset of minicolumns. If ν

is chosen to be only slightly smaller than νc and if one starts with the stable sta-

tionary point ~qmax, already small differences in the input to the minicolumns

are sufficient for the macrocolumn to change to a corresponding macroscopic
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state.

• If, for an initial state ~qmax, ν is continuously increased from ν < νc up to a

value larger than νc, the system will change to another stable stationary point

for some value of ν < νc depending on the input. For larger values of ν the

system can again change between stable points until ν is finally larger than

νc and the dynamics is forced to one of the remaining stable stationary points

where just one minicolumn is active. Consider, for instance, external EPSP

input to a macrocolumn with k = 3 minicolumns. If the numbers of EPSPs

induced per time step, Mα
EPSP , are different for the three minicolumns, e.g.,

M1
EPSP : M2

EPSP : M3
EPSP = 0 : 1 : (1 + ǫ) , for 0 < ǫ ≪ 1,

the dynamics will stabilize the initial state ~qmax for small ν. If ν gets larger, the

system will change to the stable point (0,Pν ,Pν) for some ν1 < νc because

this point is less deflected by the input than ~qmax. The deflection of (0,Pν ,Pν)
caused by the input is sufficiently large, however, if ν is further increased. The

system will therefore finally stabilize the point (0, 0,Pν).

The third possibility is the one with the most useful features. For given inputs the dy-

namics first successively switches off the minicolumns with smallest inputs. These

macro-state transitions occur the earlier the larger the differences between the inputs

are and can therefore encode neural population rate differences. If a new stable sta-

tionary point is reached, the process of switching off a minicolumn continues, each

time without the perturbing influence of the input of the already quiescent columns.

For a dynamics whose stationary points lose their stability for different values

of ν (see Lücke et al. (2002)) the number of active minicolumns is determined by ν

and not by the input. Note in this context that (10) is not the only type of inhibition

that results in a single critical value of ν. Other inhibition functions, e.g. the average

of active columns,

Iac(t) := ν
1

|A|
∑

β∈A

pβ(t) , A = {β | pβ > p̃} , (14)

with 0 < p̃ ≪ 1, can also be shown to possess this property. In general, the contri-

bution of quiescent minicolumns to the inhibition has to be negligible as a prerequi-

site for a dynamics with qualitative behavior comparable to the one with inhibition

(10). The simplicity of (10) and its good functional performance were the reasons

to choose an inhibition proportional to the maximum in this work.

The macro state transitions which depend on input differences but which are

induced by an increased parameter ν are all performed near to symmetry break-

ing points. The transitions are theoretically infinitely sensitive to input differences

such that a macrocolumn can serve as an ideal decision unit (see also Lücke et al.

(2002)). For appropriate parameters s and Θo the stabilization of stationary activity

is performed in a few iteration steps such that the time to increase ν from its minimal

to its maximal value lies within a few tens of time steps, which makes decisions very

fast in addition. If the inhibition parameter oscillates, the macrocolumn can repeat-

edly select the strongest input or inputs. In the next chapter this mode of operation is
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exploited and further discussed for a macrocolumn with explicitly modeled afferent

fibers.

3 Afferent Fibers and Hebbian Plasticity

We consider the situation that the excitatory neurons of the macrocolumn, nα
i , re-

ceive input from an input layer of N external neurons nI
j which are of the same type

as the excitatory neurons of the minicolumns. In the following we think of the neu-

rons of the input layer as extra-cortical neurons in order to analyze the dynamical

properties of the macrocolumn in a more convenient way. However, the input neu-

rons can also be considered to be excitatory neurons of other macrocolumns, which

would account for lateral excitation within the cortex. An afference from an input

neuron, nI
j , to a neuron of a minicolumn, nα

i , will be denoted by Rα
ij (see Fig. 4A

for a sketch of the system). Analogously to the internal connectivity we demand

that one neuron nα
i receives a fixed number of r synapses from neurons of the input

layer and that the synaptic weight of a synapse is given by c = 1
s
. The receptive

field vector of a minicolumn, ~Rα ∈ {0, c, 2c, . . .}N , is defined as the sum of the RF

vectors ~Rα
i = (Rα

i1, . . . , R
α
iN) of all neurons2 of the minicolumn α, ~Rα =

∑m
i=1

~Rα
i .

Instead of reanalyzing the dynamics statistically it is (for r significantly smaller

than s) sufficient to treat the external input to the macrocolumn as perturbation of

the internal dynamics. The macrocolumn will be operated by repeatedly increasing

the inhibition factor ν from a minimal value νmin to a maximal value νmax. The

system is hereby forced to select the column(s) with strongest input at the end of

each period or ν-cycle (as we will call it from now on). In the beginning of a ν-cycle

the system has to be in the state ~qmax, which can be achieved under the influence of

noise by setting ν to a sufficiently small value before starting to increase ν at νmin

(see Fig. 3B). If for a macrocolumn of, e.g., k = 3 minicolumns, the RFs, ~Rα, are

already given, the system is able to distinguish even strongly overlapping input pat-

terns. The system first switches off the minicolumns with RFs very different to the

presented stimulus and then decides between the remaining minicolumns with RFs

similar to the stimulus (see Fig. 3). In this way the system can also gracefully handle

simultaneously presented patterns. If a superposition of two patterns corresponding

to the RFs of two minicolumns is presented, the dynamics switches off all irrelevant

minicolumns except the two corresponding ones, whose activities are symmetrized.

It then depends on the choice of νmax whether this is the final state or whether the

symmetry is broken to favor one of the patterns.

We now proceed by introducing Hebbian plasticity of the afferent fibers to match

neurophysiological experiments which show input-dependent changes of neuron

RFs. As the RFs of neurons, ~Rα
i , change, the RFs of the minicolumns, ~Rα, conse-

quently change in time as well. As update rule for the synaptic change,

∆Rα
ij(t) = Rα

ij(t) − Rα
ij(t − 1), we use elementary Hebbian plasticity, i.e. an af-

ferent connection Rα
ij is increased if the pre-synaptic neuron was active at the time-

step directly preceding the firing of the post-synaptic neuron. The state of maximal

2In the neurons’ RF vectors only afferent connections are considered.
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Figure 3: Operation and dynamic behavior of a system with parameters, m = 100,

s = 15, r = 7, Θo = 1
s
, with k = 3 minicolumns, and an input layer of N = 16×16

neurons. In A the RFs, ~Rα, of the minicolumns α = 1, 2, 3 are given as two-

dimensional plots of the 162 vector entries. The entries are visualized as gray levels

(black = 0). To make the RFs more conceivable we have chosen them to be of

the form of simple two dimensional patterns. The input pattern is chosen to cor-

respond to the RF of minicolumn α = 3. During the operation of the system all

neurons of the input layer which correspond to white pixels spike with probability
1
3
, neurons which correspond to black pixels are not spiking. In B the periodical

change of the parameter of inhibition, ν, is visualized. After a short period with

ν = 0.1 which serves to reset the dynamics to ~qmax, ν is linearly increased from

νmin to νmax = 1.12. Three ν-cycles with period length Tν = 25 are displayed.

The dynamic behavior of the system is visualized in C where the activities pα(t) for

the minicolumns α = 1, 2, 3 are plotted against time. In the beginning of a ν-cycle

the dynamics tends to symmetrize the activities as predicted by the theoretical re-

sults and the bifurcation diagrams. The symmetry is first broken when minicolumn

α = 1 is switched off because its RF receives the smallest number of EPSPs from

the presented input. Afterwards the stationary point (0,Pν ,Pν) is stabilized, i.e.

the remaining two minicolumn activities are symmetrized, until minicolumn α = 2
becomes quiescent because it receives less input than minicolumn α = 3. The qual-

itative behavior for each ν-cycle is the same but quantitative differences exist due to

threshold noise of the neurons and due to finitely many neurons per minicolumn.
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Figure 4: A Sketch of a macrocolumn with k = 3 minicolumns connected to an

input layer of N = 25 neurons. The m = 8 neurons per minicolumn are randomly

interconnected, each minicolumnar neuron receives s = 3 synapses from within

its minicolumn. The inhibition is symbolically sketched as one inhibitory neuron

receiving input from all minicolumns and projecting back to all of them. Each mini-

columnar neuron receives r = 2 synapses from neurons of the input layer. The

randomly initialized RF, ~R1, of minicolumn α = 1 is fully displayed whereas RFs
~R2 and ~R3 are not. Lines within the input layer are only displayed for visualization

purposes, there are no connections of neurons within the input layer. B Set of three

different input patterns of 16 × 16 pixels. C Modifications of RFs of a macrocol-

umn with k = 3 minicolumns and parameters m = 100, s = 15, r = 7, Θo = 1
s
,

E = 0.03, ξ = 55, and N = 256. For 0 ν-cycles the random initialization of the RFs

is displayed. After five ν-cycles (and five presentations of patterns randomly chosen

from the set of input patterns) ~R1 is slowly specializing to pattern 2 and after 10
and 15 ν-cycles ~R2 and ~R3 specialize to the patterns 3 and 1, respectively. After 15
ν-cycles the RF specialization further increases until the maximal specialization is

reached after about 100 ν-cycles. From 100 ν-cycles on the degree of specialization

remains unchanged.
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macrocolumnar activity ~qmax is the same for all inputs. Only after the selection

process, i.e. at lower levels of activity due to minicolumn inactivation, the activity

state is able to distinguish between inputs. Therefore, synaptic plasticity has to be

predominant at low levels of macrocolumnar activity, B(t) =
∑k

α=1

∑m
i=1 nα

i (t), in

order to generate discriminating RFs. A simple and, as it turned out, functionally

advantageous way to do this is enabling synaptic modification only if B(t) is smaller

than a threshold ξ. As activity oscillations are ubiquitous in the cortex, it seem plau-

sible that synaptic plasticity is phase coupled (see Wespatat et al. (2003) for recent

evidence of phase coupled synaptic modification). For the dynamics of synaptic

change we further demand as boundary condition that the number of synapses re-

ceived by a minicolumnar neuron is limited to r in order to avoid unlimited synap-

tic growths. We get as dynamic equations for the synaptic weights (α = 1, . . . , k ;

i = 1, . . . ,m ; j = 1, . . . , N):

∆Rα
ij(t) = AE

t nα
i (t) nI

j(t − 1) iff B(t) < ξ , (15)

∀i, α :
1

c

N∑

j=1

Rα
ij(t) = r . (16)

As our synaptic weights are discrete values, AE
t is not a real valued growth factor

but a probability3 that the synaptic weight is increased by c = 1
s
. If Rα

ij is increased

for given (α, i), the neuron nα
i removes randomly one afferent from the input layer

in order to fulfill the boundary condition.

We operate the system by periodically changing ν as in Fig. 3B. Throughout the

duration of a ν-cycle we present a pattern randomly chosen from a set of input pat-

terns. An input neuron which corresponds to a white pixel is spiking and a neuron

which corresponds to a black pixel is not. The RFs of the neurons are randomly ini-

tialized and are modified according to (15) and (16). If the set of training patterns is

structured, e.g., in the sense that it contains a small number of patterns as in Fig. 4B,

we can observe a specialization of the RFs of the minicolumns to the different in-

put patterns. In Fig. 4C the modification of the RFs, ~Rα, of a macrocolumn with

α = 1, 2, 3 minicolumns is displayed and it can be seen that the system organizes

its RFs such that the macrocolumn becomes a decision unit for the input patterns.

In the beginning an input pattern effects all minicolumns equally such that the

system selects a subset of minicolumns by symmetry breakings. As soon as, initiated

by random selection, a RF specializes for one class of input patterns, the correspond-

ing minicolumn is more likely to be activated by patterns of this class, which further

increases the specialization of the RF. This is the positive feedback loop of the self-

organizing process, which amplifies small fluctuation and finally leads to an ordered

state of the RFs. Additionally to self-organizing aspects, we have a competition

due to the minicolumn selection process and competition between afferent fibers in-

duced by (16). In order to avoid mutual weakening of different patterns stored in the

same minicolumnar RF, the system specializes its RFs to adequately different input

patterns.

3To be more precise, for each (i, j, α) AE
t
∈ {0, c} is an independent Bernoulli sequence with

probability P (0) = 1 − E and P (c) = E .
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4 Experiments

We have seen that the system is able to specialize its RFs to different input pat-

terns. So far we presented three different patterns to a network of three minicolumns

(Fig. 4). We will now investigate two more general situations. In the first experimen-

tal setting we will present to the network different patterns which can be grouped

into different classes. In the second setting the network’s task is to extract basic con-

stituents of a class of patterns generated by combining different bars, a task known

as the bars problem (Földiák, 1990).

For both tasks one and the same network is used with the same set of parameters.

All experiments use an input layer of 16 × 16 input neurons. If a binary (black and

white) pattern of 16 × 16 pixels is presented, the input neuron, nI
j , of a given pixel

spikes with probability 1
3

if the corresponding pixel is white and is not spiking if the

corresponding pixel is black. Gray levels can be coded by intermediate firing rates

but in the following, for simplicity, only binary input is considered. We use a net-

work with m = 100 neurons per minicolumn. Each neuron receives s = 15 synapses

from pre-synaptic neurons of the same minicolumn and r = 7 synapses from neu-

rons of the input layer. The neurons’ constant threshold is set to Θo = 1
s
≈ 0.067, it

is chosen such that a single EPSP is not sufficient to activate a neuron. The constant

threshold is subject to Gaussian threshold noise with zero mean and a variance of

(σΘ)2 = 0.01.

The oscillation of the inhibition is essentially governed by the parameters

νmin = 0.5, νmax = 1.12, and the length of a ν-cycle is Tν = 25 time steps. To

allow short ν-cycle periods we use a ν-oscillation as given in Fig. 3B where the first

part (with ν = 0.1 and additional noise) serves to reset the dynamics to the station-

ary point ~qmax. Note, however, that self-organization of RFs is also possible with

other, e.g., sinusoidal, types of ν-oscillations.

Hebbian plasticity (15)(16) is determined by the synaptic modification rate

E = 0.03 and the parameter ξ = 55 which determines the network activity for which

synaptic modification is possible. The latter is chosen such that synaptic modifica-

tion is only enabled close to the end of a ν-cycle (note that a 2-3 times larger value

for ξ with simultaneously reduced E results in a system with comparable qualitative

behavior).

All parameters are independent of the number of minicolumns k which we allow

to change for different experiments. The parameters are partly chosen to reflect

anatomical data as in the case of the number of neurons per minicolumns m = 100
and partly to optimize performance in the experiments. In the following we will

refer to these parameters as the standard set of parameters.

4.1 Pattern Classification

We have seen that the system is able to specialize its RFs to be sensitive to a number

of input patterns. More realistic input would not consist of a repeated presentation

of exactly the same patterns as in Fig. 4B,C but rather of different patterns which

can be grouped into different classes. In Fig. 5 a pattern classification experiment
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Figure 5: In A the set of input patterns is displayed. During each ν-cycle one ran-

domly chosen pattern of this set is presented. B Distance matrix generated using the

distance measure dS . The line and column index enumerates the 42 input patterns

in the same order as they appear in A. In C the modification of the RFs of a macro-

column with k = 6 minicolumns and the standard set of parameters is displayed.

After 250 and 1000 ν-cycles four and six different pattern classes are represented,

respectively. The RFs’ degree of specialization further increases thereafter and it can

be seen that RFs ~R1 and ~R2 further subdivide the pattern class formerly represented

by ~R1 only. D Final RF specialization (after 250 ν-cycles) if a macrocolumn with

k = 3 minicolumns is used with the same input. E Final RF specialization (after

10000 ν-cycles) if a macrocolumn with k = 9 is used.
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for such a kind of input is illustrated. For input patterns V a ∈ {0, 1}256 as displayed

in Fig. 5A we can define the distance measure,

dS(V a, V b) :=
|A△B|
|A ∪ B| , (17)

where A = {i|V a
i = 1}, B = {i|V b

i = 1}, and where (A△B) = (A∪B)− (A∩B)
is the symmetric difference of sets. Distance function (17) can directly be derived

by analyzing RF mediated input to the minicolumns (further detail would go beyond

the scope of this paper) and can be used to group the input patterns into different

classes of mutually similar patterns as can be seen in Fig. 5B. In Fig. 5C a typical

modification of RFs of a macrocolumn with six minicolumns is displayed and it can

be observed that the system builds up representations of all classes identifiable in

Fig. 5B. If fewer minicolumns than pattern classes are available, the system builds

up larger classes of mutually similar patterns (see Fig. 5D). If more minicolumns

than major classes are available, the system further subdivides the pattern classes

(see Fig. 5E). The subdivision may in this respect slightly differ from simulation to

simulation. E.g., for k = 9 the ‘square class’ is in many cases only represented by

one and the ‘plus class’ by three instead of two minicolumns as in Fig. 5E. In the

experiment it can further be observed that the final representation rather depends

on the substructure of the pattern classes than on their size, e.g., the ‘plus’ pattern

appears more frequently than the ‘St. Andrew’s cross’ pattern but the ‘St. Andrew’s

cross’ tends to be represented by more RFs (see Fig. 5C,E). Furthermore, the classi-

fication is independent of the number of white pixels per pattern because the impact

of the patterns on the minicolumns is normalized by boundary condition (16). The

independence is only affected by patterns approximately filling out the whole input

layer or by patterns having a number of white pixels close to zero.

4.2 Feature Extraction

So far we have seen that if the training patterns contain v classes of patterns, the

system is able to identify these classes if k ≥ v. There are situations, however,

where the training patterns cannot easily be grouped into pattern classes. This is the

case, for instance, if we present from a number of v patterns not only the patterns

themselves but also all possible superpositions. If k < 2v, the system is not able to

store all patterns in different RFs. We have already mentioned in Sec.3, however, that

the internal dynamics of a macrocolumn is especially suitable to take into account

pattern superpositions such that we can, nevertheless, expect the system to generate

appropriate RFs. A method to evaluate the ability of a network to handle input

which can only be represented by a combination of different patterns is the bars

test. It was first introduced in (Földiák, 1990) and soon became a benchmark test for

generalization and combinatorial abilities of learning systems. The training patterns

of the bars test consist of horizontal and vertical bars. On a quadratic input layer, b
2

(non-overlapping) horizontal and b
2

(non-overlapping) vertical bars can be displayed

(with b an even integer) each with probability 1
b

and all of equal size (see Fig. 6A for

some examples with b = 8). Note that overlapping horizontal and vertical bars do
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Figure 6: A A selection of 33 typical input patterns of the bars test of 8 different

bars. B Typical example of the self-organization of the RFs of a macrocolumn with

10 minicolumns and the standard set of parameters. During each ν-cycle a randomly

generated input pattern of the upper type is presented. After about 250 ν-cycles

the network has already found representations of seven bars. After 1000 ν-cycles

representations of all bars are found and are further stabilized.
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not add up linearly because two overlapping white pixels do not add but result in a

white pixel, as well. The bars test is passed if, after a training phase, the system has

built up representations of all bars and is able to correctly classify input consisting

of superpositions of the learned bars.

We can operate our system without modification, with the same set of parame-

ters as for the experiment in Fig. 5, and it turns out that it passes the bars test without

difficulties. The only prerequisite for a correct representation is that the number of

minicolumns k is greater or equal to the number of different bars, k ≥ b. If k > b

the RFs of some minicolumns remain uncommitted or specialize for a bar already

represented by another minicolumn. For a bars test with b = 8 different bars Fig. 6B

shows the modification of the RFs of a macrocolumn with k = 10 minicolumns.

Starting from random initialization the RFs specialize to different single bars even

though the input patterns consist mainly of bar superpositions. In Fig. 6B a repre-

sentation of all bars is clearly visible after 1000 ν-cycles and the representation can

be seen to further stabilize thereafter. During the learning phase a RF sometimes

specializes to a combination two or more bars as can be seen by looking at RF ~R8

in Fig. 6 (after 500 ν-cycles). Such a RF is not stable, however, because the parts of

the RF which correspond to different bars compete via equation (16). The RF there-

fore rapidly specializes for one bar if another RF becomes sensitive for the other.

An example is given by RFs ~R7 and ~R8 in Fig. 6 from 500 to 1000 ν-cycles. In

the experiment of Fig. 6 two RFs remain unspecialized. In other experiments or for

a longer learning phase the two super-numerary RFs often specialize to an already

represented bar and increase redundancy in this way.

The bars test was used in different versions with different numbers of bars and

different systems. In (Hinton et al., 1995), for instance, 8 bars where used, (Hochre-

iter and Schmidhuber, 1999) and others used 10 bars, (Hinton and Ghahramani,

1997) 12 bars, and (Földiák, 1990) and others used 16 bars. To allow for compari-

son with these systems we measured the performance of our system for bars tests of

8, 10, 12, 14, and 16 bars. For all tests we used the same system and always with

the standard set of parameters and an input layer of 16 × 16 neurons. The different

bars tests required different bar widths in order to cover the input layer appropri-

ately. For the bars test with b = 8 bars a bar width of four pixels was used (see

Fig. 6), for b = 10 three pixels, and for b = 12, 14, 16 bars were of a width of

two pixels. Consequently, the input layer is not uniformly covered for 10, 12, and

14 bars. In Fig. 7A,B,C the results of different test series are presented. In Fig. 7A

the number of minicolumns is equal to the number of different bars, in Fig. 7B the

number of minicolumns exceeds the number of bars by 2, and in Fig. 7C a surplus

of 4 minicolumns is available. A measurement point in the diagrams corresponds to

the number of ν-cycles after which there is a 50% probability that all bars are repre-

sented, e.g., in 200 runs with 8 bars and k = 10 minicolumns there were 100 runs in

which a representation was found after 1050 ν-cycles (see first measurement point

in Fig. 7B). A bar is taken to be represented by a minicolumn if the minicolumn

remains active in 9 of 10 ν-cycles if the bar is presented. A macrocolumn is said

to have found a representation of all bars if all bars are represented by at least one

minicolumn and no minicolumn represents two different bars. In all runs the system
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Figure 7: In A, B, and C results of bars tests with b = 8, 10, 12, 14, 16 bars and a

macrocolumn with standard set of parameters are displayed. In A the number of

minicolumns of the used macrocolumns is always equal to the number of different

bars. In B the number of minicolumns exceeds the number of bars by two and in C

there is a surplus of four minicolumns. In D, E, and F results of a bars tests with

b = 8 bars and a macrocolumn with k = 10 minicolumns and standard parameters

are given. In D the input patterns are perturbed with bit flip noise of 0 to 12%. In E

the bar widths are varied and in F the generation of the input patterns is altered in the

way that for each run four randomly chosen bars appear with probability 1
8
(1 − γ)

whereas the other four appear with probability 1
8
(1 + γ). The measurement points

of A, B, and C were obtained by taking 200 runs into account, the measurement

points of D, E, and F with 100 runs, each. As result the numbers of ν-cycles is

given after which a representation of all bars is found with a probability of 0.5. The

lower and upper bounds of the error bars correspond to a probability of 0.2 and 0.8
respectively. For each run a newly generated macrocolumn with newly initialized

RFs was used.
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finally found a correct representation. Once a representation was found it remained

stable in the sense that the minicolumns remained specialized for the same bars. For

a given experimental setting there can be relatively large differences between indi-

vidual runs, however. For 8 bars and k = 10, e.g., a correct representation of the bars

was not found after about 2100 ν-cycles in 20% of the 200 runs (indicated by the

upper bound of the error bar) whereas another 20% of the experiments found repre-

sentations already after 400 ν-cycles (lower bound). The reason for this is that all

bars but one find presentations very early whereas the remaining bar might consume

a long time to be represented — an effect which is, for instance, also observable in

(Spratling and Johnson, 2002) for the noisy bars test.

In Fig. 7B,C a large reduction of learning time can be observed if the number of

minicolumns is larger than that of presented bars. A surplus of 2 minicolumns results

in a reduction to less than half of the learning time for no surplus and a surplus of 4
minicolumns results in a learning time of coarsely a fourth.

For the results in Fig. 7A,B,C we used a newly generated bars image for every

ν-cycle. The same experiments can be carried out, however, by choosing randomly

from a fixed set of a number of u generated bars images. If u is several times larger

than b the results are qualitatively and quantitatively comparable. For a bars test

with 8 bars and k = 10 minicolumns, for instance, u = 50 input patterns are fully

sufficient to build up a correct representation of single bars.

The results of Fig. 7A,B,C further show that learning time in terms of ν-cycles

decreases if the number of bars does. This can be expected because the system has

to learn a decreasing number of independent input constituents. On the other hand,

there is an increasing overlap of bars, which makes it harder for the system to dif-

ferentiate between two bars (compare Dayan and Zemel (1995) and Hochreiter and

Schmidhuber (1999)). The positive effect of fewer constituents is predominant in

our system. The negative effect of more overlap can be made responsible, how-

ever, for an increase of learning time if the bar widths are varied in an experiment

discussed below.

Once a system has learned a correct representation of the bars it can be used to

analyze bars images. To test the accuracy of the recognition we trained a macrocol-

umn with images generated according to the bars test until it found a representation.

After some additional learning to further stabilize the representation it was tested

with newly generated bars images of the same type as the training images. If an im-

age is presented, the minicolumns corresponding to the bars appearing in the image

remain active longer than minicolumns associated to bars not appearing in the test

image. At the end of a ν-cycle a minicolumn is either active or not. A test image

is considered to be correctly recognized if for all minicolumns which correspond to

bars appearing in the image, the probability to remain active is above average and if

the probabilities of minicolumns corresponding to all other bars lie below average.

Six macrocolumns of 16 minicolumns trained with bars images of 16 bars were each

tested 100000 times with images generated according to the bars test except that,

for convenience, we required each image to contain at least one bar. The networks

could classify the input correctly in all but two of the 600000 cases. In the first case

one of seven bars was not recognized and in the second one of eight bars.
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In the usual bars test an individual bar is always displayed identical, the bars

are of the same size, and all bars occur with exactly the same probability. Systems

solving the bars test can therefore be suspected to use these artificial assumptions.

The system (Földiák, 1990), for instance, not only exploits the fact that the bars are

occurring with the same probability but also needs to know the exact value of the

bars’ probability of occurrence. How much a system relies on the assumptions of

the bars test can be tested by relaxing them and we present three test series showing

the corresponding behavior of our system. For all three series we use a bars test

with b = 8 bars and a macrocolumn with k = 10 minicolumns and standard set of

parameters.

For the robustness against perturbed bar images we presented input images with

bit flip noise during the learning phase (see Fig. 8). In Fig. 7D the learning time is

plotted for different degrees of noise. As can be observed, low levels of noise even

have positive effects. However, with an increasing noise level the final degree of

specialization of the minicolumns’ RFs is reduced. In Fig. 8, the final specialization

degree corresponds to the displayed RFs after about 2000 or 5000 ν-cycles. If com-

pared to the final degree of specialization in Fig. 6B, it can be seen that in the noisy

case the RFs have more overlap. The overlap increases with increasing noise which

leads to an increasing instability of a representation of all bars until the system can-

not find a representation of the bars anymore. For the standard set of parameters

and for a bars test with 8 bars no representations can be found for noise levels about

above 12%. By decreasing the learning rate E the robustness against noise can be

increased such that representations can be found for noise levels above 15%.

In the second test series the bar size is varied. For b = 8 the bars are usually

w = 4 pixels wide. If ~w = (w1, w2, w3, w4) denotes the bar widths for the four

vertical as well as for the four horizontal bars, we can define δw =
∑b/2

i=1 |wi − 4|
as a measure for the bar width variation. In Fig. 7E the results for the test series

~w = (4, 4, 4, 4),(3, 4, 4, 5), (3, 3, 5, 5), (2, 3, 5, 6), (1, 3, 5, 7) are given. The learning

time increases with increasing δw presumably because the maximal bar overlap in-

creases, e.g., for ~w = (1, 3, 5, 7) the horizontal 7 pixel wide bar covers nearly half

of the 1 pixel wide vertical bar.

The robustness of the system against relaxation of the assumption that all bars

occur with equal probability is investigated in the third test series. We reduce the

appearance probability of four randomly chosen bars to the value p = po (1 − γ),
and increase the appearance probability of the four other bars by the same value

p = po (1 + γ). Here γ is a parameter in the interval [0, 1] and po = 1
b

= 1
8

is the

usual appearance probability. In Fig. 7F the results for γ = 0.0, . . . , 0.8 are given,

for γ = 0.9 the corresponding measurements are 3750, 8050, and 32850 ν-cycles

for probabilities to get a correct representation of 0.2, 0.5, and 0.8, respectively. The

measurements show that the system learns reliable a correct representation even if

half of the bars appear nearly 20 times more frequently than the others and it only

needs a longer learning phase if half of the bars occur more than four times more

frequently.

The bar appearance probability can also be varied globally. If all bars appear

with the same probability po and if po is increased to values larger than 1
b
, the prob-
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Figure 8: A A selection of 33 typical input patterns of a bars test with b = 8 different

bars and 8% bit flip noise. B Typical RF specialization corresponding to this input.

RFs of a macrocolumn with 10 minicolumns and the standard set of parameters are

displayed. After about 500 ν-cycles representations of all bars are recognizable and

after about 2000 ν-cycles the maximal degree of specialization is reached.
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ability to find a few or a single bar in an input image gets gradually smaller. For

k = 10, b = 8, and the standard set of parameters, learning time increases if po

gets larger. For po = 1.5 1
b

the system found a stable representation in all of 100

runs and needed less than 1600 ν-cycles to find representations in 50% of them. In

addition to a longer learning phase, the RFs representing the different bars become

less disjunct until the final representation gets unstable for values of po larger than

about 1.8 1
b
. Representations for input with higher values of po can be found, how-

ever, if the synaptic modification rate E is reduced, which in general stabilizes the

representation. For E = 0.005 instead of E = 0.03 the system always finds stable

representations for po = 2.0 1
b

(after less than 18600 ν-cycles in 50% of 100 runs).

However, even for very low values of E there is limit at po somewhat larger than

2.0 1
b

from which on no stable representation can be found anymore.

We have seen that one and the same network solves problems such as pattern

classification and basic feature extraction. As demonstrated in the bars test, the

network can build up a representation of the input which allows to classify patterns

by using distributed neural coding. The network found correct representations of all

bars in all 5700 simulations which were carried out to acquire the data given in Fig. 7.

After the learning phase the classification for the usual bars test shows a reliability

of virtually 100%. All experimental data given in Fig. 5 to Fig. 8 was obtained with

the same parameters. Different sets of parameters lead to different results and for an

individual task the parameters can be optimized to obtain shorter learning times or a

higher robustness. We have chosen, however, to use for all experiments the standard

set of parameters in order to demonstrate universality and robustness of the system’s

dynamics.

5 Discussion

From an elementary neuron model and a random but column-based interconnection

we derived a neural dynamics with properties which make of the macrocolumn an

ideal decision unit for input to its minicolumns. The dynamics is best exploited with

an oscillating gain factor of the inhibition. If the afferent fibers to the macrocol-

umn are subject to elementary Hebbian plasticity which is also phase locked to the

oscillation of inhibition, we get a system which self-organizes the RFs of its mini-

columns. The system is able to classify input patterns into different groups or to

extract basic constituents of the input patterns as was demonstrated using the bars

test. The way the system represents the input depends only on the nature of the in-

put, as for the pattern grouping task and for the bars test the same system with the

same set of parameters was used.

5.1 Computational Aspects

There are various systems capable to learn without supervision. Important (not nec-

essarily disjoint) classes are different types of ANN, probabilistic models, and, in

a more general sense, independent component analysis (ICA) and principal compo-
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nent analysis implementations. Among these systems, only few are able to build up

efficient combinatorial representations of the input. The bars test is a means of test-

ing this ability and it represents in this respect a hard problem because in general its

components, the bars, do not add up linearly. Linear methods like ICA therefore fail

to pass the test (see e.g. Hochreiter and Schmidhuber (1999)). The problem is (in its

more or less difficult versions) solved by merely a small subset of systems (Földiák,

1990; Saund, 1995; Dayan and Zemel, 1995; Marshall, 1995; Hinton et al., 1995;

Harpur and Prager, 1996; Frey et al., 1997; Hinton and Ghahramani, 1997; Fyfe,

1997; Charles and Fyfe, 1998; Hochreiter and Schmidhuber, 1999; O’Reilly, 2001;

Spratling and Johnson, 2002). Some of them need additional knowledge about the

input, e.g., (Földiák, 1990) and (Marshall, 1995) require that all bars occur with

equal probability. Other systems, e.g. (Dayan and Zemel, 1995) and (Hinton and

Ghahramani, 1997), use hierarchical approaches. If these systems are applied to the

bars test, a pattern is first represented as containing horizontal or vertical patterns

and then exact instances of the those patterns are represented in the next level. The

system as presented in this paper is not hierarchical. However, the dynamics can be

extended to allow for hierarchical learning in the sense that the input patterns are

first subdivided into larger classes of patterns on the basis of the distance measure

(17). Such an extended system increases the parameter νmax during learning. A

system based on this mechanism is currently studied in our lab. Note, however, that

such a system is learning hierarchically but that it is not hierarchically representing

a pattern as the systems (Dayan and Zemel, 1995) and (Hinton and Ghahramani,

1997) do.

To compare systems which solve the bars test, their behavior under the relax-

ation of the bars test assumptions is one important criterion, their reliabilities (some

systems do not always find correct representations) and the time they need to find

a representation are others. Comparison between the systems is difficult in many

cases, however, because important data concerning, e.g., robustness or reliability, is

often missing. Even if data is available, e.g., in terms of the number presentations

of input images required to build up a correct representation, comparison remains

difficult because systems specialized to the bars test assumptions4 can be expected

to be much faster than systems which can also be applied to more general input5.

Our system was therefore tested against relaxations of the bars test assumptions and

was shown to behave favorably (Fig. 7D,E,F). In terms of pattern presentations only

the systems (Földiák, 1990) and (Spratling and Johnson, 2002)6 are faster than the

presented network. In (Földiák, 1990) the probability of bar occurrence has to be

known ahead of time, however, and (Spratling and Johnson, 2002) don’t report on

the robustness of their system when bars are of different size or appear with different

probability. A further possibility to compare systems is complexity of computation.

A typical system with N input units and k internal computational units with all-to-all

connectivity needs O(Nk+k2) elementary computations for one update in the learn-

4 e.g., the system Földiák (1990) required learning time of 1200 presentations for 16 bars.
5 e.g., Hochreiter and Schmidhuber (1999) needed 5000 passes through a training set of 500

patterns for 10 bars.
6The system Spratling and Johnson (2002) needs 210 cycles to get a correct representation in the

majority of runs for 16 bars and a specially chosen set of parameters.
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ing phase, (Spratling and Johnson, 2002) report O(Nk2) computations, whereas our

system needs O(Nk + k) because it is not using internal all-to-all connectivity7.

5.2 Neuroscientific Aspects

As discussed in the introduction we designed our model of the cortical macrocolumn

in accordance with relevant neuroanatomical and neurophysiological facts. We show

that on discrimination and learning tasks the resulting system can overcome two se-

rious problems raised by the concept of single neurons as the brains’ decision units,

reaction time and limited fault tolerance. The essential components of our model

are column-based interconnections, discrete neural spike signals, oscillatory activ-

ity, and Hebbian plasticity. These neural characteristics, usually seen as independent

of each other, are shown here to form a natural alliance, with important functional

consequences. The model requires little genetic information, being based on sparse,

asymmetric and random interconnections within the minicolumn. Our model makes

several simplifying assumptions, using an abstract neuron model, discrete time and

direct inhibition. Experimental predictions of the model should therefore be treated

with caution. A fundamental property of our system is the ability to sustain neural

activity without input. The property is based on a random interconnection matrix

within a minicolumn. A relatively high number of EPSPs per time step results in

a relatively high number of EPSPs in the next. The amount of EPSPs is controlled

by inhibitory feedback and refractoriness of the neurons. As studies of continuous

time systems suggest (e.g. Wilson and Cowan (1973)), this mechanism can be im-

plemented in a continuous time version of the presented minicolumn model as well,

such that, with a continuous inhibition between the minicolumns similar to (10), the

qualitative dynamical behavior of the discrete model can be expected to carry over to

a continuous one, which is based, e.g., on an integrate-and-fire or Hodgkin-Huxley

neuron model. It can even be expected that convergence to stable stationary points of

the dynamics is faster than in the discrete time case, which would allow for a shorter

ν-cycle period and consequently an even faster reaction time. For this reason, and

because of the possibility of a better comparison with neurophysiology, continuous

time systems are the subject of further studies.

Our system realizes neural populations with well-defined global behavior, while

realistically using local update rules for individual neurons and synapses. The re-

sulting population code is based on a collective firing rate, evaluated by the macro-

columnar dynamics as average over each minicolumn’s population at a particular

phase relative to oscillating inhibition. We tentatively identify our inhibitory cy-

cle with cortical oscillations in the gamma frequency range, ca. 30–60 Hz. Recent

neurophysiological experiments (Perez-Orive et al. (2002), see Singer (2003) for

review) support this view of a phase-coupled population rate code. For evidence

for phase dependence of Hebbian modification see (Wespatat et al., 2003), where

membrane potential oscillations of 20–40 Hz were artificially induced in pyramidal

cells.

7If N grows, the number of available afferents per input unit can be kept constant by proportion-
ally increasing r and reducing the synaptic weights of the afferents accordingly.

28



A central issue for understanding the brain is the neural code. The currently

dominant view is the single neuron hypothesis (Barlow, 1972), according to which

essential decisions of the brain can be linked directly to firing decisions of individ-

ual neurons. A fundamental difficulty for this view are reaction times of the brain.

These can be so short that single neurons can fire only once. This makes it impossi-

ble to express graded signals (see, however, the time-of-arrival hypothesis of Thorpe

(1988), which also advocates a firing phase). On the other hand, a population code

can be the basis for very fast information processing. In our model with standard set

of parameters, individual neurons typically fire only 2-10 times before the macro-

column makes a decision, and yet the decision is based in a precise graded fashion

on the input (if Tν is reduced to Tν = 10 the system shows qualitatively the same

behavior but neurons spike only 1-4 times before the first macro-state transition).

The other fundamental weakness of the single neuron hypothesis is lack of ro-

bustness against damage and accidents of wiring. The usual proposal to repair this

weakness is a population code, and our model may be seen as an essential step at es-

tablishing one. The minicolumn has a collective receptive field. This makes it fault

tolerant with respect to accidents in the afferent connections; the same can be said

about intra-cortical connections. Moreover, self-tuning of the activity dynamics of

minicolumns (e.g., of the parameters νmin and νmax) can make them robust to lesion

or imperfections in ontogenesis.

In summary, our model, motivated by macrocolumn connectivity, has neurody-

namical properties that solve important conceptual problems of neurophysiology.

The spiking character of neurons, column based interconnection structure, oscilla-

tory inhibition, and Hebbian plasticity are shown to combine together to form an

advanced information processing system which allows to solve problems such as

pattern classification and, most specifically, the bars benchmark problem, where it

is highly competitive with other recent systems.

Appendix

Derivation of the neuron dynamics in terms of neuron activation probability

For the dynamics (1) with the above described interconnection Tij the probability,

p(t+1), that a neuron is activated at time (t+1) can be approximated by the product

of the probability, pA(t + 1), that it receives enough input to exceed threshold and

the probability, pB(t + 1), that the neuron is not refractory. Using equation (3) we

get in the limit s → ∞:

p(t + 1) = pA(t + 1) pB(t + 1)

=
∫ ∞

sΘ
fg(x) dx (1 − p(t))

=
∫ ∞

sΘ

1√
2π σ

e−
1

2
(x−a

σ
)2dx (1 − p(t)) , a=sp(t), σ=

√

sp(t)(1 − p(t))

=
1√
2π

∫ a−sΘ

σ

−∞
e−

1

2
x2

dx (1 − p(t))
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= Φs(
p(t) − Θ

√

p(t) (1 − p(t))
) (1 − p(t)) , Φs(x) =

1√
2π

∫ √
s x

−∞
e−

1

2
y2

dy .

The approximation has proven to be applicable even for a relatively low neuron num-

ber m and for relatively small values of s.
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