
1

Rapid Property Specification and Checking for
Model-Based Formalisms

Daniel Balasubramanian, Gabor Pap,

Harmon Nine, Gabor Karsai

ISIS / Vanderbilt University, Nashville, TN 37212

Email: {daniel.a.balasubramanian, gabor.pap,

harmon.s.nine, gabor.karsai}@vanderbilt.edu

Michael Lowry, Corina Pasareanu, Tom Pressburger

NASA Ames Research Center, Moffett Field, CA 94035

Email: {michael.r.lowry, tom.pressburger,

corina.s.pasareanu}@nasa.gov

Abstract—In model-based development, verification techniques
can be used to check whether an abstract model satisfies a set
of properties. Ideally, implementation code generated from these
models can also be verified against similar properties. However,
the distance between the property specification languages and
the implementation makes verifying such generated code diffi-
cult. Optimizations and renamings can blur the correspondence
between the two, further increasing the difficulty of specifying
verification properties on the generated code. This paper de-
scribes methods for specifying verification properties on abstract
models that are then checked on implementation level code. These
properties are translated by an extended code generator into
implementation code and special annotations that are used by a
software model checker.

I. INTRODUCTION

Model-based development (MBD) is a software and system

design paradigm based on abstractions called models. Domain-

specific modeling languages (DSMLs) [1] provide the ability

to represent models that are specific to a particular problem

domain. Cast in this light, Matlab/Simulink [2] can be viewed

as a DSML for physical and embedded systems, as they allow

modeling the (dynamics of the) physical plant as well as the

behavior of its controller software. Once the model is created,

the system can be simulated, outputs observed, and the model

changed according to the traces provided by the simulation.

Simulation alone, however, cannot provide rigorous guaran-

tees about a model’s behavior. In order to prove exhaustively

that a model’s dynamic behavior always satisfies a set of

properties, some sort of verification [3] must be performed.

Typical properties include state reachability, deadlock-freedom

and a wide range of temporal properties. In recent years,

model-level verification tools have been developed that can

check models for such properties. While these tools play an

important role in MBD and can provide guarantees about a

model’s behavior, their use is often limited to a small portion

of a complex system, i.e. key properties and algorithms.

One of the key goals of MBD is to gradually refine abstract,

high-level models until they can be automatically synthesized

into an implementation that runs on a non-ideal computational

platform. However, one crucial problem is often ignored:

how can one verify that the synthesized implementation code

satisfies the same properties as the models from which it

was generated? Without verifying the implementation, the

guarantees provided by checking the abstract models are

lost. Checking or proving the correctness of the synthesis

(transformation) algorithms is an open problem. Further, if no

verification is performed on high-level models, then verifying

the implementation is the only way to prove properties about

the system.

The major difficulty in verifying model level properties on

implementation level code lies in the different levels of ab-

straction. Abstract models are developed by hand and designed

with readability in mind, while automatically generated code

can be difficult to read. Further, the correspondence between

model elements and their generated code is not obvious.

Renamings and optimizations make it difficult to understand

how a particular model element is represented in the generated

code. As a result, knowing where to place properties that are

to be verified becomes a challenge.

Another difficulty lies in the mismatch between the input

languages of verification tools used at the different levels of

abstraction. Individual verification tools typically each use

their own input language for defining properties, so that

properties checked at the model level must be rewritten in

a new syntax to be checked on the implementation level code.

This problem is exacerbated by the fact that code generators

typically rename model elements in the generated code, so

that, for instance, the names of variables in the generated

code are not known on the model level. Without knowing the

names of the variables, certainly verification properties cannot

be defined.

We present in this paper a method for specifying properties

on high-level models that are then used in the verification

of the generated, implementation level code. Properties are

written in an intuitive way, directly on the model elements.

As the model is translated into various intermediate forms and

978-1-4577-0660-8/11/$26.00 c© 2011 IEEE

2

SL/SF model

+
Code

generatorInput Output

Java code +

Software

model

checker
Generates

Verification

report

Contracts

Observer

automata

Verification

properties
Verification

properties

Translated

Property specification

methods

Fig. 1. Overview of framework. Verification properties can be specified using
observer automata or contracts.

ultimately into executable code, the user defined properties

are preserved and translated into implementation code and

annotations that are checked by a software model checker.

The translation is performed via a code generator that has been

extended to handle the extra information. The results of the

verification are then displayed to the user (in terms of the orig-

inal high level model). While we focus on Matlab/Simulink,

we believe that our method of defining properties on the model

level that are checked against a generated implementation can

be generalized and leveraged in other MBD tools as well. This

approach makes property-based verification an integral part of

the development workflow. Note that the framework enables

run-time verification in addition to model checking.

The remainder of the paper is organized as follows. Section

II gives an overview of our approach and background, includ-

ing a description of the tool-suite. Section III provides details

on how the user annotates Simulink models with properties.

Section IV presents an end-to-end example. We compare our

approach with related work in Section V and conclude in

Section VI.

II. OVERVIEW AND BACKGROUND

An overview of our approach is depicted in Figure 1 and

consists of the following steps: (1) a Simulink model is

defined, (2) the model is annotated with properties to verify,

(3) the code generator is invoked to produce executable code,

(4) the software model checker is executed on the code and

properties, (5) results about about the verification process are

reported.

In this paper, we ignore the first and third points (defining

the model and generating code) and instead concentrate on the

other steps. For details on this part of the framework, please

see [4]. In the work described in this paper we use a code

generator that produces restricted form Java code. The main

motivation for this choice of the target language was that the

software model checker used can work with Java programs.

The code generated by our toolchain is completely sequential

and does not use dynamic memory (after initialization), hence

it is suitable for embedded applications. The code is also

object-oriented (an increasing trend in embedded software):

subsystems are translated into Java classes that are instantiated

at initialization time. Our code generator actually uses a re-

targetable back-end, such that either Java or C code can be

produced from the same abstract syntax tree.

A. Property annotations

The second step in Figure 1 is annotating the Simulink

model with properties to verify on the generated code. Since

the development of model checking [5] in the early 1980s,

a number of specification languages have been invented to

formally define properties. Common ways of specifying these

properties include regular expressions and temporal logic, such

as LTL and CTL. However, the drawback to using temporal

logics for property specification is their steep learning curve

for industrial practitioners. Consequently, designers and de-

velopers will be less likely to use verification tools if they

must devote large amounts of time to learning a specification

language.

For this reason, we decided to take two approaches to

property specification. The first uses the pattern-based system

introduced in [6]. In that work, the authors studied a large body

of existing property specifications and found that the majority

of them were instances of a small set of parameterizable

patterns: reusable solutions to recurring problems.

Patterns are entered into our system using a custom interface

that we integrated directly into Simulink. After the parameters

have been entered, our interface generates an observer automa-

ton to represent am instance of that pattern. These observer

automata are Stateflow subsystems inserted in the Simulink

diagram that implement the logic of the specification described

by the pattern. They contain input signals corresponding to the

variables and events under observation, and the internal states

that implement the logic of property. Full details can be found

in Section III.

The second approach to property specification is based on

contracts and is similar to the idea of programming by contract

[7]. Programming by contract is a methodology for writing

programs that use interface specifications on software compo-

nents to define properties about their behavior. Typically, the

specification on a component includes three elements: prop-

erties that must hold in order to use the component correctly

(preconditions), properties that will hold when the component

is finished executing (postconditions), and properties that

must always be satisfied (invariants). We applied this idea

of contracts to specifying properties for Simulink subsystems.

On any subsystem, the user is allowed to write preconditions,

postconditions and invariants that must be satisfied by that

subsystem. During the code generation phase the contracts on

various subsystems are translated into annotations on methods

and classes implementing these subsystems in the generated

code. A thorough description is given in Section III.

B. Software model checking

Our generated code is verified using Java Pathfinder (JPF)

[8], a software model checker for Java. We chose JPF for two

reasons. First, our toolsuite was already configured to generate

Java code. Second, JPF provides libraries supporting a number

of verification features especially useful in our toolsuite: code

contracts, monitoring execution for exceptions and numerical

problems, as well as symbolic execution.

The code contract feature of JPF permits annotations for

preconditions, postconditions and invariants to be written

3

on classes and methods. JPF monitors these conditions at

runtime and reports any violations. This feature allows the

preconditions, postconditions and invariants that are defined on

the Simulink model elements to be translated to the generated

code in a straightforward manner by the code generator.

The symbolic execution [9] feature of JPF allows us to per-

form state reachability and test case generation. The symbolic

execution engine runs a program much like a normal program

execution, but does not assign a concrete value to program

input variables. Instead, input variables are left as symbolic

values. When input variables are used in a branching condition,

a constraint solver attempts to find values for the symbolic

variables that will allow both branches of the condition to be

taken. This idea is explained further in [9]. In this paper, we

do not concentrate on the symbolic execution aspect.

III. SPECIFICATION PATTERNS AND CONTRACTS

This section gives details on how properties are specified on

the model level and then translated into generated code. We

first describe the specification patterns, which can be attached

to the model using a custom interface or from a supplied

library. If the interface is used, a corresponding observer

automata is automatically generated from the specifications.

The interface can be used to insert basic properties, but to

describe more complex properties, the observer automata can

be compositionally defined using the supplied library. We also

describe the details of how contracts are written on the model

and then translated into annotations on the generated code.

A. Specification patterns

Property specification patterns describe commonly observed

requirements in a generalized manner. They capture a par-

ticular aspect of a system’s behavior as a sequence of state

configurations. Note that the specifications can be state-based

or event-based. In the discussion below we mention the state-

based form, but the same approach applies to events as well.

To illustrate, consider the property that throughout a sys-

tem’s execution the value of a certain variable should always

be greater than zero. There are two basic parts to this property

that commonly occur. The first tells when the property should

hold (in this case, at all times during execution), and the

second tells what condition should be satisfied during this time

(here, the variable should be greater than zero).

A property consists of precisely those two pieces: a scope

and a pattern. The scope defines when a particular property

should hold during program execution, and the pattern defines

the conditions that must be satisfied. There are five basic kinds

of scopes: global (the entire execution), before (execution

up to a given state), after (execution after a state), between

(execution from one state to another) and until (execution from

one state even if the second never occurs).

There are three categories of patterns: occurrence, order

and compound. The occurrence group contains the absence

(never true), universality (always true), existence (true at least

once) and bounded existence (true for a finite number of

times) patterns. The order group contains the response (a state

must be followed by another state) and the precedence (a

Pa#ern	
Error	 State	

error_event	

end_event	 [propertyOK	 ==	 false]	

Global	 scope	

1	

2	

Pa#ern	
Error	 State	

[Before	 &&	 propertyOK	 ==	 false]	

Before	 scope	

1	

Safe	 State	

[Before	 &&	 propertyOK	 ==	 true]	

2	

Pa#ern	 Error	 State	

UnBl	 scope	

IniBal	 State	

[Before	 &&	 propertyOK	 ==	 true]	 [AFer]	

4	
error_event	

1	

[Before	 &&	 propertyOK	 ==	 false]	

3	

end_event	 [propertyOK	 ==	 false]	

2	

Fig. 2. Scope library.

state must be preceded by another state) patterns, and the

compound group contains the chain precedence, and chain

response patterns.

Dwyer et al. [6] have shown how these scopes and pat-

terns can be expressed in LTL, CTL, and other formalisms.

However, the property specification patterns can also be easily

expressed as parameterized observer automata, which is the

approach we take. Note that many specifications can be

added to a model and each one is translated into a separate

automaton. Additionally, the definition of a simple interface

allows the composition of the scope and pattern aspects of the

specification, represented as two distinct automata templates.

Furthermore, using the Stateflow language allows the observer

automata to be created inside Simulink diagrams.

The Simulink model extended with the observer automata

is then translated into the target language. Hence the gener-

ated, ’functional’ code will be augmented with the code that

implements the observer automata. Now the software model

checker can monitor and verify the execution of the entire

implementation, paying special attention to the error states and

properties specified in observer automata. As specifications are

translated into executable code, the distance between code-

level monitoring and software model checking and model-level

property specifications is reduced.

Figure 2 shows the automata for three of the five scopes.

We now briefly describe each of these.

The automaton for the global scope is shown at the top

of Figure 2. This scope indicates that a property should hold

during the entire system execution. Initially, the state labeled

“Pattern” is entered. There are two transitions from this state

to the state labeled “Error State”. The first is triggered by

an event named “error event”. This event is generated by an

enclosed property when that property has been violated. The

second transition is triggered by an event named “end event”

and a guard condition requiring the boolean value “proper-

4

Error State

Precedence pattern

Initial State

en: propertyOK = true

[P1]

P1 Encountered Safe State

en: propertyOK = true
[P2]

[P2]{propertyOK=false; error_event;}

1

2

Initial State

en: propertyOK = true
[P1]{propertyOK = false; error_event;}

Error State

Absence pattern

Initial State

en: propertyOK = false [P1]
P1 Encountered

en: propertyOK = true

Existence pattern

Fig. 3. Pattern library.

tyOK” to be false. The “end event” is generated upon system

termination and the “propertyOK” variable is set to false by

the scope’s enclosed property if that property is violated. That

is, the second transition is taken if the system terminates and

the property enclosed by this scope has been violated.

The automaton for the before scope is shown in the middle

of Figure 2. This scope is used to express that a property

should hold before some other condition is met. In the Figure,

the event named “Before” is used to represent the condition.

Initially, the “Pattern” state is entered. If “end event” occurs

(the system terminates) and the enclosed property has been

violated (“propertyOK is false”) then the first transition is

taken and the “ErrorState” is entered. If the “Before” event

occurs and “propertyOK” is false, the second transition is

taken and “ErrorState” is entered. The state named “Safe

State” is only entered if the “Before” event occurs and the

enclosed property has not been violated (“propertyOK” is

true).

The until scope captures the requirement that some condi-

tion should hold from one state to another even if the second

condition never occurs, or stated differently, in between one

condition and a second, even if the second condition never

occurs. The bottom of Figure 2 shows the automaton for

this scope. The two variables named “Before” and “After”

are used to represent the two conditions in between which a

property should hold. Upon entry, “Initial State” is entered.

When the variable “After” becomes true, then the transition to

the “Pattern” state is taken. While in this state, the automata

is waiting for the property to happen before the second con-

dition is satisfied. When the property is satisfied, the variable

“propertyOK” becomes true. If before “propertyOK” becomes

true either the “Before” condition becomes true or system

execution ends (“end event” occurs), the transition to “Error

State” occurs and signals an error to the user. Otherwise, if

“propertyOK” is true (the property is satisfied) and the second

condition is also satisfied (“Before” is true), the transition back

to “Initial State” is taken, and the cycle repeats.

Figure 3 shows the automata for three of the patterns.

At the top of the Figure is the automaton for the existence

pattern. This pattern states that a condition (represented in

the automaton by the boolean variable “P1”) should occur

during a specified scope. When the “Initial State” is entered,

Property	
Error	 State	

error_event	

end_event	 [propertyOK	 ==	 false]	

1	

2	

[x	 >	 0]	

x	

Ini?al	 State	

en:	 propertyOK	 =	 false	

Safe	 State	

en:	 propertyOK	 =	 true	

Global	 scope	 Existence	 paEern	

Fig. 4. Property describing that at some point, x should be greater than 0.
Scope states are white and patterns states are shaded.

the “propertyOK” variable is set to false, indicating that the

property is initially unsatisfied: P1 has not occurred. If “P1”

does become true, then the transition to “P1 Encountered” is

taken and “propertyOK” is set to true.

A simple pattern, absence, is shown in the middle portion

of Figure 3. This pattern states that a condition (represented

in the automaton by the boolean variable “P1”) should not

occur during a specified scope. When the “Initial State” is

entered, the “propertyOK” variable is set to true, indicating

that the property is initially satisfied: P1 has not occurred. If

“P1” does become true, then the transition to “Error State”

is taken,“propertyOK” is set to false and the “error event” is

emitted.

The automaton for the precedence pattern is at the bottom

of Figure 3. This captures the property that some condition

(“P2”) must be preceded by another condition (“P1”). Note

that in this automaton, the initial state sets the “propertyOK”

variable to true: the property is initially satisfied. If “P2” is true

before “P1”, that is, the condition denoted by “P2” happens

before the condition denoted by “P1” is met, then the transition

to “Error State” is taken, “propertyOK” is set to false, and

the “error event” is emitted. Otherwise, the overall precedence

pattern is satisfied.

Scopes and patterns are combined to form property specifi-

cations. Consider the example in Figure 4, which specifies the

following property: at some point during system execution, the

input variable “x” should be greater than 0. Stated differently,

throughout the entire system execution (i.e., global scope), x

should be greater than 0 at least once (i.e., existence property).

To define this property, the existence pattern shown in Figure 3

is inserted into the “Pattern” state of the global scope shown in

Figure 2. The difference is that the generic condition shown

as “P1” in the basic existence pattern is replaced with the

condition x > 0. Note that the “propertyOK” variable is set

by the pattern and its value is used by the scope.

Additionally, we developed a dedicated user interface that

uses dialog forms for inputing property specifications. The

dialogs capture both the kind of scope and pattern, as well as

the parameters needed to instantiate and compose them. The

user picks the scope and the pattern and enters the appropriate

conditions. A composed automaton that composes an instance

of both the scope and pattern is then automatically generated.

An example using these dialog forms is described in Section

5

Subsystem	

X	

Y	

Z	

Fig. 5. Contract example.

IV.

B. Contracts

The second method we use for describing verification prop-

erties is based on contracts. We extended Simulink with a

custom interface that allows the user to annotate any subsystem

with three additional items.

• Preconditions that the input signals to the subsystem must

satisfy.

• Postconditions that the output signals of the subsystem

must satisfy.

• Invariants that must always be satisfied by the subsystem.

Note that a subsystem translates into an executable function

that is called by some scheduler, periodically. Hence, the above

conditions and invariants can be checked during execution of

that function block.

Figure 5 shows an example of specifying contracts on a

subsystem block. The internal details of the subsystem are

not important, but rather serve to show how our approach

allows the complexities of certain elements to be ignored when

writing specifications. The subsystem in Figure 5 has two

inputs, x and y, and one output, z. Suppose the property we

wish to check is the following: either x is equal to 0 and y

is between 0 and 10, or x is equal to 1 and y is between 10

and 20. Suppose we also wish to check that if x is 0, then the

output z is greater than 0, and if x is 1, then the output z is

less than 0. These requirements are attached to the subsystem

using the dialog box as shown at the top of Figure 5.

The contracts are added to the subsystem model as specially

formatted descriptions (that are usually just unstructured text),

using XML-like syntax. The code generator parses these

descriptions, and if they are syntactically correct, it constructs

the properly formatted strings (with variable names rewritten

into their ’code’ equivalent) that are suitable for the software

model checker.

A Java implementation of the subsystem in Figure 5 that

is very similar to the code produced by our code generator is

shown in Listing 1. Note that in the contract, the inputs and

outputs of the subsystem are referred to by their name in the

model. This is an important part of our approach: the user

always refers to the model elements as they are written in the

model. No knowledge of the code generation process is needed

to write specifications. The contract specified in the model is

generated in the Java code as annotations that automatically

reference the correct variable names. These annotations are

used by the software model checker to monitor the code

execution.

Listing 1. Java implementation of the subsystem in Figure 5.
p u b l i c c l a s s Subsystem15 {

p r i v a t e i n t v a l u e 1 = 0 ;
p r i v a t e i n t v a l u e 2 = 0 ;

@Requires (‘ ‘ (x13 == 0 && y25 > 0 && y25 < 10) | |
(x13 == 1 && y25 > 10 && y25 < 20) ’ ’)

@Ensures (‘ ‘ (x13 == 0 && z65 > 0) | |
(x13 == 1 && z65 < 0) ’ ’)

p u b l i c vo id Main23 (i n t x13 , i n t y25 , i n t [] z65) {
v a l u e 1 = x13 ;
v a l u e 2 = y25 ;
. . .
/ / Code i m p l e m e n t i n g s u b s y s t e m l o g i c

. . .
}

}

IV. EXAMPLE

This section shows how our framework can be applied to

realistic models. The example we use is the Apollo Lunar

Module digital autopilot model, which is included with the

Matlab/Simulink distribution as an example. The full model

includes a dynamic model of the plant: the Apollo Lunar Mod-

ule, as well as a model of the Reaction Jet Controller (RJC) –

we focused on the embedded controller. A very high-level view

is shown in Figure 6. The RJC receives attitude measurements

and desired attitude values, and generates control signals to

activate yaw, pitch and roll thrusters.

A. Step 1: Define Property

The “Yaw Jets” output of the RJC block is a value from the

set -2, 0, 2, which indicates that the yaw thruster should have

a negative thrust, no thrust or a positive thrust, respectively.

Suppose we wish to verify the property that the “Yaw Jets”

output can never go directly from -2 to 2 or directly from

2 to -2: at least one output of 0 must always be found in-

between. Section III showed how a property like this could be

built manually using automata. Using the scope and pattern

automata as building blocks, one could define this property

directly in Stateflow.

As mentioned above, we have also developed a custom

extension to the Simulink environment that allows properties

to be entered in an easier way using dialog forms. These

dialogs decompose the patterns detailed in Section III-A: the

user selects a pattern, enters a scope and a property and the

6

equivalent automata is generated, including input ports. Our

first task is to decide which pattern we need to implement the

property that the “Yaw Jets” can never go directly from -2 to

2 or directly from 2 to -2. Part of the property states that we

do not want the value of “Yaw Jets” to be -2 during a certain

scope. The absence pattern fits this requirement, as it checks

to see that some condition never occurs.

The dialog form for the absence pattern is shown in Figure

7. This dialog guides the user through the process of defining

a property. After defining the condition that should never

hold (Command == -2), we define the scope during which

this condition should hold. In this example, we never want

Command to go directly from 2 to -2, so the condition that

Command should never be -2 should hold after Command is

equal to 2 and before Command is equal to 0. The property

that Command should never go directly from -2 to 2 is defined

in an analogous way using the absence pattern dialog.

B. Step 2: Connect generated automata

After entering the parameters in the dialog form, the ob-

server automaton monitoring the property is generated, as

shown in Figure 8. The states representing the scope portion of

the property are white, and the states representing the pattern

are shaded. The transition from the initial state is taken when

Command is 2, at which point we are “in scope” and want

to verify the absence of the condition that Command is -2

before it is 0. If the value of Command is -2 before it is 0,

the transition to the inner error state is taken, which sets the

“propertyOK” variable to false and emits the “error event”.

When “error event” is emitted, the outer transition to the error

state is taken and the automaton remains in this state. Note

that while the automaton is in scope, system termination (the

“end event”) will not cause the property to be violated as

long as Command has not been set to -2. The input parameter

for command is automatically generated, so the user must

connect the “Yaw Jets” signal to the automaton so that it

can be monitored. In Figure 6, the “Command Constraint”

and “Command Constraint2” automata have already been

connected to the “Yaw Jets” signal.

C. Step 3: Verification with JPF

The final step is to invoke the code generator and use JPF to

verify our properties. There are two ways JPF can check the

code for property violations. The first uses concrete inputs

provided by the user. If this is done, JPF will perform a

concrete system execution using those inputs and report any

property violations in the form of stack traces. The second

way JPF can check for property violations uses the symbolic

execution module. In this case, JPF will try to determine inputs

to the system that will cause properties to be violated. With

either method, property violations can be reported to the user

in the form of a stack trace showing the sequence of method

invocations that led to an error state.

V. RELATED WORK

In more traditional forms of software development, verifica-

tion is done in one of two ways. Either an abstract model of the

Fig. 6. High-level view of the Apollo Autopilot. The Command Constraint
automaton was automatically generated using the property defined in Figure
7. The second automaton was also automatically generated.

Fig. 7. Property dialog. The property says that after the input variable
“Command” becomes 2, it should never be equal to -2 before returning to 0.

Error	 State	

Un+l	 scope	

end_event	 [propertyOK	 ==	 false]	

2	

Ini+al	 State	

[Command	 ==	 0	 &&	 propertyOK	 ==	 true]	 [Command	 ==	 2]	

4	

Ini+al	 State	

en:	 propertyOK	 =	 true	

[Command	 ==	 -‐2]	 {propertyOK	 =	 false;	 error_event;}	

Error	 State	

Absence	 paJern	

error_event	

1	

[Command	 ==	 0	 	 &&	 propertyOK	 ==	 false]	

3	

Command	

Fig. 8. Generated observer automaton implementing the property specified
in Figure 7. Scope states are white and pattern states are shaded.

7

software is created and verified, or the executable code itself is

verified. [10] discusses the ongoing trend towards placing the

verification efforts directly on the executable code rather than

on models. In MBD, however, one intentionally begins with

models and gradually refines them until they are synthesized

into the executable code, and ideally both artifacts can be

verified. Our approach eases the burden of both specifying

and checking properties on code generated during the MBD

process.

A number of tools are available for verifying Simulink/S-

tateflow models. Simulink Design Verifier [11] and Reactis

[12] are commercial tools for checking model properties.

[13] describes an approach that is based on hybrid automata:

models are translated from Simulink to a hybrid automata for-

malism and existing techniques for checking hybrid automata

can then be applied. Our approach is complimentary to these

methods and ensures the properties proved by these tools also

hold for the generated code.

Our approach to specifying properties through patterns is

based on the work of Dwyer et al. in [6]. The pattern

library described there contains a general description along

with mappings into multiple formalisms, including LTL, CTL

and quantified regular expressions. Our implementation uses

a dialog forms to chose and configure simple patterns from

which observer automata are generated, and includes a library

of observer automata for individual scopes and properties from

which more complex patterns can be defined.

Runtime monitoring [14] is a related area in which formally

specified properties are typically translated into executable

code that is used to check program properties during program

execution. Recent work in this area includes optimizing such

monitors through static analysis techniques [15]. Our approach

translates properties specified using observer automata into

executable code that is checked by a software model checker

and translates contracts on model elements into annotations

that are used by the model checker.

VI. CONCLUSION

Checking model level properties on implementation code

is a useful approach for practical model-driven development.

In this paper, we have shown how relevant properties can

be specified on the model level and then translated into

implementation code that can be verified with a software

model checker. Our approach is a pragmatic realization of the

work described in [6], in the context of the Simulink/Stateflow

environment. We have shown how the specification patterns

can be instantiated from observer automata templates for

scopes and properties and how subsystem blocks can be

annotated with pre-, post-conditions, and invariants that are

monitored by the software model checker. We have shown the

use of the approach on a realistic example.

Our approach allows two ways for specification: contracts

and property specifications based on patterns (that are trans-

lated into observer automata). For designers of embedded sys-

tems two extensions would be very useful: (1) specifying real-

time properties, and (2) dealing with concurrency. Translated

Simulink subsystems are typically executed periodically, with

a fixed rate. Timing properties can be related to a single

execution run (i.e. the worst-case execution time of a function

block), as well as the temporal properties of the system over

multiple execution runs (e.g. the system reacts to a triggering

event within a bounded number of execution runs). Translated

Simulink subsystems are also completely sequential; they are

usually translated to functions in an implementation language.

In order to run them on an execution platform, they have

to be embedded into OS processes, and their communication

and synchronization implemented outside of Simulink. Hence,

we need to model these embeddings, and how the threads

containing the function blocks communicate and synchronize.

These topics are the subject of on-going research.

VII. ACKNOWLEDGMENTS

The work described in this paper has been supported by

NASA under Cooperative Agreement NNX09AV58A. Any

opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Aeronautics and

Space Administration. The authors would also like to thank

Michael Whalen for valuable discussions and feedback.

REFERENCES

[1] Á. Lédeczi, A. Bakay, M. Maroti, P. Völgyesi, G. Nordstrom, J. Sprinkle,
and G. Karsai, “Composing domain-specific design environments,” IEEE

Computer, vol. 34, no. 11, pp. 44–51, 2001.
[2] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The

MathWorks Inc., 2010.
[3] G. J. Holzmann and R. Joshi, “Model-driven software verification,” in

SPIN, 2004, pp. 76–91.
[4] J. Porter, P. Völgyesi, N. Kottenstette, H. Nine, G. Karsai, and J. Szti-

panovits, “An experimental model-based rapid prototyping environment
for high-confidence embedded software,” in IEEE International Work-

shop on Rapid System Prototyping, 2009, pp. 3–10.
[5] E. M. Clarke, “The birth of model checking,” in 25 Years of Model

Checking, 2008, pp. 1–26.
[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property

specifications for finite-state verification,” in ICSE, 1999, pp. 411–420.
[7] B. Meyer, Object-Oriented Software Construction, 1st editon. Prentice-

Hall, 1988.
[8] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model

checking programs,” Automated Software Engineering (ASE), vol. 10,
no. 2, pp. 203–232, 2003.

[9] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, 1976.

[10] G. J. Holzmann, “Trends in software verification,” in FME, 2003, pp.
40–50.

[11] “Mathworks Inc. Simulink Design Verifier,”
http://www.mathworks.com/products/sldesignverifier/.

[12] “Reactive Systems, Inc.” http://www.reactive-systems.com/.
[13] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar, “Symbolic anal-

ysis for improving simulation coverage of simulink/stateflow models,”
in Proceedings of the 8th ACM international conference on Embedded

software, ser. EMSOFT ’08. New York, NY, USA: ACM, 2008, pp.
89–98.

[14] S. Sankar and M. Mandal, “Concurrent runtime monitoring of formally
specified programs,” IEEE Computer, vol. 26, no. 3, pp. 32–41, 1993.

[15] E. Bodden, L. J. Hendren, and O. Lhoták, “A staged static program
analysis to improve the performance of runtime monitoring,” in ECOOP,
2007, pp. 525–549.

