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Summary 51 

 52 

We describe the rapid and reproducible acquisition of quantitative proteome maps for the 53 

NCI-60 cancer cell lines and their use to reveal cancer biology and drug response 54 

determinants. Proteome datasets for the 60 cell lines were acquired in duplicate within 30 55 

working days using pressure cycling technology and SWATH mass spectrometry. We 56 

consistently quantified 3,171 SwissProt proteotypic proteins across all cell lines, generating a 57 

data matrix with 0.1% missing values, allowing analyses of protein complexes and pathway 58 

activities across all the cancer cells. Systematic and integrative analysis of the genetic 59 

variation, mRNA expression and proteomic data of the NCI-60 cancer cell lines uncovered 60 

complementarity between different types of molecular data in the prediction of the response to 61 

240 drugs. We additionally identified novel proteomic drug response determinants for 62 

clinically relevant chemotherapeutic and targeted therapies. We anticipate that this study 63 

represents a landmark effort toward the translational application of proteotypes, which reveal 64 

biological insights that are easily missed in the absence of proteomic data.  65 
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Introduction 66 

                                                     67 

To date, mainly owing to the maturity and availability of high throughput DNA- and 68 

RNA- based techniques, forays into the molecular landscape of diseases, in particular cancers, 69 

have primarily focused on genomics and transcriptomics 1-3. Protein-level measurements, 70 

although showing great potential for providing the granularity and details necessary for 71 

personalized therapeutic decisions, are underutilized due to technical hurdles. Advances in 72 

data-dependent acquisition (DDA) mass spectrometry (MS) have permitted quantitative 73 

proteomic profiling of about 100 tumor samples using multi-dimensional fractionated MS 74 

analyses of each sample 4-6, demonstrating the added value of protein measurement in 75 

classifying tumor samples. Nevertheless, such DDA workflows suffer from relatively lower 76 

sample-throughput, relatively higher sample consumption and technical complexity, 77 

precluding their routine use in clinically relevant applications (e.g. drug response prediction) 78 

on the speed and scale achieved by genomic and transcriptomic approaches 2, 3.  79 

 80 

To achieve reproducible and high throughput proteomic profiling, we have developed  81 

a workflow 7, 8 integrating pressure cycling technology (PCT), an emerging sample 82 

preparation method that accelerates and standardizes sample preparation for proteomic 83 

profiling 9, together with SWATH-MS, an MS-based proteomic technique that consists of 84 

data independent acquisition (DIA) and a targeted data analysis strategy with unique 85 

advantages over other MS-based proteomic methods 10, 11. With this technique all MS-86 

measurable peptides of a sample are fragmented and recorded in a recursive fashion, thus 87 

generating digital proteome maps that can be used to reproducibly detect and quantify 88 

proteins across high numbers of samples without the need of isotope labeling. The PCT-89 

SWATH technique thus significantly increases the sample throughput and data reproducibility 90 

providing excellent quantitative accuracy, and in the meantime reduces sample consumption 91 

to ca. 1 microgram of total peptide mass per sample 7, 8.  92 

  93 

In this study, we describe the acquisition of proteome maps of the NCI-60 cell lines in 94 

duplicate by PCT-SWATH. The 120 proteome maps were acquired within 30 working days 95 

on a single instrument and each sample consumed ca. 1 microgram of total peptide mass. We 96 

consistently quantified 3,171 SwissProt proteotypic proteins across all cell lines, generating a 97 

data matrix (120 proteomes vs. 3171 proteins) with 0.1% missing values. Raw signals of each 98 

peptide and protein in each sample were curated with an expert system. The NCI-60 human 99 
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cancer cell line panel contains 60 lines from 9 different tissue types 12. The NCI-60 have been 100 

molecularly and pharmacologically characterized with unparalleled depth and coverage, 101 

offering a prime in vitro model to further our understanding of cancer biology and cellular 102 

responses to anti-cancer agents 12, 13. Discoveries enabled by the NCI-60 in recent years 103 

include the development of the FDA approved drugs oxaliplatin for the treatment of colon 104 

cancers 14,  eribulin for metastatic breast cancers 12, bortezomib for the treatment of multiple 105 

myeloma 15, and rhomidepsin for cutaneous T-cell lymphomas 16. The sensitivity of the NCI-106 

60 has been measured for over 100,000 synthetic or natural compounds derived from a wide 107 

range of academic and industrial sources 12, constructing the most comprehensive resource for 108 

cancer pharmacological research. The proteomic data complement the existing NCI-60 109 

molecular landscapes, allowing systematic investigation of the complementarity among 110 

genomics, transcriptomics and proteomics in a number of applications.  111 

 112 

The proteome of the NCI-60 cells has been analyzed previously by data dependent 113 

analysis (DDA), a commonly used discovery mass spectrometry technique 17. Whereas the 114 

study reported the cumulative identification of 10,350 IPI proteins from about 1,000 115 

fractionated and kinase-enriched sample runs, only 492 IPI proteins were quantified across the 116 

NCI-60 cell lines without missing value. The present study thus extends the number of 117 

consistently quantified proteins, in duplicates, to 3,171, with a ca. six-fold increase.  The high 118 

quality proteomic data were used for pharmacoproteomic analysis of the response of the cell 119 

panel to 240 anti-cancer drugs, resulting in the identification of novel proteomic drug 120 

response determinants for clinically relevant chemotherapeutic and targeted therapies. 121 
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Results  122 

 123 

Acquisition of the NCI-60 proteome maps 124 

 125 

We applied the PCT-SWATH workflow 7 to generate quantitative proteome maps of 126 

the NCI-60 cell lines in technical replicates, resulting in the generation of 120 SWATH maps 127 

with high reproducibility at the raw data level (Supplementary Fig. 1). The PCT-assisted 128 

sample preparation took about 18 working days and the SWATH-MS analyses consumed 129 

about 12 working days. Thus, the entire process, from sample preparation to data acquisition, 130 

was accomplished within 30 working days, at an unprecedented sample-throughput compared 131 

to other cancer proteomic research of comparable scale 4-6, 17, which is due to the elimination 132 

of multiple dimensional fractionation, using one barocycler and one mass spectrometer 133 

(Supplementary Fig. 1, Supplementary Table 1). 134 

 135 

SWATH proteome maps contain fragment ion chromatograms from all MS-136 

measurable peptides, albeit in a highly convoluted form. To interpret the SWATH maps, we 137 

built a human cancer cell line spectral library containing 86,209 proteotypic peptides, i.e. 138 

peptides that uniquely identify a specific protein, from 8,056 SwissProt proteins 139 

(Supplementary Table 1). Using this library and the OpenSWATH software 11, we identified 140 

6,556 protein groups, covering 81% of the library (Supplementary Fig. 2). To avoid 141 

ambiguity of peptide/protein quantification, we limited our analyses to canonical and 142 

proteotypic peptides and proteins by excluding protein isoforms, un-reviewed protein 143 

sequences, and peptide/protein sequence variants.  144 

 145 

We evaluated the technical variation of each measurement through manual inspection 146 

of the OpenSWATH results based on the replicated measurement for each cell line and 147 

observed in multiple cases substantial technical variation. This is probably due to the fact that 148 

cell type-specific interfering signals leads to invalid SWATH assays, and the presence of 149 

irregular liquid chromatography (LC) and MS behavior of certain peptides in the highly 150 

variable proteomic context of the NCI-60 cells. These phenomena have also been observed 151 

previously in selected reaction monitoring (SRM)-based targeted proteomics studies 18.  152 

 153 

To obtain high accuracy quantitative data for the cell lines, we further developed an 154 

expert system, i.e. DIA-expert (see Methods), to refine the peptide identification and 155 
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quantification provided by automated analysis tools like OpenSWATH (Fig. 1A). We thus 156 

excluded proteins and peptides that were not reproducibly quantified in technical replicates 157 

and focused our analyses on a shorter list of 22,554 proteotypic peptides from 3,171 proteins, 158 

with 8% missing values at the peptide level and 0.1% missing values at the protein level 159 

across all MS runs (Supplementary Table 1). On average, 7 peptide precursors and 6 unique 160 

peptide sequences were identified for each protein (Fig. 1B). Several proteins were identified 161 

with over 200 peptides (Fig. 1C). The proteins excluded by DIA-expert may not be incorrect 162 

identifications, but rather proteins that could not achieve reproducible quantification by the 163 

existing algorithm across all cell lines due to either technical issues, for instance the signal-to-164 

noise ratio, or biological issues such as post-translational modifications and splicing variants. 165 

Improved computational methods will likely rescue some of them in the future. 166 

 167 

Most peptides for the 3,171 proteins were consistently quantified in all cell lines at 168 

both MS1 and MS2 levels. Two representative peptides are shown in Fig. 1A. The coefficient 169 

of determination (R2) between technical replicates, for overall expression of peptides (Fig. 170 

1D) and proteins (Fig. 1E), were 0.974 and 0.978, respectively, with a dynamic range over 5 171 

orders of magnitude (Fig. 1F). We provide the raw MS signals for each quantitative value in 172 

Supplementary File 1, allowing visual inspection of the MS signal for every peptide in each 173 

sample. When we limited the minimal peptide number per protein to 2, 3 and 4, fewer 174 

proteins were quantified however the quantitative accuracy did not substantially improve 175 

(Supplementary Figure 3).  176 

 177 
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 178 

Figure 1. The acquisition of NCI-60 proteotype. (A) Representative peptide signals as curated and visualized 179 

by the DIA-expert software. (B) The cumulative number of peptide and peptide precursors identified for each 180 

protein. (C) The distribution of peptide precursors and peptides per protein. The overall Pearson correlation 181 

between technical replicates at the peptide level (D) and the protein level (E). Here, the log10 transformed 182 

intensity of each peptide/protein in each cell line technical replicate is plotted in the heatmap. (F) Dynamic range 183 

of the MS signals for 22,968 proteotypic peptides.  184 

 185 

Characterization of the NCI-60 quantitative proteomes 186 

   187 

The landscape of the 120 thus measured proteotypes is displayed in Fig. 2A. All 188 

technical replicates were clustered together using an unsupervised method based on the 189 

quantified proteotypes, confirming high quantitative accuracy. In most cases, the proteotypes 190 

are not strikingly different across different cancer cell lines, in sharp contrast with the distinct 191 

proteomes of tumor versus non-tumor kidney tissues 7. The median coefficient of variation 192 

(CV) of the protein intensity in different cells was 48%. The CV demonstrated a low 193 

dependence on protein abundance, as evident from the distribution of its values for different 194 

expression level quantile groups of the measured proteins (Fig. 2B). We then compared our 195 

data with the previously reported proteome of the NCI-60 cells using DDA-MS 17. While the 196 

DDA data reported comparable number of IPI protein groups to the SwissProt proteotypic 197 

protein number from this SWATH data set, the SWATH data exhibited much higher degree of 198 
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consistency (Supplementary Table 2 and Supplementary Fig. 5) and better quantitative 199 

accuracy (Supplementary Fig. 6-7).  200 

 201 

 202 

 203 

Figure 2. Characterizing NCI-60 quantitative proteomes. (A) Heatmap overview of NCI-60 proteotype data 204 

matrix. 3,171 Swiss-Prot proteins were quantified in 120 SWATH runs. (B) Variation of protein expression, for 205 

all proteins (All) and proteins in each abundance quantile group (from low abundance to high abundance). (C) 206 

Density plot of correlation of determination between pairs of random proteins versus pairs of proteins within a 207 

complex. (D) Stoichiometry variation of protein complexes in the NCI-60 cells. The x-axis shows the average 208 

Pearson correlation of each protein complex across the NCI-60. The y-axis shows the average abundance of 209 

proteins in a complex. Stable complexes tend to show higher values of average Pearson correlation. (E) Protein 210 

and mRNA expression of XRCC6/Ku70 and XRCC5/Ku80. (F) Visualization of pathway activity in NCI-60 211 

proteotypes. More detailed pathway annotations for this Google map are provided in Supplementary File 2. 212 

  213 

Quantification of drug-responsiveness related proteins 214 

 215 

The proteotypes covered 105 protein targets for FDA-approved anti-cancer 216 

compounds, 661 protein drug targets annotated in DrugBank 19 (including 68 drug 217 
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metabolizing enzymes, 5 drug carriers, and 15 drug transporters), 694 proteins known to 218 

participate in human diseases 19, 20, and 58 human protein kinases, in addition to proteins 219 

involved in various biological functions (Supplementary Table 3). Some kinases were found 220 

to be broadly expressed in most cells with high abundance, including MST4 and WNK1 221 

(Supplementary Fig. 4), consistent with previous reports 21, 22. Other kinases were highly 222 

expressed in specific cell lines, for example, EGFR in the breast cancer cell line 223 

MDAMB468, ERBB2 in SKOV3 cells, and CDK6 in MOLT4 cells, in agreement with 224 

previous studies using antibody-based methods 20, 23. 225 

 226 

One unique benefit of our proteomic data set, compared to genomic and transcriptomic 227 

data, is its capacity to reveal more accurate information about the abundance of protein 228 

complexes and their stoichiometry 24. Our measurements included 101 protein complexes 229 

comprising 1,045 proteins (Supplementary Table 4) from a curated resource 24. Significantly 230 

higher Pearson correlation coefficients for pairs of proteins that are part of a complex further 231 

supported the quantitative accuracy of our data matrix (Fig. 2C). We applied our 232 

computational pipeline for analyzing co-expression of protein complex numbers 24 to the 233 

NCI-60 proteotype data and confirmed conserved stoichiometry of protein complexes such as 234 

the prefoldin and MCM complexes in various cell lines (Fig. 2D). In a specific case, we 235 

observed a high correlation between the protein expression of XRCC6/Ku70 and 236 

XRCC5/Ku80, a critical heterodimer involved in DNA repair and responsible for resistance to 237 

radiotherapy and chemotherapy. Ku80 is degraded when not bound to Ku70 25, 26. 238 

Remarkably, this correlation is not detectable using mRNA measurements (Fig. 2E), 239 

indicating that expression of Ku80 is tightly regulated by protein degradation mechanisms 240 

independent of cancer types. Indeed, a recent report has shown that RNF8, an E3 ubiquitin 241 

ligase, regulates the expression of Ku80 via its removal from DNA double strand break sites 242 

and its degradation through ubiquitination 27.  243 

 244 

Google-map-based visualization of cancer signaling pathways 245 

 246 

The NCI-60 proteotypes cover 648 proteins in the Atlas of Cancer Signaling Networks 247 

(ACSN), a manually curated pathway database presenting published facts about biochemical 248 

reactions involved in cancer using a Google-Maps-style visualization (Supplementary Fig. 8) 249 

28. When mapping the mean protein expression per cancer type, we found that multiple 250 

pathways in different cell types, including apoptosis, cell survival, motility and DNA repair 251 
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among others, displayed a similar pattern (Supplementary File 2), consistent with the fact 252 

that the immortal cells retain cancer hallmarks after artificial culturing 29. An example of a 253 

clear proteotypic pattern is the delta isoenzyme of protein kinase C, i.e. PRKCD, involved in 254 

DNA repair and a drug target that has been tested in various cancers 30. It was reported to be 255 

absent in four renal clear cell carcinoma lines 31. In agreement, this protein stood out in our 256 

visualization, with significantly lower protein expression in renal carcinoma, relative to the 257 

average expression in the NCI-60 panel. We provided detailed instructions on how to navigate 258 

through the atlas and explore protein abundance in each cancer cell line (see Supplementary 259 

File 2).   260 

 261 

We next compared the activity of cellular pathways using ROMA (Representation and 262 

quantification Of Module Activities) 32 (Fig. 2F), a gene-set-based quantification algorithm. 263 

This approach revealed substantial diversity of pathway activity between different proteotypes 264 

as evidenced by two-tailed t-tests of activity scores (P-value < 0.05). When mapping activity 265 

scores onto ACSN, some tissue specificities were revealed, with particular cell line 266 

proteotypes displaying distinct patterns of pathway activity. For instance, the activity of 267 

apoptosis (with both Caspases and Apoptosis Genes modules) was found to be significantly 268 

higher in ovarian cell lines (see Supplementary Table 5). Although there are only two 269 

prostate cancer cell lines in the panel, our analysis was able to highlight modules including 270 

“AKT-mTOR” and “Apoptosis”, whose differential activity can be attributed to HSP90AA1 271 

and PRDX. The latter protein has been independently reported to be overexpressed in prostate 272 

tumors 33. 273 

 274 

Accessibility of the NCI-60 proteotypes 275 

 276 

To enable easy data access, visualization, and comparison with other NCI-60 data sets, 277 

we have incorporated the SWATH data into the CellMiner database 13, 34. CellMiner allows 278 

the direct download of the data, as well as comparative and integrative analyses with other 279 

molecular data and pharmacological data, e.g. sensitivity of each cell line to over 20,000 280 

compounds, and the manual inspection of specific genes, up to 150 per query. The detailed 281 

instructions for using this resource are provided on the project website 282 

(https://discover.nci.nih.gov/cellminer/) and in Supplementary Fig. 9. We have also 283 

deposited raw data and processed data matrices of the NCI-60 proteotype in public databases, 284 

including PRIDE 35 and ExpressionArray 36.  285 
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 286 

Predicting drug responsiveness 287 

 288 

The robust, quantitative proteomic data, with almost no missing values, permitted 289 

systematic investigation of whether integration of the SWATH-based proteotype with existing 290 

genomic and transcriptomic features improves the prediction of drug responsiveness 291 

(Supplementary Table 6). We generated various combinations of molecular features, and 292 

evaluated their predictive power using the Pearson correlation between predicted and 293 

observed drug response values for 240 FDA-approved or investigational compounds in 294 

CellMiner 13, 34, 37. Each compound is assigned a NSC (National Service Center) identifier 295 

upon submission to the National Cancer Institute for evaluation in the NCI-60 panel. The 296 

largest groups of drugs with target annotations are those that interfere with DNA synthesis 297 

and the DNA damage response, including topoisomerase inhibitors. The drug set also contains 298 

dozens of targeted agents, including 18 serine and threonine kinase inhibitors and 18 tyrosine 299 

kinase inhibitors (Fig. 3A).  300 
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 301 

 302 

Figure 3. Prediction of drug responsiveness. (A) Workflow for drug responsiveness prediction. Drug groups 303 

with at least ten drugs are shown. (B) Distribution of predictive power (Pearson’s correlation of cross-validation 304 

predicted vs. observed response) for 240 compounds using all molecular features (All) versus common features 305 

(Common) available for all molecular data types. (C) Distribution of predictive power for different molecular 306 

data sets and their combinations. (D) Cumulative sum of Pearson correlation coefficients from drug 307 

responsiveness prediction in 224 drugs. (E) Venn diagram of drugs successfully modeled using elastic net using 308 

our SWATH data containing 3171 proteins (SW3171), and the DDA data based on iBAQ (DDA-iBAQ) and 309 

LFQ (DDA-LFQ). (F) Venn diagram of protein predictors using the SWATH and DDA data sets. 310 

 311 
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Using the elastic net algorithm, we then developed multivariate linear models to 312 

predict the NCI-60 response for each compound based on genomic, transcriptomic and 313 

proteomic features. The Pearson’s correlation between observed drug response values and 314 

leave-one-out cross validation-predicted response values was applied to evaluate the 315 

performance of each predictive model. 316 

 317 

As different numbers of features were measured for each omics data set, two strategies 318 

were adopted in the modeling analyses. First, we used all omics features (2,282 DNA 319 

mutations, 14,969 mRNAs and 3,171 proteins), separately and combinatorically, as inputs to 320 

evaluate the general performance. Second, we selected 1,566 features that were available for 321 

all three molecular data types (denoted as common features). In both cases, we obtained valid 322 

models for 224 (93%) of the drugs. The predictive power achieved with all features was 323 

slightly higher than that obtained using the common features for all three data types (Fig. 3A); 324 

a likely reason for this is that the latter excluded some genomic and transcriptomic features 325 

not detected at the protein level. We accordingly derived our main analysis results from data 326 

including all available molecular features. Our modeling led to the discovery of valid 327 

biomarkers for drug responsiveness prediction. For instance, we found that the mRNA 328 

expression of SLFN11, strikingly responsible for the sensitivity of 45 compounds, out of 329 

which 39 were FDA-approved drugs including topoisomerase inhibitors, alkylating agents, 330 

and DNA synthesis inhibitors, was the most dominant indicator, in agreement with our 331 

previous report 38 (Supplementary Table 7). Fourteen ATP-binding cassette family 332 

transporters, detected as mutation, transcript or protein levels, were found responsible for 333 

sensitivity prediction of 51 compounds including chemotherapeutic agents and protein-334 

targeting agents such as HDAC inhibitor Depsipeptide, HSP90 inhibitor Alvespimycin, 335 

mTOR inhibitor Temsirolimus and BCR-ABL inhibitor Nilotinib (Supplementary Table 7). 336 

 337 

For ease of reproducibility of data analysis, we developed a Docker container 338 

(described in Methods) that includes our code and other essential dependencies, allowing all 339 

analyses to be replicated and extended for this and other omics data sets. 340 

 341 

 342 

Synergies among mutations, transcripts and proteins 343 

 344 
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Our pipeline led to the identification of valid models for 224 compounds 345 

(Supplementary Table 8). Given the relatively small sample size, it was not surprising that 346 

accurate predictive models could not be found for every drug, particularly those with limited 347 

numbers of responsive lines. We found that the SWATH-MS derived proteotypes displayed 348 

higher percentage of predictive features than mutations and transcripts. 1,090 (34%) out of 349 

3,171 SWATH features are predictive, while 284 (12%) out of 2,282 features for mutations 350 

and 1,976 (13%) out of 14,969 transcripts were selected in the models. In general, the 351 

SWATH data outperformed the mutation data, however, the mRNA expression data set has 352 

about a five to six-fold higher number of features than the protein and mutation data sets (Fig. 353 

3A) and exhibited better overall performance (Fig. 3C).  354 

 355 

Our analyses revealed notable synergies among the different molecular measurements. 356 

Each type of molecular data set demonstrated indispensable benefits in predicting the 357 

response to certain drugs/compounds. The responsiveness of 35 compounds (16%) out of 224 358 

was best predicted with SWATH data, whereas 107 compounds (48%) were best predicted by 359 

SWATH data or by combining SWATH data with transcripts and/or DNA data. The most 360 

accurate models for over half of the compounds required at least two different types of 361 

molecular features. We then computed accumulative sum of Pearson correlation coefficient 362 

based on drug responsiveness prediction and observed significant contribution of SWATH 363 

data (Fig. 3D). We also compared the predictive power of the DDA data to the SWATH data. 364 

While the DDA data were able to generate elastic net models for comparable number of drugs 365 

(Fig. 3E), the number of protein predictors is much lower than SWATH data over some 366 

overlap (Fig. 3F). 367 

 368 

Drug responsiveness prediction 369 

 370 

Based on the integration of various data sets, global drug response patterns were 371 

predicted for the 158 well-modeled drugs (Fig. 4, see Methods), with predictive molecular 372 

features for individual compounds provided in Supplementary Table 8. The data generated 373 

from this computational pipeline were validated by the recovery of established 374 

pharmacogenomic knowledge. For instance, the mutational status of BRAF was the top 375 

predictive molecular feature for sensitivity to BRAF inhibitors, e.g. vemurafenib (NSC 376 

761431) and dabrafenib (NSC 764134), and this association was particularly evident in 377 
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melanomas. Activated BRAF mutational status also sensitized cells to the MEK inhibitor 378 

hypothemycin (NSC: 354462), as has been previously described 39.  379 

 380 

 381 

 382 
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Figure 4. Predictive power for 224 compounds using different types of omics data. We applied elastic net and 383 

cross validation to evaluate the drug response predictive accuracy for each omics data set and combinations of 384 

data sets for 224 drugs which could be effectively modeled. Drug response prediction accuracies across input 385 

data types are clustered without supervision. MoA of compounds and clinical status of the compounds are 386 

colored. Each column indicates an input data type or combination of types; each row represents a compound. 387 

The color indicates the predictive power measured by Pearson correlation of cross-validation predicted versus 388 

observed drug response values. Black indicates that a valid elastic net model could not be obtained. 389 

 390 

Sensitivity to the antimetabolite 6-thioguanine (6-TG, NSC: 752) (Fig. 5A) was 391 

predicted by protein expression of NUDT5 and MAT2B within an elastic net model 392 

composed of 5 proteomic features: NUDT5, MAT2B, CD47, STX12 and GFAP. The cross-393 

validation accuracy with this compound and the SWATH-MS data was relatively low (r = 394 

0.27), probably due to instability in the selected predictive features with limited sample size. 395 

Still, we find that for the two strongest predictors in the model, NUDT5 and MAT2B, the 396 

expression data were significantly correlated with the activity of 6-TG (Fig. 5B and 5C). 397 

Additionally, we were able to relate the inter-connected activities of these two proteins to the 398 

mechanism of action for 6-TG. In the purine salvage pathway, HPRT1 catalyzes synthesis of 399 

inosine monophosphate from hypoxanthine and phosphoribosyl pyrophosphate (PRPP), with 400 

production of the latter stimulated by NUDT5. 6-TG can substitute for hypoxanthine, 401 

ultimately yielding altered nucleotides that are toxic upon incorporation into DNA 40. PRPP is 402 

still required, so low NUDT5 expression could possibly induce 6-TG resistance. This is 403 

consistent with our NCI-60 data and recent experimental work showing that depletion of 404 

NUDT5 confers resistance to 6-TG 41. As noted in Fig. 5A, a metabolite of 6-TG, 405 

thioguanosine monophosphate (TGMP) can be inactivated by methylation. Production of the 406 

methyl group donor, S-adenosylmethionine (SAMe), is catalyzed by the methionine 407 

adenosyltransferase II (MAT2A) enzyme. The MAT2B protein, exhibiting high correlation 408 

with MAT2A (Fig. 5D), is a regulatory component of MAT which may enhance feedback 409 

inhibition by SAMe 42. Increased MAT inhibition and diminished TGMP methylation may 410 

shunt more TGMP toward DNA incorporation, enhancing the 6-TG response. In spite of its 411 

relatively low cross-validation accuracy, the presented model may provide a starting point for 412 

further exploration, in light of the supporting prior research. 413 

 414 
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 415 

Figure 5. Drug responsiveness predicted by SWATH data. (A) molecular mechanisms of 6TG. (B) 416 

correlation between NUDT5 protein expression and 6-TG activity. (C) correlation between MAT2B protein 417 

expression and 6-TG activity.  (D) correlation between MAT2B and MAT2A protein expression. (E) 418 

LAMTOR3 facilitates MEK/ERK pathway activation by binding MEK and ERK. (F) correlation between 419 

LAMTOR3 protein expression and Vemurafenib activity. (G) Association of BRAF mutation and LAMTOR3 420 

protein expression with Vemurafenib activity. 421 

 422 

 Analysis of the protein kinase inhibitor vemurafenib (NSC 761431) yielded a 423 

multivariate model based on BRAF V600E activating mutation status 43 and the protein 424 

expression level of LAMTOR3. LAMTOR3 (MP1) is part of an endosomal scaffolding 425 

complex that interacts with components of the RAF/MEK/ERK mitogenic signaling pathway 426 

(Fig. 5E). In particular, LAMTOR3 binds MEK1 and ERK1, facilitating activation of the 427 

latter protein 44. Elevated LAMTOR3 protein expression was correlated with vemurafenib 428 

resistance (r= 0.44, Fig. 5F), consistent with the hypothesis that LAMTOR3 has the capacity 429 

to enhance RAF/MEK/ERK pathway signaling downstream from RAF. In particular, 430 

increased protein expression of LAMTOR3 was observed in two BRAF mutant cell lines, 431 

ME:SK-MEL-5 and ME:LOXIMVI, which are relatively resistant to Vemurafenib (Fig. 5G). 432 

Due to the limited number of BRAF mutant cell lines exhibiting relative drug resistance (i.e. 2 433 

cell lines), additional statistical analyses with sufficient power are not possible. Robust 434 

statistical validation of this model may possible when larger cell line databases (e.g. the 435 
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Sanger and Broad resources) expand to include proteomic coverage of LAMTOR3. Still, this 436 

finding remains relevant in light of the recent research into the activity of LAMTOR3, 437 

including the observation that reduced LAMTOR3 protein levels decreased the activation of 438 

MEK1/2 and ERK1/2 44, 45. Additionally, LAMTOR3 has been shown to affect proliferation 439 

of pancreatic and breast cancers 46, 47, and has been patented as a diagnostic biomarker for 440 

breast cancer 47.  441 

 442 

Our elastic net analysis also produced multiple recurrent predictors with plausible drug 443 

response associations. ABCC4 was a negatively weighted predictor for several alkylating 444 

agents, including chlorambucil (NSC: 3088), uracil mustard (NSC: 34462), nitrogen mustard 445 

(NSC: 762), consistent with its established role as a drug efflux pump 48 . Another recurrent, 446 

negatively-weighted predictor was CTNND1, which was identified for several compounds, 447 

including bendamustine (NSC: 138783), etoposide (NSC: 141540), valrubicin (NSC: 448 

246131), and carmustine (NSC: 409962). CTNND1 encodes delta-catenin, whose 449 

overexpression promotes cell survival through activation of Wnt pathway signaling 49. The 450 

resulting inhibition of apoptosis 50 could plausibly confer resistance to the mentioned DNA-451 

damage inducing drugs. 452 

 453 

Discussion 454 

 455 

Due to the complementarity of protein and transcript data 4-6, 51, it can be expected that 456 

the rapid and consistent quantification of thousands of proteins across a large sample cohort 457 

will revel new biological information that is not apparent from the commonly used transcript 458 

profiles. However, due to technical limitations, such proteomic cohort datasets have been 459 

challenging to acquire. Here, using the NCI-60 cell line compendium, we demonstrate the 460 

ability of the PCT-SWATH proteomic technique to consistently quantify in excess of 3000 461 

proteins across the 60 cell lines measured in duplicate. The data were acquired in 30 working 462 

days on a single mass spectrometer and for each sample measurement ca. 1 microgram of 463 

total peptide mass was consumed. This has been enabled by the pressure cycling technology 464 

which minimizes samples consumption and the data-independent MS data acquisition using 465 

SWATH-MS 7. The data generated and their use to reveal cancer biology and drug response 466 

determinants represent a significant advance in the field.     467 

 468 
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The proteome of the NCI-60 cells has been previously measured by extensive sample 469 

fractionation and DDA-MS analysis of over 1,000 fractionated samples 17. In this study, data 470 

acquisition for each cell line required an average of about 29.16 hours MS instrument time. 471 

That shotgun proteomics study reported the cumulative identification of 10,350 IPI proteins 472 

over the NCI-60 cell lines.  However, only 492 proteins were quantified in all cell lines 473 

without missing value. The PCT-SWATH methodology adopted in this study offers an over 474 

10-fold increase in sample-throughput, which has allowed us to acquire the proteotype for 475 

each cell in the NCI-60 panel in duplicate, with standardized sample preparation, within 30 476 

working days. In addition, our data have 0.1% amount of missing values at protein level 477 

owing to the data acquisition strategy and improvements in bioinformatics analysis. This 478 

study demonstrates that the human proteotype can be obtained with a throughput comparable 479 

to genomic and transcriptomic analyses, though still at relatively lower coverage.  480 

 481 

Two aspects of our workflow ensure robust and quantitatively accurate protein 482 

expression measurements. First, we obtained technical duplicates for the entire set of NCI-60 483 

proteotypes, which was feasible due to the unparalleled high sample-throughput of the PCT-484 

SWATH methodology which is now gaining popularity in proteomic profiling of clinical 485 

specimens. In addition, we developed an expert system software (manuscript in preparation) 486 

to further curate peptide and protein identification and quantification. Applying stringent 487 

criteria, 3,171 proteins were included for further analyses. The raw MS signal for each of 488 

these quantified proteins, in each cell line, was inspected by the expert system, simulating 489 

manual inspection, and is available for visual inspection in the supplementary data. We further 490 

compared the expression of a few proteins with known expression in certain cell lines, 491 

obtaining good agreement. Nevertheless, we cannot conclude that the peptides and proteins 492 

that failed to pass curation by the expert system are not biological signals, due to the 493 

unpredictable degree of biological heterogeneity, and the fact that we did not analyze non-494 

canonical peptide variants and post-translational modification. The latter can be potentially 495 

dissected and quantitated by future in silico analyses of our SWATH maps. Since the NCI-60 496 

cell lines are widely used in cell biology, we anticipate broad utility of this highly curated 497 

proteomic data. Additionally, our rapid proteotype acquisition pipeline using PCT-SWATH 498 

requires little biological material, making it suitable for clinical settings and in precision 499 

medicine efforts 7, 8, 52.  500 

 501 
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Compared to other omics data, the proteotypes obtained here offered unique insights 502 

into the coordinated expression of protein complexes. Interactions amongst their component 503 

subunits contribute to our understanding of protein function, as well as human diseases 24, 53-504 

55. Several protein complexes have been identified as biomarkers of disease, including cancer 505 

progression 56. Our high quality proteomic data allowed systematic investigation of the 506 

composition of 101 protein complexes in 60 cell lines. We expect that this represents a proof-507 

of-principle for a generic, high-throughput approach, applicable to clinical specimens 7, for 508 

exploring the association between protein complexes and biological/disease phenotypes. 509 

 510 

The NCI-60 continues to enable important contributions that have come and continue 511 

to come from this resource, and often emerging technologies are first tested on this cell line 512 

panel due to its diversity and depth of surrounding knowledge 3, 12, 57-59. Each cancer cell line 513 

in the NCI-60 has been tested against tens of thousands of compounds, including the 240 514 

FDA-approved and investigational drugs featured in our analyses. With the addition of the 515 

SWATH proteomic data, the NCI-60 remains positioned as one of most comprehensive 516 

models for cancer research and drug discovery 12, 15. It uniquely enabled our thorough, 517 

integrative analysis of different molecular profiles (genomic, transcriptomic, and proteomic) 518 

in predicting drug responsiveness. Our findings strengthen the body of work highlighting the 519 

importance of integrative omic approaches in understanding drug mechanisms and establish 520 

the benefit of large-scale proteomic measurements. Therefore, we expect this work to become 521 

a seminal work in the area of pharmacoproteomics, the benefit of which will grow with 522 

anticipated expansion of sample size, proteomic coverage, including extension to 523 

phosphoproteomic expression, as well as extension to mouse models 60 and human specimens 524 

7.  525 

 526 

The existing SWATH data specifically enabled the use of advanced analysis 527 

techniques to produce multivariate models of drug response. Great effort was put into making 528 

our work accessible to a large audience through data submission to the NCI-60 CellMiner 529 

database and availability through an accompanying R package, rcellminer. We expect this 530 

pipeline based on the widely used elastic net method will continue to evolve and enable future 531 

studies on additional data sets and phenotypes. And while the strengths of the elastic net 532 

method over other related methods have been previously described 61, 62, the resulting models 533 

still require careful scrutiny by individual researchers. The interpretation of the models 534 

developed here, and by others using our pipeline, should be guided by understanding of the 535 
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biological activities of the associated predictors in the context of the mechanisms of action for 536 

the input drugs. From the models generated by the current analyses, we identified several 537 

potential determinants of drug responses, including NUDT5 and MAT2B protein levels for 538 

the antimetabolite 6-TG, as well as complementary markers, such as LAMTOR3 protein 539 

levels in conjunction with BRAF mutational status for Vemurafenib and other BRAF 540 

inhibitors. These determinants may provide clinically relevant insights toward understanding 541 

mechanisms of resistance to these and other agents. Together, these results invite further 542 

investigation of this unique proteomic data resource. For example, in the current study’s 543 

analysis of protein complexes, we identified discrepancies between data at the transcriptomic 544 

and proteomic levels. This observation has been similarly made in tumor samples, with 545 

additional variation across tissue types 63. These differences can be used in future studies to 546 

develop drug response models with non-redundant predictor sets including both data types. 547 

However, due to the tissue diversity of the NCI-60 cells and the limited number of cell lines, 548 

data from more cancer cell lines of specific tissue type and extension to clinical specimens are 549 

required to advance our findings to clinical applications. 550 

 551 
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Materials and Methods 587 

 588 

PCT-assisted sample preparation for MS analyses  589 

 590 

The NCI-60 cells were obtained as frozen, non-viable cell pellets from the 591 

Developmental Therapeutics Program (DTP), National Cancer Institute (NCI-NIH) and 592 

processed using Barocycler® NEP2320 (PressureBioSciences Inc, South Easton, MA). The 593 

IDs of the NCI-60 cells in our study matching to the IDs in Cellminer and a previous 594 

proteomic study by the Kuster group are provided in Supplementary Table 1. Briefly, cell 595 

pellets were lysed in a buffer containing 8M urea, 0.1M ammonium bicarbonate, and 596 

CompleteTM protease inhibitor using barocycler program (20 seconds 45 kpsi, 10 seconds 0 597 

kpsi, 120 cycles) at 35°C 7. Whole cell lysates were sonicated for 25 seconds with 1 min 598 

interval on ice for 3 times. Cellular debris was removed by centrifugation and sample protein 599 

concentration was determined by BCA assay prior to protein reduction with 10 mM TCEP for 600 

20 min at 35°C, and alkylation with 40 mM iodoacetamide in the dark for 30 min at room 601 

temperature. Lys-C digestion (1/50, w/w) was performed in 6 M urea using PCT program (25 602 

seconds 25 kpsi, 10 seconds 0 kpsi 75 cycles) at 35°C; whereas trypsin digestion (1/30, w/w) 603 

was performed in further diluted urea (1.6M) using PCT program (25 seconds 25 kpsi, 10 604 

seconds 0 kpsi, 160 cycles) at 35°C. Digestion was stopped by acidification with 605 

trifluoroacetic acid to a final pH of around 2 before C18 column desalting using SEP-PAK 606 

C18 cartridges (Waters Corp., Milford, MA, USA). 607 

 608 

Off-gel electrophoresis  609 

 610 

To create a comprehensive spectral library for SWATH-MS analysis, we pooled 20-611 

40% of desalted peptide solutions from each NCI-60 sample and performed off-gel 612 

fractionation. Briefly, pooled peptides were resolubilised in OGE buffer containing 5% (v/v) 613 

glycerol, 0.7% (v/v) acetonitrile (ACN) and 1% (v/v) carrier ampholytes mixture (IPG buffer 614 

pH 3.0-10.0, GE Healthcare). Fractionation was performed on a 3100 OFFGEL (OGE) 615 

Fractionator (Agilent Technologies) using a 24 cm pH3-10 IPG strip (Immobilised pH 616 

Gradient strip from GE Healthcare) according to manufacturer’s instructions using a program 617 

of 1 h rehydration at a maximum of 500 V, 50 µA and 200 mW followed by separation at a 618 

maximum of 8000 V, 100 µA and 300 mW until 50 kVh were reached. Each of 24 fraction 619 

was recovered and cleaned up by C18 reversed-phase MicroSpin columns (The Nest Group 620 
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Inc.). Based on the sample complexity (based on Nanodrop, A280 measurement), for each 621 

strip, the following fractions were pooled into 12 samples for MS injections: pool 1 (fraction 622 

1-2), pool 2 (fraction 3), pool 3 (fraction 4), pool 4 (fraction 5), pool 5 (fraction 6-7), pool 6 623 

(fraction 8-9), pool 7 (fraction 10-11), pool 8 (fraction 12-15), pool 9 (fraction 16-19), pool 10 624 

(fraction 20-21), pool 11 (fraction 22), pool 12 (fraction 23-24). Those were injected in 625 

quadruplicate, resulting in 48 DDA injections of fractionated samples. 626 

 627 

DDA MS for spectral library generation 628 

 629 

For spectral library generation, a SCIEX TripleTOF 5600 System mass spectrometer 630 

was operated essentially as described before 64: all samples were analyzed on an Eksigent 631 

nanoLC (AS-2/1Dplus or AS-2/2Dplus) system coupled with a SWATH-MS-enabled AB 632 

SCIEX TripleTOF 5600 System. The HPLC solvent system consisted of buffer A (2% ACN 633 

and 0.1% formic acid, v/v) and buffer B (95% ACN with 0.1% formic acid, v/v). Samples 634 

were separated in a 75 μm diameter PicoTip emitter (New Objective) packed with 20 cm of 635 

Magic 3 μm, 200A C18 AQ material (Bischoff Chromatography). The loaded material was 636 

eluted from the column at a flow rate of 300 nL min-1 with the following gradient: linear 2 - 637 

35% B over 120 min, linear 35 - 90% B for 1 min, isocratic 90% B for 4 min, linear 90 - 2% 638 

B for 1 min and isocratic 2% solvent B for 9 min. The mass spectrometer was operated in 639 

DDA mode using a top20 method, with 500 ms and 150 ms acquisition time for the MS1 and 640 

MS2 scans respectively, and 20 s dynamic exclusion for the fragmented precursors. Rolling 641 

collision energy using the following equation (0.0625 × m/z - 3.5) with a collision energy 642 

spread of 15 eV was used for fragmentation regardless of the charge state of the precursors, to 643 

mimic as close as possible the fragmentation conditions of the precursors in SWATH-MS 644 

mode. Altogether, we had 66 DDA-MS injections, including the 48 OGE samples and another 645 

18 pooled peptide samples from the unfractionated cell lysate of the NCI-60 cells. 646 

 647 

Spectral and assay library generation 648 

 649 

All raw instrument data were centroided using Proteowizard msconvert (version 2.0). 650 

The assay library was generated using an established protocol 64. In short, the shotgun data 651 

sets were searched individually using X!Tandem 65 (2011.12.01.1) with k-score plugin 66, 652 

Myrimatch 67 (2.1.138), OMSSA 68 (2.1.8) and Comet 69 (2013.02r2) against the reviewed  653 

UniProtKB/Swiss-Prot (2014_02) protein sequence database containing 20,270 proteins 654 
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appended with 11 iRT peptides and decoy sequences. Carbamidomethyl was used as a fixed 655 

modification and oxidation as the variable modification. Maximally two missed cleavages 656 

were allowed. Peptide mass tolerance was set to 50 ppm, fragment mass error to 0.1 Da. The 657 

search identifications were combined and statistically scored using PeptideProphet 70 and 658 

iProphet 71 available within the Trans-Proteomics Pipeline (TPP) toolset (version 4.7.0) 72. 659 

MAYU 73 (v. 1.07) was used to determine the iProphet cutoff (0.999354) corresponding to a 660 

protein FDR of 1.03%. SpectraST was used in library generation mode with CID-QTOF 661 

settings and iRT normal-isation at import against the iRT Kit 74 peptide sequences (-662 

c_IRTirt.txt -c_IRR) and a consensus library was consecutively generated. An in-house 663 

python script, spec-trast2tsv.py31 (msproteomicstools 0.2.2) was then used to generate the 664 

assay library with the following settings: -l 350,2000 -s b,y -x 1,2 -o 6 -n 6 -p 0.05 -d -e -w 665 

swath32.txt -k openswath (fragment ions between 350 and 2000 m/z, b and y ions authorized, 666 

fragment charges 1+ and 2+, 6 most intense transitions, precision of fragment ion retrieved 667 

0.05 Da, exact fragment ion mass calculated, exclude fragments in the swath window). The 668 

OpenSWATH tool, ConvertTSVToTraML converted the TSV file to TraML format; Open-669 

SwathDecoyGenerator generated the decoy assays in shuffle mode and appended them to the 670 

TraML assay library. In this study, we built a SWATH assay library containing 86,209 671 

proteotypic peptide precursors in 8,056 proteotypic SwissProt proteins. This library is 672 

supplied in PRIDE project PXD003539. 673 

 674 

SWATH-MS 675 

 676 

The SWATH-MS data acquisition in a Sciex TripleTOF 5600 mass spectrometer was 677 

performed as described before 10, using 32 windows of 25 Da effective isolation width (with 678 

an additional 1 Da overlap on the left side of the window) and with a dwell time of 100 ms to 679 

cover the mass range of 400 - 1200 m/z in 3.3 s. The collision energy for each window was set 680 

using the collision energy of a 2+ ion centered in the middle of the window (equation: 0.0625 681 

x m/z - 3.5) with a spread of 15 eV. The sequential precursor isolation window setup was as 682 

follows: [400-425], [424-450], [449-475], …, [1174-1200].  683 

 684 

Protein identification using OpenSWATH 685 

 686 

We analyzed the SWATH data using OpenSWATH software 11 using parameters as 687 

described previously 24.  We identified 48,374 peptides from 6,556 protein groups from the 688 
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NCI-60 panel with < 1% false discovery rate at both peptide and protein level evaluated by 689 

OpenSWATH 11and Mayu 75 (supplied in PRIDE project PXD003539).  690 

 691 

DIA-expert analyses 692 

 693 

The DIA-expert software read OpenSWATH output result file which contains 694 

statistical scores (i.e. mProphet score or mScore) indicating the confidence of identification 695 

for each peptide precursor in each sample, and from there selected the sample in which a 696 

peptide precursor was identified with highest confidence. It then obtained extracted ion 697 

chromatograms (XICs) for the target peptide precursor and all associated annotated b and y 698 

fragments in the reference sample, and refined fragments based on the peak shape of each 699 

fragment and its peak boundary. The refined fragments and precursor XIC traces from each of 700 

the rest samples were subsequently compared with the reference peak group using empirical 701 

expert rules, based on which the best matched peak group in each sample was picked and 702 

visualized. Duplicated measurements were used to evaluate the accuracy of peptide and 703 

protein quantification. The protein quantity was normalized based on total ion 704 

chromatography of the MS1 spectra from each raw SWATH file. All codes are provided in 705 

Github https://github.com/tiannanguo/dia-expert.  706 

 707 

Protein complexes analysis 708 

 709 

For this analysis, technical replicates were averaged to generate the NCI-60 710 

proteotypes. To assess the coverage of protein complexes by NCI-60 proteotypes, we 711 

retrieved a large resource of mammalian protein complexes assembled from CORUM 76, 712 

COMPLEAT 77 and literature-curated complexes 24, 78. This resource contains 2,041 proteins 713 

as members of 279 distinct complexes and it is available at http://variablecomplexes.embl.de/. 714 

101 complexes were represented in the NCI-60 proteotypes with at least 5 members 715 

quantified. These complexes, in total, contain 1,045 distinct proteins quantified in the NCI-60 716 

proteotypes. Pearson’s correlation coefficient was calculated for all the pairwise comparisons 717 

of 3,171 proteins across the NCI-60 cell lines. All pairwise comparisons were classified into 718 

two categories: either two proteins were members of the same complex or not. Average 719 

abundance, standard deviation and average Pearson correlation of each complex were 720 

calculated based on the abundance of complex members in the NCI-60 proteotypes. 721 

 722 
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For this analysis, technical replicates were averaged to generate the NCI-60 723 

proteotypes. To assess the coverage of protein complexes by NCI-60 proteotypes, we 724 

retrieved a large resource of mammalian protein complexes assembled from CORUM 76, 725 

COMPLEAT 77 and literature-curated complexes 24, 78. This resource contains 2041 proteins 726 

as members of 279 distinct complexes and it is available at http://variablecomplexes.embl.de/. 727 

158 complexes were represented in the NCI-60 proteotypes with at least 5 members 728 

quantified. These complexes, in total, contain 1,045 distinct proteins quantified in the NCI-60 729 

proteotypes. Pearson’s correlation coefficient was calculated for all the pairwise comparisons 730 

of 3,171 proteins across the NCI-60 cell lines. All pairwise comparisons were classified into 731 

two categories: either two proteins were members of the same complex or not. Average 732 

abundance and standard deviation of each complex were calculated based on the mean 733 

abundance of complex members in the NCI-60 proteotypes. 734 

 735 

Pathway activity analysis 736 

 737 

The activity of pathways, as they are described in ACSN, has been computed using 738 

ROMA 32.  Among all the modules defined in ACSN, only 11 show a significant dispersion 739 

over the data set: AKT_MTOR, HR (Homologous Recombination), NER (nucleotide 740 

Excision Repair), TNF response, Death Receptors regulators, Apoptosis, caspases, E2F3 and 741 

E2F4 targets, HIF1 and cytoskeleton polarity. For these modules, the mean activity score for 742 

each type of cancer cell lines was computed and mapped onto the atlas (from bright green for 743 

low values to bright red for high values). To assess module differential activity between 744 

proteotypes, we computed a t-test on the activity scores in cell lines of a cancer type versus 745 

the activity of all other cancer cell lines. The definition of genes composing each module can 746 

be found in http://acsn.curie.fr  747 

 748 

 749 

Drug sensitivity prediction using elastic net 750 

 751 

The elastic net regularized regression algorithm was applied to predict drug response 752 

for 240 FDA-approved or investigational NSC-designated compounds. Some widely studied 753 

drugs are represented by more than one NSC identifier, with each identifier associated with a 754 

distinct compound sample and series of NCI-60 drug activity assays. For each compound, 7 755 

combinations of input data were evaluated.  These included NCI-60 mRNA expression, gene-756 
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level mutation, and SWATH-MS protein expression, both alone and in all possible 757 

combinations.  mRNA expression data was available for 14,969 genes, and derived from 758 

CellMiner , with missing values imputed using the impute.knn function (with default 759 

parameters) of the Bioconductor impute package.  Gene-level mutation profiles were 760 

available for 2,282 genes, and were obtained from CellMiner exome sequencing data, with 761 

values indicating the percent conversion to a variant form for the case of expected function-762 

impacting alterations (frameshift, nonsense, splice-sense, missense mutations by 763 

SIFT/PolyPhen2 analysis).  SWATH-MS based protein expression data was available for 764 

3,171 proteins.  765 

 766 

Elastic net analysis was done using the glmnet R package 79. The elastic net analysis 767 

was conducted using a multi-step pipeline involving cross-validations performed in a nested 768 

manner. The “outer” cross-validation is a leave-one-out cross validation that is conducted 769 

over all computational steps present in the “inner” pipeline, and it is used to validate model 770 

performance. The “inner” cross-validation are conducted to select elastic net hyperparameters 771 

(alpha and lambda) and for predictor set trimming, using data from a set of ~59 cell lines.  772 

 773 

The elastic net parameters alpha and lambda were selected by minimizing the cross-774 

validation error (average of 10 replicates of 10-fold cross-validation) within the “inner” 775 

pipeline.  The selected alpha and lambda parameters were then applied to 200 runs of the 776 

elastic net algorithm, each using a random data subset derived from 90% of the available cell 777 

lines. The 200 resulting coefficient vectors were then averaged, and predictors were ranked by 778 

the magnitude of their average coefficient weight. To select a limited number of predictors 779 

with potential to generalize to new data, top k-element predictor sets (by average coefficient 780 

weight magnitude) were evaluated using standard linear regression and 10-fold cross-781 

validation. The appropriate k was set to the smallest value yielding a cross-validation error 782 

within one standard deviation of the minimum cross-validation error.  783 

 784 

To obtain a robust estimate of performance on unseen data, leave-one-out cross-785 

validation was applied to the overall procedure as part of the “outer” pipeline. Specifically, 786 

drug response for each cell line was predicted using an elastic net model derived using the 787 

remaining held out data (and the steps outlined above). The vector of predicted response 788 

values was then correlated with the actual response values, with the Pearson’s correlation 789 
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coefficient providing an estimate of the predictive value of the applied input data 790 

combination. More details of the elastic net algorithm are provided in File S3. 791 

 792 

Elastic net analysis was done using the rcellminerElasticNet R package 793 

(https://bitbucket.org/cbio_mskcc/rcellminerelasticnet), which facilitates the application of the 794 

glmnet R package (which provides the elastic net algorithm code) to data from the rcellminer 795 

and rcellminerData packages 80. rcellminerElasticNet also provides utility functions for 796 

summarizing and visualizing elastic net results.  797 

 798 

Results for the elastic net analysis are available from this URL: 799 

https://discover.nci.nih.gov/cellminerreviewdata/swath_analysis/swathOutput_062316_all.tar.800 

gz. This compressed file contains results for the analysis run with all features and selected 801 

common features. Each drug compound has three files for each combination of molecular 802 

features used in a particular run of the elastic net algorithm: 1) a knitr report R Markdown 803 

(.Rmd) file containing the code that was run, 2) an RData (.Rdata) file containing the results 804 

of each elastic net run (see elasticNet() documentation in the rcellminerElasticNet package), 805 

3) the rendered knitr report as a webpage (.html).  806 

 807 

Beyond the knitr report containing code, the elastic net pipeline is made reproducible 808 

using a Docker image. Docker (www.docker.com) is an emerging platform for conducting 809 

reproducible research in the biomedical research community. All necessary software and 810 

dependencies to run the described analysis have been embedded in the available Docker 811 

container to provide readers an environment that runs on all major operating systems 812 

(including Windows, OSX, and Linux), making Docker containers self-contained, portable, 813 

and capable of performing at levels similar to the host system. 814 

 815 

           The Docker container is available at the Docker Hub repository: cannin/swath 816 

(https://hub.docker.com/r/cannin/swath/). Key dependencies installed, include: RStudio 817 

Server (https://www.rstudio.com/), rcellminer/rcellminerData 80, and rcellminerElasticNet. 818 

With these installed dependencies, readers have the opportunity to 1) re-run analysis for 819 

specific drug compounds and modify the code in order to extend the analysis using RStudio 820 

Server, a web-based version of the RStudio R editor, and 2) use an R Shiny app web-based 821 

data explorer to further understand described results. Instructions on the usage of the Docker 822 
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container are located at the rcellminerElasticNet project page 823 

(https://bitbucket.org/cbio_mskcc/rcellminerelasticnet).  824 

 825 

Data deposition 826 

 827 

The NCI-60 SWATH data sets and SWATH assay library has been deposited in 828 

PRIDE. Project Name: NCI60 proteome by PCT-SWATH; Project accession: PXD003539. 829 

Reviewer account details: 830 

Username: reviewer15254@ebi.ac.uk 831 

Password: dWdyptzf 832 

The protein data matrix has also been deposited in ArrayExpress. Project accession: E-833 

PROT-2. Project title: Proteomic profiling of NCI60 cell lines from Cancer Cell Line 834 

Encyclopedia.  835 

Reviewer account details: 836 

Username: Reviewer_E-PROT-2 837 

Password: gdgywGco 838 

The protein data matrix is also accessible in CellMiner website 13 and R package 839 

rcellminer 37. 840 

  841 
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