

Rapid prototyping of activity recognition applications

Citation for published version (APA):
Bannach, D., Amft, O. D., & Lukowicz, P. (2008). Rapid prototyping of activity recognition applications. IEEE
Pervasive Computing, 7(2), 22-31. https://doi.org/10.1109/MPRV.2008.36

DOI:
10.1109/MPRV.2008.36

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1109/MPRV.2008.36
https://doi.org/10.1109/MPRV.2008.36
https://research.tue.nl/en/publications/95edc1a2-fc75-4225-8647-38635bedc122

22 PERVASIVE computing Published by the IEEE CS n 1536-1268/08/$25.00 © 2008 IEEE

A C T I V I T Y - B A S E D C O M P U T I N G

Rapid Prototyping
of Activity Recognition
Applications

The CRN Toolbox enables fast implementation of activity and context

recognition systems, featuring mechanisms for distributed processing

and support for mobile and wearable devices.

T
oday, the development of activ-

ity recognition systems has two

main phases. The first phase is to

design the recognition method—

the sensor setup, feature set,

classifiers, classifier parameters, fusion meth-

ods, and so on. Here, designers feed experi-

mental data offline into conventional rapid-

prototyping tools such as Matlab. These tools

provide a rich reservoir of off-the-shelf, param-

eterizable algorithms and

visualization methods, which

enable the testing of different

system variants quickly with-

out time-consuming imple-

mentation work.

Unfortunately, most of

these simulation environ-

ments aren’t suitable for actu-

ally running applications, especially in mobile

and pervasive environments. They typically de-

pend on custom engines or libraries requiring

large memory footprints and high computing

power. Consequently, a separate, second phase

is usually necessary to implement activity rec-

ognition applications. This phase implements

the selected algorithms in an appropriate pro-

gramming language and then distributes them

to specific devices. Relevant issues in this phase

include sensor interfaces, synchronization of the

sensor signals, and optimization for specific de-

vices (for example, floating-point or fixed-point

calculation).

The Context Recognition Network (CRN)

Toolbox (http://crnt.sf.net) combines these two

phases and permits quick construction of com-

plex multimodal context recognition systems

for immediate deployment in the targeted en-

vironment. We developed the CRN Toolbox to

ease the process of building activity recognition

systems. Three case studies demonstrate the ver-

satility of the CRN Toolbox. In these case stud-

ies, we deployed the CRN Toolbox to support

information flow in hospitals, monitor walking

habits to help prevent cardiovascular diseases,

and recognize hand gestures in a car-parking

game. The spectrum of implemented solutions

indicates that our approach is viable in the di-

verse environments of wearable and server-

based applications.

Comparing the CRN Toolbox
with other tools
The CRN Toolbox isn’t general-purpose perva-

sive middleware such as RUNES (Reconfigurable

Ubiquitous Networked Embedded Systems),1

nor a sensor-node operating system such as

TinyOS.2 Neither is it a high-level framework

for rule-based automation, such as Visual-

RDK.3 Rather, it’s a tool set specifically opti-

David Bannach and Paul Lukowicz

University of Passau

Oliver Amft

ETH Zurich

APRIL–JUNE 2008 PERVASIVE computing 23

mized for implementing multimodal,

distributed activity and context recog-

nition systems running on Posix oper-

ating systems. Like conventional rapid-

prototyping tools, the CRN Toolbox

contains a collection of ready-to-use

algorithms (signal processing, pattern

classification, and so on). Unlike clas-

sic event detection in homogeneous sen-

sor networks—for example, DSWare

(Data Service Middleware)4—it sup-

ports complex activity detection from

heterogeneous sensors. Its implementa-

tion is particularly optimized for mo-

bile devices. This includes the ability to

execute algorithms, whether in float-

ing-point or fixed-point arithmetic,

without recoding. Moreover, with its

mature functionality, the CRN Tool-

box isn’t likely to suffer from limited

user acceptance as the Context toolkit

framework did.5

The CRN Toolbox contains dedi-

cated building blocks for interfacing

a broad range of sensor nodes. It also

supports synchronization, merging, and

splitting of data streams. In contrast to

the PCOM (Pervasive Computing Com-

ponent System) model,6 which focuses

on contract-based spontaneous configu-

ration, the Toolbox relies on a known

network topology. Users can flexibly

distribute applications among devices

(including servers) by simply starting

the configured Toolbox runtime on the

appropriate system. Another important

feature is the ability to interface conven-

tional simulation environments such

as WEKA (Waikato Environment for

Knowledge Analysis, www.cs.waikato.

ac.nz/~ml). The functionality is acces-

sible through a graphical configura-

tion editor, which enables constructing

complex applications by connecting and

configuring a set of task icons corre-

sponding to different processing steps.

The concepts the CRN Toolbox

uses—graphical programming, data-

driven computation, parameterizable

libraries, and distribution—are them-

selves not new. But the CRN Toolbox

has optimally adapted and integrated

these concepts for rapid, efficient im-

plementation of context recognition

systems.

Toolbox concept
The concept of the CRN Toolbox stems

from the observation that most activity

recognition systems rely on a relatively

small set of algorithms. These include

sliding-window signal partitioning,

standard time and frequency domain

features, classifiers, and time series or

event-based modeling algorithms.

The key differences between systems

involve sensor choice, parameteriza-

tion of algorithms (for instance, slid-

ing-window size), and data flow. The

data flow can be as simple as feeding

1D sensor data to a mean filter and a

classifier. This could be a configuration

for recognizing sitting and standing

from an upper-leg accelerometer, for

example. It can be as complex as fusing

data from tens of heterogeneous sen-

sors, working with different sampling

frequencies, different feature computa-

tions, and even different classifiers. In

such complex systems, different plat-

forms often handle different sensor

subgroups—for example, certain mo-

bile devices and servers with stationary

sensors. The implementation must han-

dle the distributed computation, collect

the data, and synchronize the different

data streams.

The CRN Toolbox simplifies the im-

plementation of even complex, distrib-

uted context recognition systems to the

following three steps:

Compile the Toolbox for all plat-

forms on which it needs to run.

Select and configure the algorithms

and data flow for each platform.

Start the Toolbox on each platform

with the dedicated configuration.

If it’s necessary to analyze algorithms

that aren’t presently available in the

CRN Toolbox, users can easily inter-

face rapid-prototyping tools running

on a remote server.

Figure 1 shows an overview of the

CRN Toolbox concept. The step-by-

step configuration guide presents a

simple example for recognizing kitchen

activities from the user’s on-body

sensors.

•

•

•

Parameterizable
components

CodeInterfaces

Configuration
editor

Configuration

CRN Toolbox
runtime

External
tools

(b) (d)(c)

(a)

Sensor
devices

Output devices

SS
S

OO

Figure 1. Concept of the Context

Recognition Network (CRN) Toolbox:

(a) repository of parameterizable

software components, including I/O

device readers and writers, filtering

and classification algorithms, and

components for splitting, merging,

and synchronizing data streams;

(b) graphical editor for specifying data

flow and configuring components;

(c) the CRN Toolbox runtime

environment for online execution of

the configured software components;

and (d) arbitrary external tools—for

example, live data-stream plotting

or another CRN Toolbox (local or

remote)—communicating with the

Toolbox runtime.

24 PERVASIVE computing www.computer.org/pervasive

ACTIVITY-BASED COMPUTING

Reusable components

The basic building blocks provided by

the CRN Toolbox are the reusable, pa-

rameterizable components. Conceptu-

ally, the components are active objects

that operate on data streams. We refer

to them as tasks. They encapsulate al-

gorithms and data, and they each have

an individual thread of execution. In

essence, tasks run in parallel, waiting

for data packets to arrive at their in-

port. They then process the packet’s

payload according to their algorithm

and parameter settings, and provide the

modified data packet at their out-port.

Depending on the configured data flow,

subsequent tasks will receive the packet

for further processing.

The Toolbox provides reader and

writer tasks for interfacing with in-

put and output devices, processing

algorithms for data filtering and clas-

sification, and components for split-

ting, merging, and synchronizing data

streams. Table 1 summarizes currently

available tasks. Detailed task descrip-

tions are available as help pages. The

list is constantly growing as increas-

ingly more users contribute to the proj-

ect. Numbers in parentheses represent

the number of tasks in each category.

Every task has an individual number

of parameters that control its opera-

tion. For example, the k-nearest neigh-

bor (KNN) classifier task uses the k,

a file name with training data, and an

optional step-size parameter.

The encapsulation in active objects

and the parameterization proved es-

sential for reusing the actual code. So,

for most applications, the fact that the

Toolbox is implemented in C++ is insig-

nificant, yet those applications benefit

from the efficient runtime.

The motor: Runtime

environment and flow control

The Toolbox runtime provides the vi-

tal environment for tasks to operate. It

handles dynamic creation and configu-

ration of tasks as well as configuration

of the data flow.

For parameter handling, the Toolbox

uses the JavaScript Object Notation

(JSON) format, with an object loader in

the “get instance by name” style.7 Thus,

users can configure the Toolbox at run-

time through text-based configuration

files that define settings for tasks and the

data flow that the application needs.

Directed connections from out-ports

to in-ports specify the data flow between

tasks. Each data packet transmitted

along these connections contains data

entities belonging to one time instant.

A packet’s payload is organized as a

vector of values from an abstract data

type. Moreover, the packets contain a

time stamp and sequence number. For

combining multiple streams, the Tool-

box provides merger tasks. Mergers

combine the payloads of packets from

separate in-ports and synchronize data

streams with different sampling rates.

We used pointer references to pass

data packets along the internal connec-

tions through the task network. Packets

are cloned only if more than one receiver

connects to the same out-port. This im-

plementation of the runtime core ensures

high packet-processing performance.

Moreover, we preserved processing per-

formance by providing operations to the

task developer that, like the += operator,

TABLE 1

Summary of tasks currently provided by the CRN Toolbox.

Task category (no.

of tasks) Task implementations

Generic reader (4) Reading from file, keyboard, TCP socket, or serial device (including Bluetooth), using a decoder plug-in

Specific reader (18) ADS* (heart rate), ARSB (walking sensing), BTnode, Hexamite, ID-10 RFID, Lukotronic, NMEA (GPS),
MyHeart protocol, SkyeTek M1-mini RFID, Tmote force-sensing resistors, Tmote RFID, Tmote magnetic
distance, TMSI fiber protocol, Suunto ANT protocol, Web interface input, Xsens MT9/MTi, Xsens Xbus, Wii
Remote

Channel reordering (4) ChannelSelect, SelectiveSplitterTask, SimpleMerger, SyncMerger

Filtering (4) FilterTask, TransitionDetector, VecLen, Einsnorm

Filter plug-ins (16) Average signal energy, band energy ratio, bandwidth, center of gravity, entropy, FFT, fluctuation, peak,
max, mean, median, slope, scale, spectral roll-off frequency, threshold, variance

Classification tasks (9) Distance2Position, Hexamite2D, HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, SimpleHexSensClassification

Miscellaneous (4) Synchronizer, Heartbeat, Valve, Nothing

Writer (9) TCP server, TCP client, serial port, file, console, MyHeart protocol, graph display, image display, Nirvana
(silent sink)

Encoder plug-ins (9) ARFFEncoder (WEKA), BinaryEncoder, CmdEncoder, IntLinesEncoder, JSONEncoder, PlottingEncoder, TextLabelEncoder,
TimestampedLinesEncoder, SuperPacketEncoder

Decoder plug-ins (4) ASCIIDecoder, FloatLinesDecoder, IntLinesDecoder, StringLinesDecoder

* ADS: Advanced Digital Strap (Philips heart rate belt); ARFF: Attribute-Relation File Format (WEKA); ARSB: activity recognition sensor board; FFT: fast Fourier transform;
HMM: hidden Markov model; KNN: k-nearest neighbor; PCFG: probabilistic context-free grammars; WEKA: Waikato Environment for Knowledge Analysis

APRIL–JUNE 2008 PERVASIVE computing 25

inherently modify data objects instead

of allocating new objects.

Synchronizing independent

data streams

Synchronization of the data streams

from different sensors is a major issue in

multimodal activity recognition. When

using several independent sensors, it’s

important to synchronize their data

streams to a common starting point.

A feasible concept for this type of

synchronization is aligning streams on

events recorded by all sensors simulta-

neously—for example, a user jumping

up with a set of on-body acceleration

sensors. We implemented this concept

in the Synchronizer and SyncMerger tasks.

Figure 2 depicts the solution for the ex-

ample of two Xsens MT9 acceleration

sensors. The jump inserted a character-

istically high acceleration amplitude.

The Synchronizer tasks detect the peaks

caused by these events and adjust data

packet time stamps accordingly. The

SyncMerger combines the data streams by

aligning the time stamps. The Synchro-
nizer tasks are manually activated—for

instance, through a KeyboardReader—to

limit the alignment phases to controlled

time frames. Our initial analysis of the

method showed that an alignment of

0.5 seconds and better was possible.

Readers: Sensor

hardware encapsulation

The CRN Toolbox implements sensor in-

terfaces as tasks without in-ports. These

reader tasks instantiate new data pack-

ets for data samples acquired from sen-

sors (or other sources) and provide these

packets on their out-port. Our architec-

ture supports various reader implemen-

tations that can capture different sensors

or other sources, such as web pages, ap-

plication outputs, and data files.

For activity annotation, we imple-

mented a keyboard reader to perform

online labeling of data. This reader

proved very helpful, because it enables

storing the labels with the raw data for

later evaluation.

Writers: Communication

for distributed processing

Writer tasks are the key to distributed

execution and use of external tools.

They forward data received at their in-

port to external interfaces (such as files,

displays, or network connections). For

network connections, we use TCPWriter
and TCPReader tasks to communicate via

TCP/IP sockets. The CRN Toolbox

transmits data packets on the channel

in a serialized form. The Toolbox ob-

tains the serialization from an encoder

plug-in in the TCPWriter task. Similarly, the

TCPReader uses a decoder plug-in for dese-

rialization. Thus, two CRN Toolboxes

running independently—for example,

on different hosts—can collaborate us-

ing the writer-reader communication.

Using this mechanism, the Toolbox

can link to arbitrary programs based

on compatible interfaces. Currently,

such interfaces exist for Matlab and

WEKA, both of which support data vi-

sualization and pattern recognition in

experiments and demonstrators.

Easy configuration

The Toolbox’s rapid-prototyping capa-

bilities increased our need for an easy,

quick configuration editor. Figure 2

shows the graphical configuration edi-

tor. Users can drag tasks from a library

into the workspace and connect them

to other tasks with just a few mouse

clicks. The Java-based editor produces

configuration files for the Toolbox. (See

the “How to Cook: A Step-by-Step

Guide” sidebar for an example of how

easy it is to build activity recognition

applications with the CRN Toolbox.)

Case studies
The vitality of a framework such as

(b)

(a)

0 500 1,000

Time (ms)

Sensor 1
Sensor 2

1,500 2,000 2,500 3,000

A
cc

e
le

ra
ti

o
n

Synchronization event

Figure 2. Example using two Xsens

MT9 acceleration sensors: (a) CRN

Toolbox graphical configuration

editor with synchronization setup;

(b) data alignment achieved at an

event detected by the Synchronizers.

26 PERVASIVE computing www.computer.org/pervasive

ACTIVITY-BASED COMPUTING

the CRN Toolbox stems from its con-

tinual development and deployment in

various projects. The showcase of ap-

plications in industry projects, student

classes, and demonstrators (see tables

2 through 4) highlights the CRN Tool-

box’s maturity and widespread use.

These projects have successfully de-

ployed the Toolbox on different plat-

forms, including

Linux running on arm32, i386, and •

amd64 systems;

MacOSX running on i386s and

iPhones; and

Cygwin running on i386s.

Here, we depict three case studies

•

•

T
he CRN Toolbox makes building activity recognition ap-

plications easy. For example, implementing your own

kitchen activity recognition takes only five steps, including classi-

fier training. Moreover, you don’t have to write additional code.

The ingredients are a motion sensor mounted on a glove, a

wearable computer or “kitchen PC,” and the CRN Toolbox. In

this guide, we use the MT9 sensor from Xsens. Typical activi-

ties include stirring, whisking, cutting bread, slicing onions, and

wiping with a cloth.

 1. Using the graphical configuration editor, create a configu-

ration for recording training data (see figure A1). Begin by

adding the MT9Reader to acquire data from the MT9 sensor

at 100 Hz, and provide all nine channels on its out-port.

Use SelectiveSplitterTask to choose the channels of interest, and

then send them to MeanFilter and VarFilter (variance). Set the

sliding window size to 100 (1 second). Use SimpleMerger to

combine the two data streams again, and add the output

of a KeyboardReader task. This task annotates the recording by

keystrokes. Finally, add LoggerTask to write the resultant data

streams into a file.

 2. Select an annotation key for training each activity. Connect

the sensor and start the Toolbox with the created configu-

ration. Then, wearing the sensor glove, perform each activ-

ity for about 30 seconds. At the beginning of each activity,

press its selected annotation key.

 3. Review the recorded training data in the log file and reduce

it to about 100 samples per activity class. The number in

the last column of the log file indicates the class label.

 4. Modify the first configuration to include the classifier and

the output task (see figure A2). Remove KeyboardReader, be-

cause from now on the classifier will do the annotation.

Specify the file name of the training data in the properties

of the KNN task. Attach the DisplayImage task to the KNN and

specify the picture that should display on the screen for

each recognized activity category.

 5. Start the Toolbox with the new configuration. Now you can

work in the kitchen as you wish and let the Toolbox track

your activities or, even better, feed the results into a con-

text-aware cookbook (see figure A3). Bon appétit!

To improve the system, you could add more sensing modali-

ties (such as location), select useful features, or use more sophis-

ticated recognition algorithms.

How to Cook: A Step-by-Step Guide

(1) (2) (3)

Figure A. Configurations for kitchen activity recognition: (1) recording of training data; (2) online classification and

display of results; and (3) example output of the classification using DisplayImage.

APRIL–JUNE 2008 PERVASIVE computing 27

from different areas, outlining the use

of the CRN Toolbox.

Supporting information

flow in hospitals

Along with our clinical partners in the

EU-sponsored WearIT@Work project,

we developed a solution to improve in-

formation flow for the hospital ward.8,9

During the ward rounds, doctors deter-

mine patients’ further treatment under

tight time limitations. Access to patient

documents at bedside would enable doc-

tors to make decisions on the basis of all

available information. Notebooks or PCs

are impractical for this task because their

operation is time consuming and distract-

ing and involves touching unsterilized de-

vices while in contact with patients.

Our wearable solution simplifies

document access. When the doctor

comes to the patient’s bed, the bedside

monitor automatically displays a docu-

ment list for that patient. The doctor

can then browse the documents by

pointing at the monitor and swiveling

his or her forearm. The system the doc-

tor wears consists of the QBIC (www.

qbic.ethz.ch) running the CRN Tool-

box, an Xsens motion sensor, and an

RFID reader. The doctor wears the

QBIC as a belt; the Xsens motion sen-

sor and RFID reader attach to the lower

TABLE 2

Major industry projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

WearIT@Work: supports hospital information flow,
RFID for patient identification, gesture-controlled
access to patient documents using wrist-worn motion
sensor.8,9

Data capture, gesture recognition, control of hospital’s document browser.
Several demonstrators and test systems were built and a hospital trial was
conducted.
Platform: Q-Belt Integrated Computer (QBIC), Linux on arm32.

•
•

•

WearIT@Work production support: activity recogni-
tion of car assembly and maintenance,10 uses inertial
motion and indoor location sensors.

Recording multimodal sensor data: Xsens, Hexamite, ultrasound, muscle
force; various demonstrators.
Platform: Linux on i386.

•

•

MonAMI dynamic monitoring services. Dynamic reconfiguration of the Toolbox, depending on available sensors
and registered services.
Platforms: Linux on i386 and arm32.

•

•

MyHeart walking habits: online classification of walk-
ing activities and intensities to support active lifestyle
and improve fitness.

Acquisition of heart rate, acceleration, and air pressure classification.
Streaming results to a mobile phone and professional coaching center.
Platform: Linux on arm32 (QBIC).

•
•
•

Location tracking: GPS-based local map visualization. GPS position logging (NMEA protocol) and conversion for dynamic map
display, forwarding to central mission server.
Platform: Linux on arm32 (QBIC).

•

•

TABLE 3

Student class projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

ISWC 06 tutorial “Hands-on Activity Context Recognition”:
building a gesture recognition system for controlling simulated
car-parking game with real waving gestures; 12 participants.

Testing algorithms and gesture types using simulated data streams
from a motion sensor glove.
9 components, 7,000 LOC, Linux amd64 platform.

•

•

Number-entering game: entering binary digits using a motion
sensor only; practical exercise and competition for ambient-
intelligence lecture; 15 students in 5th semester.

Understanding algorithms, modularization, and interfacing to
sensor data.
7 components, 2,000 LOC, Linux i386 platform.

•

•

Location estimation and activity recognition: ultrasonic and
motion sensors; practical exercise for ambient intelligence
lecture; 12 students in 5th semester.

Understanding algorithms and location-tracking challenges.
7 components, 2,000 LOC, Linux i386 platform.

•
•

Interactive World project: software project to implement
gesture control for games (Pong, Tetris), three days, 19
students in 4th semester.

Implementing TCP reader task, using KNN classifier (gesture
recognition).
5 components, 1,200 LOC, Linux i386 platform.

•

•

Activity monitoring: training a classifier to recognize human
activities (sitting, standing, walking, running) and visualizing
results; 10 students in 4th semester.

Learning a classifier’s concepts and operation, implementation,
and testing.
7 components, 2,000 LOC, Linux i386 platform.

•

•

28 PERVASIVE computing www.computer.org/pervasive

ACTIVITY-BASED COMPUTING

arm. The patient wears an RFID tag. At

each patient’s bed, the bedside monitor

displays documents from the hospital’s

information system.

Figure 3 shows the Toolbox con-

figuration. In this configuration, we

use threshold detection and sequence-

matching tasks (ThresholdFilter, TransitionDe-
tector, and SequenceDetector) to process each

gyroscope axis of the motion sensor.

This setup can detect forearm gesture

sequences such as swivel left, then right

(open-document command). The Com-
mandDispatcher acts as a gateway, forward-

ing only those commands in active state

(controlled by an activation gesture).

This task also consumes the patient

identification from RFID. Finally, the

TCPClientWriter transmits the commands to

the document browser of the hospital’s

information system.

We tested the complete setup in a

two-week trial with doctors in an Aus-

trian hospital. The system’s shortcom-

ings mainly concerned gesture detec-

tion robustness and sensor wearability,

which we are now investigating.

Monitoring walking habits

With our industry partners in the EU-

sponsored MyHeart project, we inves-

tigated new approaches for preventing

cardiovascular diseases and maintain-

ing low disease risks. Because many

daily activities involve walking, we de-

veloped a walking-habits monitor that

supports active walking and can track

activity intensity.

In this setup, the QBIC serves as a

central data acquisition and process-

ing hub, running the CRN Toolbox.

A custom sensing unit monitors user

activity. This unit contains accelera-

tion and air pressure sensors attached

to the belt. Additionally, a heart rate

chest belt uses Bluetooth to communi-

cate with the QBIC. Based on features

from the belt sensor unit, we classify

walking straight, up, down, and idle

as well as using the elevator up or

down. The Toolbox forwards the re-

sults, along with the heart rate, to a

mobile phone.

Figure 4 shows the final Toolbox con-

QBIC

Bedside monitor,
hospital information

system

CRN Toolbox

(b)(a)

Figure 3. Hospital information flow example: (a) hospital information support system setup; (b) CRN Toolbox configuration.

TABLE 4

Demonstrator projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

Parking game: controlling a virtual driver and car
with real hand gestures in a parking game.11

Capturing glove-based inertial sensor data, gesture spotting using explicit
segmentation, gesture event search, and fusion steps.
Controlling the game visualization engine.
Platform: Linux amd64.

•

•
•

Dietary activity tracking using PCFG: inference of
food intake cycles from activities.12

Simulating activity event input, PCFG parsing, reporting results.
Platform: Linux amd64.

•
•

Hammering and screwdriving demo: recognizing
assembly activities (hammering, screwdriving,
sanding, sawing) with a motion sensor in a glove.

Xsens motion sensor capturing, classifying activities, displaying recognition
results on screen and via wireless connection.

Platform: Linux on arm32 (QBIC).

•

•

APRIL–JUNE 2008 PERVASIVE computing 29

figuration. This project required reader

tasks to capture data from the belt sen-

sor unit (ARSBReader) and heart rate belt

(ADSReader). It also involves several filters,

a classifier (KNN), and a writer to com-

municate to the mobile phone applica-

tion (MyHeartWriter).
The visualizations on the phone

showed activity level, heart rate, and

recommendations based on detected

activities. (In our ongoing work, we use

further sensors at the limbs to capture

diverse activities.)

Mixed-reality car-parking game

We designed a car-parking game to

explore the use of wearable systems

in computer games.11 The game plot

features the player helping a virtual

driver fit a virtual car into a parking

spot. The player does so by weaving

hand and arm gestures while facing a

virtual scene at the roadside, where a

parking spot is available between other

vehicles. Figure 5 shows a screenshot

of the scene. The game simulates the

driver’s and car’s behavior, which fol-

low the gesture commands. The goal is

to perform this guiding task as quickly

and safely as possible—in particular,

avoiding collisions with other cars and

obstacles.

In this application, the CRN Tool-

box recognizes gestures from the play-

er’s glove. Its task is to detect five ges-

ture commands in the continuous data

stream from the glove: forward, back-

ward, turn left, turn right, and stop.

We used acceleration and gyroscope

sensors in three axes from an Xsens

unit attached to the glove. The gesture-

spotting procedure uses an explicit time

series segmentation algorithm (SWAB),

followed by a class-specific feature

similarity search (Similarity). Next, Confi-
denceMerger fuses the individual gestures.

Then, StringMap maps the retrieved ges-

tures to game commands, and TCPWriter
transmits them to the game simulation

and graphics engine.

We used the game as a demonstrator

for tutorials and student courses. We

built recognition models for 16 differ-

ent gestures. Hence, every player could

customize the system by selecting five

gestures according to individual pref-

erences. This customization simply in-

volved exchanging configuration files

for recognition tasks.

User evaluation
Right from its very first days, the CRN

Toolbox has been a community proj-

ect. The positive user feedback and the

growing number of tasks indicate that

our approach is well perceived. How-

ever, a thorough quantitative evalua-

tion of middleware and programming

tools such as the CRN Toolbox is dif-

ficult.5 Although we haven’t yet per-

formed a controlled assessment, we do

have some empirical (in some cases,

quantitative) results that support our

view of its usefulness.

Experience with students

As tables 2 through 4 show, we have

widely used the Toolbox in student

classes, and more than 60 students have

worked with it.

A class of 19 fourth-semester com-

QBIC

Mobile phone displayWalking-activity
sensing

Heart rate

CRN Toolbox

(b)(a)

Figure 4. Walking-habits monitoring example: (a) phone visualization; (b) CRN Toolbox configuration.

30 PERVASIVE computing www.computer.org/pervasive

ACTIVITY-BASED COMPUTING

puter science students implemented an

application with the Toolbox to control

the computer games Pong and Tetris by

shaking a motion sensor in different

directions. A typical solution for rec-

ognizing these gestures consists of five

Toolbox components (approximately

1,200 LOC). They

acquire data from sensors,

apply filters (mean, variance),

classify gestures using the KNN

algorithm,

send results via TCP, and

manage the data flow.

The exercise also included the imple-

mentation of a new Toolbox task for

reading from TCP sockets. The stu-

dents were only Java beginners and

had never programmed C++ before,

yet with the Toolbox they all solved the

recognition problem within 20 hours.

Four of them also completed the Java

game in that time.

Evaluation from researchers

We used the CRN Toolbox in an ac-

tivity recognition tutorial at the 10th

International Symposium on Wearable

Computers (ISWC 2006). We asked 12

participants to rate their impressions

after working with the Toolbox for

•

•

•

•

•

four hours. Ten completed the tutorial

feedback form. On average, they rated

themselves as advanced software pro-

grammers with some knowledge of C++

but little experience in context recogni-

tion. They reported average durations

of 10 minutes (maximum 30 minutes)

to understand the four tasks of the tuto-

rial, 15 minutes (maximum 30 minutes)

to implement and run solutions with

the Toolbox, and 20 minutes to debug

their configuration, if needed.

We received many positive comments,

such as “good and fast platform for ap-

plication development,” “one can click

filters together,” “easy to understand,

easy to use,” and “you don’t have to re-

invent the wheel.” Criticism focused on

missing documentation materials. Our

current work addresses this issue by us-

ing automatic documentation tools and

web platforms more intensively.

A
s a framework, the CRN

Toolbox introduces some

processing overhead. A

prominent aspect in our de-

sign is the between-task communica-

tion, required in most useful configu-

rations. This task relies on a common

packet format to exchange all media

types. Besides the payload, each packet

contains a time stamp, a sequence num-

ber, and a payload pointer, totaling 16

bytes. In a typical scenario, such as

the hospital support system discussed

earlier, raw sensor-data packets have

the highest transmission rate. In that

example, an MT9Reader acquired a 9-

channel Xsens MT9, requiring 36 bytes

for one sample. In the default configu-

ration, the reader outputs each sample

as a separate data packet. This yields a

total overhead of 44 percent. For packet

rates above 100 Hz, such as in audio,

the CRN Toolbox decreases the effec-

tive overhead by transferring multiple

samples in one packet.

Most current applications of the

Toolbox don’t exploit its distributed-

processing capabilities. We intend to

use this feature in more complex ap-

plications in the near future. We also

plan to investigate combining the CRN

Toolbox with existing pervasive mid-

dleware frameworks that often rely on

activity and context recognition ser-

vices—precisely what the CRN Tool-

box provides.

ACKNOWLEDGMENTS

We express our gratitude to all the students and

researchers who contributed to the development

(b)(a)

Sensor input

Server

Gesture command

User

CRN Toolbox

Car-driver simulation

Figure 5. Car-parking game example: (a) a user manipulating a scene; (b) CRN Toolbox configuration.

APRIL–JUNE 2008 PERVASIVE computing 31

of the CRN Toolbox. This project is partly sup-

ported by the European Union WearIT@Work and

MyHeart projects.

REFERENCES

 1. P. Costa et al., “The RUNES Middleware
for Networked Embedded Systems and
Its Application in a Disaster Management
Scenario,” Proc. 5th IEEE Int’l Conf.
Pervasive Computing and Communica-
tions (PerCom 07), IEEE CS Press, 2007,
pp. 69–78.

 2. J. Hill et al., “System Architecture Direc-
tions for Networked Sensors,” ACM SIG-

PLAN Notices, vol. 35, no. 11, 2000, pp.
93–104.

 3. T. Weis et al., “Rapid Prototyping for
Pervasive Applications,” IEEE Perva-
sive Computing, vol. 6, no. 2, 2007, pp.
76–84.

 4. S. Li et al., “Event Detection Using Data
Service Middleware in Distributed Sensor
Networks,” Telecommunication Systems,
vol. 26, nos. 2–4, 2004, pp. 351–368.

 5. K. Edwards et al., “The Challenges of
User-Centered Design and Evaluation for
Middleware,” CHI Letters, vol. 5, no. 1,
pp. 297–304.

 6. C. Becker et al., “PCOM: A Component
System for Pervasive Computing,” Proc.
2nd IEEE Conf. Pervasive Computing
and Communications (PerCom 04), IEEE
CS Press, 2004, pp. 67–76.

 7. D. Crockford, The Application/json
Media Type for JavaScript Object Nota-
tion (JSON), IETF RFC 4627, July 2006;
www.ietf.org/rfc/rfc4627.txt.

 8. K. Adamer et al., “Developing a Wearable
Assistant for Hospital Ward Rounds: An
Experience Report,” to be published in
Proc. Int’l Conf. Internet of Things (IOT
08), Springer, 2008; www.the-internet-of-
things.org.

 9. D. Bannach et al., “Distributed Modular
Toolbox for Multimodal Context Recog-
nition,” Proc. 19th Int’l Conf. Architec-
ture of Computing Systems, LNCS 3894,
Springer, 2006, pp. 99–113.

 10. T. Stiefmeier et al., “Event-Based Activity
Tracking in Work Environments,” Proc.
3rd Int’l Forum Applied Wearable Com-
puting (IFAWC 06), TZI Universität Bre-
men, 2006; http://spring.bologna.enea.

it/ifawc/2006/proceedings/IFAWC2006_
10.pdf.

 11. D. Bannach et al., “Waving Real Hand
Gestures Recorded by Wearable Motion
Sensors to a Virtual Car and Driver in
a Mixed-Reality Parking Game,” Proc.
IEEE Symp. Computational Intelligence
and Games (CIG 07), IEEE Press, 2007,
pp. 32–39.

 12. O. Amft, M. Kusserow, and G. Tröster,
“Probabilistic Parsing of Dietary Activity
Events,” Proc. 4th Int’l Workshop Wear-

able and Implantable Body Sensor Net-
works (BSN 07), IFMBE 13, Springer, 2007,
pp. 242–247.

For more information on this or any other com-

puting topic, please visit our Digital Library at

www.computer.org/csdl.

the AUTHORS

David Bannach is a doctoral candidate and a member of the research staff at

the Embedded Systems Laboratory of the University of Passau. His research

interests focus on software systems for context-aware computing. He received

his diploma in computer science from ETH Zurich. Contact him at ESL, Univ. of

Passau, Innstrasse 43, 94032 Passau, Germany; david.bannach@uni-passau.de.

Oliver Amft is a doctoral candidate in the Wearable Computing Lab at ETH Zu-

rich. His research interests focus on pervasive healthcare and personal-assistant

systems, including embedded systems, pervasive sensing, and pattern recogni-

tion for physiology, activity, and behavior awareness. He received his MSc in

electrical engineering from Chemnitz Technical University. He is a member of

the IEEE. Contact him at Wearable Computing Lab., ETH Zurich, c/o Electronics

Laboratory, Gloriastrasse 35, CH-8092 Zurich; amft@ife.ee.ethz.ch.

Paul Lukowicz is a full professor and chair of Embedded Systems and Per-

vasive Computing at the University of Passau. His research interests include

wearable and mobile computer architecture, context and activity recognition,

high-performance computing, and optoelectronic interconnection technol-

ogy. He received his PhD in computer science from the University of Karlsruhe,

Germany. Contact him at ESL, Univ. of Passau, Innstrasse 43, 94032 Passau,

Germany; paul.lukowicz@uni-passau.de.

I
E

E
E

THE #1 ARTIFICIAL
INTELLIGENCE MAGAZINE!

IEEE Intelligent Systems delivers the
latest peer-reviewed research on all

aspects of artifi cial intelligence, focusing
on practical, fi elded applications.

Contributors include leading experts in

• Intelligent Agents • The Semantic Web

• Natural Language Processing

• Robotics • Machine Learning

The latest issue: Ambient Intelligence

Visit us on the web at
www.computer.org/intelligent

