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A C T I V I T Y - B A S E D  C O M P U T I N G

Rapid Prototyping  
of Activity Recognition 
Applications

The CRN Toolbox enables fast implementation of activity and context 

recognition systems, featuring mechanisms for distributed processing 

and support for mobile and wearable devices. 

T
oday, the development of activ-

ity recognition systems has two 

main phases. The first phase is to 

design the recognition method—

the sensor setup, feature set, 

classifiers, classifier parameters, fusion meth-

ods, and so on. Here, designers feed experi-

mental data offline into conventional rapid- 

prototyping tools such as Matlab. These tools 

provide a rich reservoir of off-the-shelf, param-

eterizable algorithms and 

visualization methods, which 

enable the testing of different 

system variants quickly with-

out time-consuming imple-

mentation work.

Unfortunately, most of 

these simulation environ-

ments aren’t suitable for actu-

ally running applications, especially in mobile 

and pervasive environments. They typically de-

pend on custom engines or libraries requiring 

large memory footprints and high computing 

power. Consequently, a separate, second phase 

is usually necessary to implement activity rec-

ognition applications. This phase implements 

the selected algorithms in an appropriate pro-

gramming language and then distributes them 

to specific devices. Relevant issues in this phase 

include sensor interfaces, synchronization of the 

sensor signals, and optimization for specific de-

vices (for example, floating-point or fixed-point 

calculation).

The Context Recognition Network (CRN) 

Toolbox (http://crnt.sf.net) combines these two 

phases and permits quick construction of com-

plex multimodal context recognition systems 

for immediate deployment in the targeted en-

vironment. We developed the CRN Toolbox to 

ease the process of building activity recognition 

systems. Three case studies demonstrate the ver-

satility of the CRN Toolbox. In these case stud-

ies, we deployed the CRN Toolbox to support 

information flow in hospitals, monitor walking 

habits to help prevent cardiovascular diseases, 

and recognize hand gestures in a car-parking 

game. The spectrum of implemented solutions 

indicates that our approach is viable in the di-

verse environments of wearable and server-

based applications.

Comparing the CRN Toolbox  
with other tools
The CRN Toolbox isn’t general-purpose perva-

sive middleware such as RUNES (Reconfigurable 

Ubiquitous Networked Embedded Systems),1 

nor a sensor-node operating system such as  

TinyOS.2 Neither is it a high-level framework 

for rule-based automation, such as Visual-

RDK.3 Rather, it’s a tool set specifically opti-
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mized for implementing multimodal, 

distributed activity and context recog-

nition systems running on Posix oper-

ating systems. Like conventional rapid-

prototyping tools, the CRN Toolbox 

contains a collection of ready-to-use 

algorithms (signal processing, pattern 

classification, and so on). Unlike clas-

sic event detection in homogeneous sen-

sor networks—for example, DSWare 

(Data Service Middleware)4—it sup-

ports complex activity detection from 

heterogeneous sensors. Its implementa-

tion is particularly optimized for mo-

bile devices. This includes the ability to 

execute algorithms, whether in float-

ing-point or fixed-point arithmetic, 

without recoding. Moreover, with its 

mature functionality, the CRN Tool-

box isn’t likely to suffer from limited 

user acceptance as the Context toolkit 

framework did.5

The CRN Toolbox contains dedi-

cated building blocks for interfacing 

a broad range of sensor nodes. It also 

supports synchronization, merging, and 

splitting of data streams. In contrast to 

the PCOM (Pervasive Computing Com-

ponent System) model,6 which focuses 

on contract-based spontaneous configu-

ration, the Toolbox relies on a known 

network topology. Users can flexibly 

distribute applications among devices 

(including servers) by simply starting 

the configured Toolbox runtime on the 

appropriate system. Another important 

feature is the ability to interface conven-

tional simulation environments such 

as WEKA (Waikato Environment for 

Knowledge Analysis, www.cs.waikato.

ac.nz/~ml). The functionality is acces-

sible through a graphical configura-

tion editor, which enables constructing 

complex applications by connecting and 

configuring a set of task icons corre-

sponding to different processing steps.

The concepts the CRN Toolbox 

uses—graphical programming, data-

driven computation, parameterizable 

libraries, and distribution—are them-

selves not new. But the CRN Toolbox 

has optimally adapted and integrated 

these concepts for rapid, efficient im-

plementation of context recognition 

systems.

Toolbox concept
The concept of the CRN Toolbox stems 

from the observation that most activity 

recognition systems rely on a relatively 

small set of algorithms. These include 

sliding-window signal partitioning, 

standard time and frequency domain 

features, classifiers, and time series or 

event-based modeling algorithms.

The key differences between systems 

involve sensor choice, parameteriza-

tion of algorithms (for instance, slid-

ing-window size), and data flow. The 

data flow can be as simple as feeding 

1D sensor data to a mean filter and a 

classifier. This could be a configuration 

for recognizing sitting and standing 

from an upper-leg accelerometer, for 

example. It can be as complex as fusing 

data from tens of heterogeneous sen-

sors, working with different sampling 

frequencies, different feature computa-

tions, and even different classifiers. In 

such complex systems, different plat-

forms often handle different sensor 

subgroups—for example, certain mo-

bile devices and servers with stationary 

sensors. The implementation must han-

dle the distributed computation, collect 

the data, and synchronize the different 

data streams.

The CRN Toolbox simplifies the im-

plementation of even complex, distrib-

uted context recognition systems to the 

following three steps:

Compile the Toolbox for all plat-

forms on which it needs to run.

Select and configure the algorithms 

and data flow for each platform.

Start the Toolbox on each platform 

with the dedicated configuration.

If it’s necessary to analyze algorithms 

that aren’t presently available in the 

CRN Toolbox, users can easily inter-

face rapid-prototyping tools running 

on a remote server.

Figure 1 shows an overview of the 

CRN Toolbox concept. The step-by-

step configuration guide presents a 

simple example for recognizing kitchen 

activities from the user’s on-body 

sensors.

•

•

•

Parameterizable
components

CodeInterfaces

Configuration
editor

Configuration

CRN Toolbox
runtime

External
tools
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devices
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SS
S

OO

Figure 1. Concept of the Context 

Recognition Network (CRN) Toolbox: 

(a) repository of parameterizable 

software components, including I/O 

device readers and writers, filtering 

and classification algorithms, and 

components for splitting, merging, 

and synchronizing data streams;  

(b) graphical editor for specifying data 

flow and configuring components;  

(c) the CRN Toolbox runtime 

environment for online execution of 

the configured software components; 

and (d) arbitrary external tools—for 

example, live data-stream plotting 

or another CRN Toolbox (local or 

remote)—communicating with the 

Toolbox runtime.
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Reusable components

The basic building blocks provided by 

the CRN Toolbox are the reusable, pa-

rameterizable components. Conceptu-

ally, the components are active objects 

that operate on data streams. We refer 

to them as tasks. They encapsulate al-

gorithms and data, and they each have 

an individual thread of execution. In 

essence, tasks run in parallel, waiting 

for data packets to arrive at their in-

port. They then process the packet’s 

payload according to their algorithm 

and parameter settings, and provide the 

modified data packet at their out-port. 

Depending on the configured data flow, 

subsequent tasks will receive the packet 

for further processing.

The Toolbox provides reader and 

writer tasks for interfacing with in-

put and output devices, processing 

algorithms for data filtering and clas-

sification, and components for split-

ting, merging, and synchronizing data 

streams. Table 1 summarizes currently 

available tasks. Detailed task descrip-

tions are available as help pages. The 

list is constantly growing as increas-

ingly more users contribute to the proj-

ect. Numbers in parentheses represent 

the number of tasks in each category.

Every task has an individual number 

of parameters that control its opera-

tion. For example, the k-nearest neigh-

bor (KNN) classifier task uses the k, 

a file name with training data, and an 

optional step-size parameter.

The encapsulation in active objects 

and the parameterization proved es-

sential for reusing the actual code. So, 

for most applications, the fact that the 

Toolbox is implemented in C++ is insig-

nificant, yet those applications benefit 

from the efficient runtime.

The motor: Runtime   

environment and flow control

The Toolbox runtime provides the vi-

tal environment for tasks to operate. It 

handles dynamic creation and configu-

ration of tasks as well as configuration 

of the data flow.

For parameter handling, the Toolbox 

uses the JavaScript Object Notation 

(JSON) format, with an object loader in 

the “get instance by name” style.7 Thus, 

users can configure the Toolbox at run-

time through text-based configuration 

files that define settings for tasks and the 

data flow that the application needs.

Directed connections from out-ports 

to in-ports specify the data flow between 

tasks. Each data packet transmitted 

along these connections contains data 

entities belonging to one time instant. 

A packet’s payload is organized as a 

vector of values from an abstract data 

type. Moreover, the packets contain a 

time stamp and sequence number. For 

combining multiple streams, the Tool-

box provides merger tasks. Mergers 

combine the payloads of packets from 

separate in-ports and synchronize data 

streams with different sampling rates.

We used pointer references to pass 

data packets along the internal connec-

tions through the task network. Packets 

are cloned only if more than one receiver 

connects to the same out-port. This im-

plementation of the runtime core ensures 

high packet-processing performance. 

Moreover, we preserved processing per-

formance by providing operations to the 

task developer that, like the += operator, 

TABLE 1 

Summary of tasks currently provided by the CRN Toolbox.

Task category (no. 

of tasks) Task implementations

Generic reader (4) Reading from file, keyboard, TCP socket, or serial device (including Bluetooth), using a decoder plug-in

Specific reader (18) ADS* (heart rate), ARSB (walking sensing), BTnode, Hexamite, ID-10 RFID, Lukotronic, NMEA (GPS), 
MyHeart protocol, SkyeTek M1-mini RFID, Tmote force-sensing resistors, Tmote RFID, Tmote magnetic 
distance, TMSI fiber protocol, Suunto ANT protocol, Web interface input, Xsens MT9/MTi, Xsens Xbus, Wii 
Remote

Channel reordering (4) ChannelSelect, SelectiveSplitterTask, SimpleMerger, SyncMerger

Filtering (4) FilterTask, TransitionDetector, VecLen, Einsnorm

Filter plug-ins (16) Average signal energy, band energy ratio, bandwidth, center of gravity, entropy, FFT, fluctuation, peak, 
max, mean, median, slope, scale, spectral roll-off frequency, threshold, variance

Classification tasks (9) Distance2Position, Hexamite2D, HMMs, KNN, PCFG parser, RangeChecker, SequenceDetector, SimpleHexSensClassification

Miscellaneous (4) Synchronizer, Heartbeat, Valve, Nothing

Writer (9) TCP server, TCP client, serial port, file, console, MyHeart protocol, graph display, image display, Nirvana 
(silent sink)

Encoder plug-ins (9) ARFFEncoder (WEKA), BinaryEncoder, CmdEncoder, IntLinesEncoder, JSONEncoder, PlottingEncoder, TextLabelEncoder,  
TimestampedLinesEncoder, SuperPacketEncoder

Decoder plug-ins (4) ASCIIDecoder, FloatLinesDecoder, IntLinesDecoder, StringLinesDecoder

* ADS: Advanced Digital Strap (Philips heart rate belt); ARFF: Attribute-Relation File Format (WEKA); ARSB: activity recognition sensor board; FFT: fast Fourier transform; 
HMM: hidden Markov model; KNN: k-nearest neighbor; PCFG: probabilistic context-free grammars; WEKA: Waikato Environment for Knowledge Analysis
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inherently modify data objects instead 

of allocating new objects.

Synchronizing independent   

data streams

Synchronization of the data streams 

from different sensors is a major issue in 

multimodal activity recognition. When 

using several independent sensors, it’s 

important to synchronize their data 

streams to a common starting point.

A feasible concept for this type of 

synchronization is aligning streams on 

events recorded by all sensors simulta-

neously—for example, a user jumping 

up with a set of on-body acceleration 

sensors. We implemented this concept 

in the Synchronizer and SyncMerger tasks. 

Figure 2 depicts the solution for the ex-

ample of two Xsens MT9 acceleration 

sensors. The jump inserted a character-

istically high acceleration amplitude. 

The Synchronizer tasks detect the peaks 

caused by these events and adjust data 

packet time stamps accordingly. The 

SyncMerger combines the data streams by 

aligning the time stamps. The Synchro-
nizer tasks are manually activated—for 

instance, through a KeyboardReader—to 

limit the alignment phases to controlled 

time frames. Our initial analysis of the 

method showed that an alignment of 

0.5 seconds and better was possible.

Readers: Sensor   

hardware encapsulation

The CRN Toolbox implements sensor in-

terfaces as tasks without in-ports. These 

reader tasks instantiate new data pack-

ets for data samples acquired from sen-

sors (or other sources) and provide these 

packets on their out-port. Our architec-

ture supports various reader implemen-

tations that can capture different sensors 

or other sources, such as web pages, ap-

plication outputs, and data files.

For activity annotation, we imple-

mented a keyboard reader to perform 

online labeling of data. This reader 

proved very helpful, because it enables 

storing the labels with the raw data for 

later evaluation.

Writers: Communication   

for distributed processing

Writer tasks are the key to distributed 

execution and use of external tools. 

They forward data received at their in-

port to external interfaces (such as files, 

displays, or network connections). For 

network connections, we use TCPWriter 
and TCPReader tasks to communicate via 

TCP/IP sockets. The CRN Toolbox 

transmits data packets on the channel 

in a serialized form. The Toolbox ob-

tains the serialization from an encoder 

plug-in in the TCPWriter task. Similarly, the 

TCPReader uses a decoder plug-in for dese-

rialization. Thus, two CRN Toolboxes 

running independently—for example, 

on different hosts—can collaborate us-

ing the writer-reader communication.

Using this mechanism, the Toolbox 

can link to arbitrary programs based 

on compatible interfaces. Currently, 

such interfaces exist for Matlab and 

WEKA, both of which support data vi-

sualization and pattern recognition in 

experiments and demonstrators.

Easy configuration

The Toolbox’s rapid-prototyping capa-

bilities increased our need for an easy, 

quick configuration editor. Figure 2 

shows the graphical configuration edi-

tor. Users can drag tasks from a library 

into the workspace and connect them 

to other tasks with just a few mouse 

clicks. The Java-based editor produces 

configuration files for the Toolbox. (See 

the “How to Cook: A Step-by-Step 

Guide” sidebar for an example of how 

easy it is to build activity recognition 

applications with the CRN Toolbox.)

Case studies
The vitality of a framework such as 

(b)

(a)

0 500 1,000

Time (ms)

Sensor 1
Sensor 2

1,500 2,000 2,500 3,000

A
cc
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ra
ti
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Synchronization event

Figure 2. Example using two Xsens  

MT9 acceleration sensors: (a) CRN 

Toolbox graphical configuration  

editor with synchronization setup;  

(b) data alignment achieved at an  

event detected by the Synchronizers.



26 PERVASIVE computing www.computer.org/pervasive

ACTIVITY-BASED COMPUTING

the CRN Toolbox stems from its con-

tinual development and deployment in 

various projects. The showcase of ap-

plications in industry projects, student 

classes, and demonstrators (see tables 

2 through 4) highlights the CRN Tool-

box’s maturity and widespread use. 

These projects have successfully de-

ployed the Toolbox on different plat-

forms, including

Linux running on arm32, i386, and •

amd64 systems;

MacOSX running on i386s and 

iPhones; and

Cygwin running on i386s.

Here, we depict three case studies 

•

•

T
he CRN Toolbox makes building activity recognition ap-

plications easy. For example, implementing your own 

kitchen activity recognition takes only five steps, including classi-

fier training. Moreover, you don’t have to write additional code.

The ingredients are a motion sensor mounted on a glove, a 

wearable computer or “kitchen PC,” and the CRN Toolbox. In 

this guide, we use the MT9 sensor from Xsens. Typical activi-

ties include stirring, whisking, cutting bread, slicing onions, and 

wiping with a cloth.

 1. Using the graphical configuration editor, create a configu-

ration for recording training data (see figure A1). Begin by 

adding the MT9Reader to acquire data from the MT9 sensor 

at 100 Hz, and provide all nine channels on its out-port. 

Use SelectiveSplitterTask to choose the channels of interest, and 

then send them to MeanFilter and VarFilter (variance). Set the 

sliding window size to 100 (1 second). Use SimpleMerger to 

combine the two data streams again, and add the output 

of a KeyboardReader task. This task annotates the recording by 

keystrokes. Finally, add LoggerTask to write the resultant data 

streams into a file.

 2. Select an annotation key for training each activity. Connect 

the sensor and start the Toolbox with the created configu-

ration. Then, wearing the sensor glove, perform each activ-

ity for about 30 seconds. At the beginning of each activity, 

press its selected annotation key.

 3. Review the recorded training data in the log file and reduce 

it to about 100 samples per activity class. The number in 

the last column of the log file indicates the class label.

 4. Modify the first configuration to include the classifier and 

the output task (see figure A2). Remove KeyboardReader, be-

cause from now on the classifier will do the annotation. 

Specify the file name of the training data in the properties 

of the KNN task. Attach the DisplayImage task to the KNN and 

specify the picture that should display on the screen for 

each recognized activity category.

 5. Start the Toolbox with the new configuration. Now you can 

work in the kitchen as you wish and let the Toolbox track 

your activities or, even better, feed the results into a con-

text-aware cookbook (see figure A3). Bon appétit!

To improve the system, you could add more sensing modali-

ties (such as location), select useful features, or use more sophis-

ticated recognition algorithms.

How to Cook: A Step-by-Step Guide

(1) (2) (3)

Figure A. Configurations for kitchen activity recognition: (1) recording of training data; (2) online classification and 

display of results; and (3) example output of the classification using DisplayImage.
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from different areas, outlining the use 

of the CRN Toolbox.

Supporting information   

flow in hospitals

Along with our clinical partners in the 

EU-sponsored WearIT@Work project, 

we developed a solution to improve in-

formation flow for the hospital ward.8,9 

During the ward rounds, doctors deter-

mine patients’ further treatment under 

tight time limitations. Access to patient 

documents at bedside would enable doc-

tors to make decisions on the basis of all 

available information. Notebooks or PCs 

are impractical for this task because their 

operation is time consuming and distract-

ing and involves touching unsterilized de-

vices while in contact with patients.

Our wearable solution simplifies 

document access. When the doctor 

comes to the patient’s bed, the bedside 

monitor automatically displays a docu-

ment list for that patient. The doctor 

can then browse the documents by 

pointing at the monitor and swiveling 

his or her forearm. The system the doc-

tor wears consists of the QBIC (www.

qbic.ethz.ch) running the CRN Tool-

box, an Xsens motion sensor, and an 

RFID reader. The doctor wears the 

QBIC as a belt; the Xsens motion sen-

sor and RFID reader attach to the lower 

TABLE 2 

Major industry projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

WearIT@Work: supports hospital information flow, 
RFID for patient identification, gesture-controlled 
access to patient documents using wrist-worn motion 
sensor.8,9

Data capture, gesture recognition, control of hospital’s document browser.
Several demonstrators and test systems were built and a hospital trial was 
conducted.
Platform: Q-Belt Integrated Computer (QBIC), Linux on arm32.

•
•

•

WearIT@Work production support: activity recogni-
tion of car assembly and maintenance,10 uses inertial 
motion and indoor location sensors.

Recording multimodal sensor data: Xsens, Hexamite, ultrasound, muscle 
force; various demonstrators.
Platform: Linux on i386.

•

•

MonAMI dynamic monitoring services. Dynamic reconfiguration of the Toolbox, depending on available sensors 
and registered services.
Platforms: Linux on i386 and arm32.

•

•

MyHeart walking habits: online classification of walk-
ing activities and intensities to support active lifestyle 
and improve fitness.

Acquisition of heart rate, acceleration, and air pressure classification.
Streaming results to a mobile phone and professional coaching center.
Platform: Linux on arm32 (QBIC).

•
•
•

Location tracking: GPS-based local map visualization. GPS position logging (NMEA protocol) and conversion for dynamic map 
display, forwarding to central mission server.
Platform: Linux on arm32 (QBIC).

•

•

TABLE 3 

Student class projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

ISWC 06 tutorial “Hands-on Activity Context Recognition”: 
building a gesture recognition system for controlling simulated 
car-parking game with real waving gestures; 12 participants.

Testing algorithms and gesture types using simulated data streams 
from a motion sensor glove.
9 components, 7,000 LOC, Linux amd64 platform.

•

•

Number-entering game: entering binary digits using a motion 
sensor only; practical exercise and competition for ambient-
intelligence lecture; 15 students in 5th semester.

Understanding algorithms, modularization, and interfacing to  
sensor data.
7 components, 2,000 LOC, Linux i386 platform.

•

•

Location estimation and activity recognition: ultrasonic and 
motion sensors; practical exercise for ambient intelligence  
lecture; 12 students in 5th semester.

Understanding algorithms and location-tracking challenges.
7 components, 2,000 LOC, Linux i386 platform.

•
•

Interactive World project: software project to implement  
gesture control for games (Pong, Tetris), three days, 19  
students in 4th semester.

Implementing TCP reader task, using KNN classifier (gesture 
recognition).
5 components, 1,200 LOC, Linux i386 platform.

•

•

Activity monitoring: training a classifier to recognize human 
activities (sitting, standing, walking, running) and visualizing 
results; 10 students in 4th semester.

Learning a classifier’s concepts and operation, implementation, 
and testing.
7 components, 2,000 LOC,  Linux i386 platform.

•

•
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arm. The patient wears an RFID tag. At 

each patient’s bed, the bedside monitor 

displays documents from the hospital’s 

information system.

Figure 3 shows the Toolbox con-

figuration. In this configuration, we 

use threshold detection and sequence- 

matching tasks (ThresholdFilter, TransitionDe-
tector, and SequenceDetector) to process each 

gyroscope axis of the motion sensor. 

This setup can detect forearm gesture 

sequences such as swivel left, then right 

(open-document command). The Com-
mandDispatcher acts as a gateway, forward-

ing only those commands in active state 

(controlled by an activation gesture). 

This task also consumes the patient 

identification from RFID. Finally, the 

TCPClientWriter transmits the commands to 

the document browser of the hospital’s 

information system.

We tested the complete setup in a 

two-week trial with doctors in an Aus-

trian hospital. The system’s shortcom-

ings mainly concerned gesture detec-

tion robustness and sensor wearability, 

which we are now investigating.

Monitoring walking habits

With our industry partners in the EU-

sponsored MyHeart project, we inves-

tigated new approaches for preventing 

cardiovascular diseases and maintain-

ing low disease risks. Because many 

daily activities involve walking, we de-

veloped a walking-habits monitor that 

supports active walking and can track 

activity intensity.

In this setup, the QBIC serves as a 

central data acquisition and process-

ing hub, running the CRN Toolbox. 

A custom sensing unit monitors user 

activity. This unit contains accelera-

tion and air pressure sensors attached 

to the belt. Additionally, a heart rate 

chest belt uses Bluetooth to communi-

cate with the QBIC. Based on features 

from the belt sensor unit, we classify 

walking straight, up, down, and idle 

as well as using the elevator up or 

down. The Toolbox forwards the re-

sults, along with the heart rate, to a 

mobile phone.

Figure 4 shows the final Toolbox con-

QBIC

Bedside monitor,
hospital information

system

CRN Toolbox

(b)(a)

Figure 3. Hospital information flow example: (a) hospital information support system setup; (b) CRN Toolbox configuration.

TABLE 4 

Demonstrator projects using the CRN Toolbox.

Project description Uses and deployment of CRN Toolbox

Parking game: controlling a virtual driver and car 
with real hand gestures in a parking game.11

Capturing glove-based inertial sensor data, gesture spotting using explicit  
segmentation, gesture event search, and fusion steps.
Controlling the game visualization engine.
Platform: Linux amd64.

•

•
•

Dietary activity tracking using PCFG: inference of 
food intake cycles from activities.12

Simulating activity event input, PCFG parsing, reporting results.
Platform: Linux amd64.

•
•

Hammering and screwdriving demo: recognizing 
assembly activities (hammering, screwdriving, 
sanding, sawing) with a motion sensor in a glove.

Xsens motion sensor capturing, classifying activities, displaying recognition 
results on screen and via wireless connection.

Platform: Linux on arm32 (QBIC).

•

•
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figuration. This project required reader 

tasks to capture data from the belt sen-

sor unit (ARSBReader) and heart rate belt 

(ADSReader). It also involves several filters, 

a classifier (KNN), and a writer to com-

municate to the mobile phone applica-

tion (MyHeartWriter).
The visualizations on the phone 

showed activity level, heart rate, and 

recommendations based on detected 

activities. (In our ongoing work, we use 

further sensors at the limbs to capture 

diverse activities.)

Mixed-reality car-parking game

We designed a car-parking game to 

explore the use of wearable systems 

in computer games.11 The game plot 

features the player helping a virtual 

driver fit a virtual car into a parking 

spot. The player does so by weaving 

hand and arm gestures while facing a 

virtual scene at the roadside, where a 

parking spot is available between other 

vehicles. Figure 5 shows a screenshot 

of the scene. The game simulates the 

driver’s and car’s behavior, which fol-

low the gesture commands. The goal is 

to perform this guiding task as quickly 

and safely as possible—in particular, 

avoiding collisions with other cars and 

obstacles.

In this application, the CRN Tool-

box recognizes gestures from the play-

er’s glove. Its task is to detect five ges-

ture commands in the continuous data 

stream from the glove: forward, back-

ward, turn left, turn right, and stop. 

We used acceleration and gyroscope 

sensors in three axes from an Xsens 

unit attached to the glove. The gesture-

spotting procedure uses an explicit time 

series segmentation algorithm (SWAB), 

followed by a class-specific feature 

similarity search (Similarity). Next, Confi-
denceMerger fuses the individual gestures. 

Then, StringMap maps the retrieved ges-

tures to game commands, and TCPWriter 
transmits them to the game simulation 

and graphics engine.

We used the game as a demonstrator 

for tutorials and student courses. We 

built recognition models for 16 differ-

ent gestures. Hence, every player could 

customize the system by selecting five 

gestures according to individual pref-

erences. This customization simply in-

volved exchanging configuration files 

for recognition tasks.

User evaluation
Right from its very first days, the CRN 

Toolbox has been a community proj-

ect. The positive user feedback and the 

growing number of tasks indicate that 

our approach is well perceived. How-

ever, a thorough quantitative evalua-

tion of middleware and programming 

tools such as the CRN Toolbox is dif-

ficult.5 Although we haven’t yet per-

formed a controlled assessment, we do 

have some empirical (in some cases, 

quantitative) results that support our 

view of its usefulness.

Experience with students

As tables 2 through 4 show, we have 

widely used the Toolbox in student 

classes, and more than 60 students have 

worked with it.

A class of 19 fourth-semester com-

QBIC

Mobile phone displayWalking-activity
sensing

Heart rate

CRN Toolbox

(b)(a)

Figure 4. Walking-habits monitoring example: (a) phone visualization; (b) CRN Toolbox configuration.
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puter science students implemented an 

application with the Toolbox to control 

the computer games Pong and Tetris by 

shaking a motion sensor in different 

directions. A typical solution for rec-

ognizing these gestures consists of five 

Toolbox components (approximately 

1,200 LOC). They

acquire data from sensors,

apply filters (mean, variance),

classify gestures using the KNN 

algorithm,

send results via TCP, and

manage the data flow.

The exercise also included the imple-

mentation of a new Toolbox task for 

reading from TCP sockets. The stu-

dents were only Java beginners and 

had never programmed C++ before, 

yet with the Toolbox they all solved the 

recognition problem within 20 hours. 

Four of them also completed the Java 

game in that time.

Evaluation from researchers

We used the CRN Toolbox in an ac-

tivity recognition tutorial at the 10th 

International Symposium on Wearable 

Computers (ISWC 2006). We asked 12 

participants to rate their impressions 

after working with the Toolbox for 

•

•

•

•

•

four hours. Ten completed the tutorial 

feedback form. On average, they rated 

themselves as advanced software pro-

grammers with some knowledge of C++ 

but little experience in context recogni-

tion. They reported average durations 

of 10 minutes (maximum 30 minutes) 

to understand the four tasks of the tuto-

rial, 15 minutes (maximum 30 minutes) 

to implement and run solutions with 

the Toolbox, and 20 minutes to debug 

their configuration, if needed.

We received many positive comments, 

such as “good and fast platform for ap-

plication development,” “one can click 

filters together,” “easy to understand, 

easy to use,” and “you don’t have to re-

invent the wheel.” Criticism focused on 

missing documentation materials. Our 

current work addresses this issue by us-

ing automatic documentation tools and 

web platforms more intensively.

A
s a framework, the CRN 

Toolbox introduces some 

processing overhead. A 

prominent aspect in our de-

sign is the between-task communica-

tion, required in most useful configu-

rations. This task relies on a common 

packet format to exchange all media 

types. Besides the payload, each packet 

contains a time stamp, a sequence num-

ber, and a payload pointer, totaling 16 

bytes. In a typical scenario, such as 

the hospital support system discussed 

earlier, raw sensor-data packets have 

the highest transmission rate. In that 

example, an MT9Reader acquired a 9- 

channel Xsens MT9, requiring 36 bytes 

for one sample. In the default configu-

ration, the reader outputs each sample 

as a separate data packet. This yields a 

total overhead of 44 percent. For packet 

rates above 100 Hz, such as in audio, 

the CRN Toolbox decreases the effec-

tive overhead by transferring multiple 

samples in one packet.

Most current applications of the 

Toolbox don’t exploit its distributed-

processing capabilities. We intend to 

use this feature in more complex ap-

plications in the near future. We also 

plan to investigate combining the CRN 

Toolbox with existing pervasive mid-

dleware frameworks that often rely on 

activity and context recognition ser-

vices—precisely what the CRN Tool-

box provides.
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