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We recently described rapid quantitative pharmacodynamic imaging, a novel method

for estimating sensitivity of a biological system to a drug. We tested its accuracy in

simulated biological signals with varying receptor sensitivity and varying levels of random

noise, and presented initial proof-of-concept data from functional MRI (fMRI) studies in

primate brain. However, the initial simulation testing used a simple iterative approach

to estimate pharmacokinetic-pharmacodynamic (PKPD) parameters, an approach that

was computationally efficient but returned parameters only from a small, discrete set of

values chosen a priori. Here we revisit the simulation testing using a Bayesian method

to estimate the PKPD parameters. This improved accuracy compared to our previous

method, and noise without intentional signal was never interpreted as signal. We also

reanalyze the fMRI proof-of-concept data. The success with the simulated data, and with

the limited fMRI data, is a necessary first step toward further testing of rapid quantitative

pharmacodynamic imaging.

Keywords: pharmacodynamics, PK-PD modeling, Bayesian parameter estimation, pharmacological imaging

INTRODUCTION

Measuring the sensitivity of an organ to a drug in vivo is a common, important research goal.
The traditional approach is to independently measure biological responses to a range of different
doses of drug. We recently described a novel method, rapid quantitative pharmacodynamic
imaging (or QuanDynTM), for estimating sensitivity of a biological system to a drug in a single
measurement session using repeated small doses of drug (Black et al., 2013). In that report, we
tested QuanDynTM’s accuracy in simulated data with varying receptor sensitivity and varying
levels of random noise. The initial simulation testing used a simple iterative approach to estimate
pharmacokinetic-pharmacodynamic (PKPD) parameters including EC50, the plasma concentration
of drug that produces half the maximum possible effect Emax. The iterative approach was
computationally efficient but could only select EC50 from a short list of parameter values chosen
a priori.

Here we revisit the simulation testing using a Bayesian method to provide continuous estimates
of the PKPD parameters. The Bayesian approach also identifies data too noisy to produce
meaningful parameter estimates (using a model selection package described below). Bayesian
methods have been used successfully in other PKPD analyses (Lavielle, 2014, to cite but one
example). For the present purpose we applied a Bayesian data analysis package specifically designed
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for efficient voxelwise analysis of 4-dimensional imaging data
(Bretthorst, 2014; Bretthorst and Marutyan, 2014).

METHODS

Simulated Data
We used a standard sigmoid PKPD model (Holford and Sheiner,
1982) to create 6 time-effect curves that could reasonably
represent biological signal from a pharmacological challenge
study: one with no response to drug (Emax = 0) and five
with varying sensitivities to drug: Emax = 10 and EC50 ∈
{0.25, 0.6,

√
2, π, 7.5}.

As in the previous work, the concentration of drug in plasma
over time is modeled as

C(t) =
K∑

k=1

Dk · u(t − ts − tk) · 2−(t−ts−tk)/t1/2

where K doses of drug, Dk, are given at times tk, u(t) is the unit
step function, ts (for “time shift”) is a fixed delay between drug
concentration and effect, and t1/2 is the elimination half-life of
drug from plasma (Black et al., 2013). Drug effect is modeled as

E(C) =
EmaxC

n

(EC50)n + Cn

where C is C(t) from the previous equation and n represents
the Hill coefficient. Baseline non-quantitative signal drift was
simulated by adding to each curve a quadratic function of time

B(t) = a0 + a1t + a2t
2.

The full model is then

B(t)+ E(C(t)).

FIGURE 1 | Simulated tissue responses for various values of EC50, i.e., the test data before adding noise.

The test curves were generated using K = 4, D1 = D2 = D3 =
D4 = the dose of drug that produces a peak plasma concentration
of 1 (arbitrary concentration units), ts = 0.5 min, t1/2 = 41 min,
n = 1, a0 = 1000, a1 = 2/(40 min), and a2 = 0. The 6 resulting
curves are shown in Figure 1.

Finally we added Gaussian noise to each time point. This was
done 1000 times for each of the 6 curves above and for each of
8 noise levels from SD = 0.01Emax to 2Emax, resulting in 48,000
noisy time–signal curves plus the original 6 “clean” curves (see
Supplemental Data).

Testing the Method Using the Simulated
Data
In the simulated data described above, each of the 48,006
time courses were analyzed using the “Image Model Selection”
package from the Bayesian Data-Analysis Toolbox (Bretthorst,
2014; Bretthorst and Marutyan, 2014). The Toolbox computes
the posterior probability for the set of models (Bretthorst, 1988)
given a 4d data set. A Markov chain (Gilks et al., 1996) is used
to draw samples from the joint posterior probability for all of
the parameters including the choice of model. The Markov chain
Monte Carlo simulation included the full model B(t) + E(C(t)),
the baseline model B(t), and a “no signal” model. Each model
has equal prior probability, or more precisely we specify that the
conditional probability of any model, given the supplied prior
probabilities for the parameters relevant to that model, is equal
to that of any other model (see Bretthorst, 2014, section 22.1, at
equation 22.6). Monte Carlo integration is then used to obtain
samples from the posterior probability for each model and from
the posterior probability for each parameter given the model.
For the present analysis we specified 2500 samples at each
step (50 samples run in parallel, repeated 50 times). Simulated
annealing is used to minimize the risk of convergence to a non-
global local maximum (see Bretthorst, 2014, appendix B,
for details). If the posterior probability for the model
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FIGURE 2 | The upper panel shows simulated dose-effect data

generated using Emax = 10.0, EC50 =
√
2, ts = 0.50, added to

1000 + 0.05t + 0t2 and Gaussian noise with SD = 2. In the lower panel,

superimposed on the data is the predicted time course of drug effect over

time, drawn using the parameter values returned by the Bayesian

Data-Analysis Toolbox as most likely given these data and the PKPD model:

Emax = 10.6, EC50 = 1.43, ts = 0.451, a0 = 1000, a1 = 0.0553,

a2 = −0.000149. For this time course, prob(model) was estimated as 0.540,

and the SD of the residuals was 2.04.

FIGURE 3 | The fraction of time courses for which prob(model) >0.5 is

shown on the vertical axis as a function of the EC50 and SD used to

generate the time courses.

indicated the full model, B(t) + E(C(t)), was preferred, the
package also returned values for EC50, ts, Emax, a0, a1, and a2.
The software returns both the mean parameter values and the

FIGURE 4 | The mean ± SD probability of the full PKPD model is shown

for each combination of EC50 and noise as a function of that

combination’s SNR as defined in Section Methods. Points with SNR

outside the range shown here are omitted for clarity.

FIGURE 5 | The mean accuracy of the estimated EC50 for time courses

with prob(model) > 0.5 is shown as a function of the input EC50. SNR

for each estimate is shown by the width of the marker, as indicated by the

legend at lower right. The diagonal line indicates equality, i.e., perfect accuracy.

values from the simulation withmaximum likelihood; the present
report uses the latter. This analysis was repeated for each of the
48,006 time courses.

To provide more even sampling of parameter space across
the conventional logarithmic abscissa for concentration-effect
curves, EC50 was coded as 10q, where q = log10 EC50, and a
uniform prior probability was assumed for qwith range [−3, 1.3],
corresponding to a wide range of EC50 values from 0.001 to 20.0.
A uniform prior with range [0, 1] min was used for the time shift
parameter ts. The Hill coefficient n and the drug’s elimination
half-life—parameters that for biological data could be estimated
separately, from a typical PK study—were fixed at n = 1 and
t1/2 = 41 min. Emax and the coefficients of the signal drift
function a0 + a1t + a2t

2 were marginalized.
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FIGURE 6 | The mean ± SD accuracy of the estimated EC50 for time

courses with prob(model) >0.5 is shown as a function of SNR as

defined in Section Methods. Here accuracy is defined as the output EC50

divided by the input EC50. The full-width horizontal lines indicate perfect

accuracy (ratio = 1.0) and 3/2 and 2/3 of perfect accuracy. The accuracy of

the estimated EC50 is superb when SNR > about 6.5, and tends to be

accurate for SNR as low as 0.9.

Since tissues with high values of EC50 respond less to a
given dose of drug, i.e., E ≪ Emax, the ratio SD/Emax ≪ SD/E
underestimates the effect of noise relative to the observed effect.
Therefore, we computed a signal-to-noise ratio (SNR) to simplify
comparisons across the various input values of EC50 and noise.
We defined “signal” as the maximum value of E(C(t)), without
added noise, for 0 ≤ t ≤ 40 min, i.e., the local maximum of the
modeled signal shortly after the last dose of drug, less the input
linear drift at that same time point. In Figure 1 this value can be
appreciated near the right side of the plot and ranges from about 3
for EC50 = 7.5 to about 9 for EC50 = 0.25. We define SNR as the
ratio of this signal to the standard deviation of the added noise.

Testing the Method On In vivo Data
We tested the model described above using the same phMRI
(pharmacological fMRI) data we analyzed previously with the
iterative method, namely, regional BOLD-sensitive fMRI time-
signal curves from midbrain and striatum in each of two
animals (Black et al., 2013). These studies were approved by the
Washington University Animal Studies Committee (protocols #
20020085, 20050126). Each animal was studied twice, at least 2
weeks apart, producing 8 regional time-signal curves. On each
day a total of 0.1 mg/kg of the dopamine D1 agonist SKF82958
was given intravenously, divided into 4 equal doses on one day
and into 8 equal doses on the other day (see Table 4 and Figure 10
in Black et al., 2013).

The iterative analysis had allowed only values of 5 or 30 min
for the half-life of drug disappearance from the blood during
the scan session; here we used a uniform prior probability over
[2, 60] min for t1/2. Prior probabilities for all other parameters
were the same as described above for the simulated data.

TABLE 1 | Model select results from in vivo data.

Panel Doses Animal Region Prob. Emax EC⋆
50

t1/2 ts

A 4 1 Midbrain 1.00 12.59 3.44 58.33 0.98

B 4 1 Striatum 1.00 −13.58 4.15 59.48 0.81

C 4 2 Midbrain 1.00 29.27 6.32 3.93 0.23

D 4 2 Striatum 1.00 −2.48 0.001 40.58 0.01

E 8 1 Midbrain 0.00 – – – –

F 8 1 Striatum 0.02 – – – –

G 8 2 Midbrain 0.76 7.38 0.418 13.16 0.18

H 8 2 Striatum 1.00 −13.9 1.63 2.00 0.72

Panel, relevant panel in Figure 7. Prob., probability of the full PKPD model. EC⋆
50, the

ratio of EC50 to the peak concentration Cmax after a single 25 µg/kg dose of drug. Emax

is in BOLD signal units, and t1/2 and ts are in min.

RESULTS

Simulated Data
Example
Figure 2 provides an example result from one time course,
to orient the reader to the following summary. Note that the
parameter estimates are (approximately) the best estimates for
the provided noisy data, even though they differ slightly from the
input values used to produce the data.

Sensitivity: prob(model) with Signal
The full PKPD model explained the data better than a simpler
model, i.e., prob(model) >0.5, except when signal was low (higher
EC50) or noise was substantial (Figures 3, 4).

False Positives: prob(model) with Noise Only
For the data sets containing no intentional signal, i.e., noise added
to the Emax = 0 line, the Toolbox never returned p > 0.5 for any
of the 8000 curves. In other words, there were no false positives.

Accuracy
Accuracy of the EC50 estimate was considered for time courses
with prob(model) >0.5. Figure 5 shows the mean estimated EC50

as a function of the input EC50; as expected, accuracy is best
with higher SNR. Figure 6 shows the ratio of estimated EC50 to
input EC50 in terms of SNR. Perfect accuracy would produce a
ratio of 1.0, and values >1.0 indicate overestimation of EC50, i.e.,
underestimation of the sensitivity to drug.

In vivo Data
The full PKPD model was selected for 6 of the 8 regional time-
signal curves (see Table 1). The data and selected model curves
are shown in Figure 7.

DISCUSSION

Simulation Testing
Bayesian parameter estimation for the QuanDynTM quantitative
pharmacodynamic imaging method produced excellent results in
simulated data: first, the Model Select method very accurately
identified time courses with a meaningful drug-related signal,
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FIGURE 7 | Time-signal curves from in vivo data from a phMRI study, in red, with the selected model in dark blue. (A–D) 4-dose experiments. (E–H)

8-dose experiments. Left column, midbrain. Right column, striatum. See Table 1 for further details.
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until noise overwhelmed signal, i.e., when SNR < about
3.5. The Bayesian Data-Analysis Toolbox successfully avoided
false positives, correctly refraining from identifying a signal
in every noise-only time course, even where sensitivity was
100%. In time courses with a signal, mean accuracy was
reasonable even in the face of low SNR, as shown in Figures 5,
6. Furthermore, the errors were conservative, with EC50

usually erring on the high side (Figure 6). Said differently,
the most likely quantitative error was to report slightly
lower sensitivity to drug, especially when sensitivity is in
fact low.

Limitations
This simulation used a simple noise model that may be
best suited to a temporally stable, quantitative outcome
measure, such as positron emission tomography, arterial spin
labeling, or quantitative BOLD. However, because the PKPD
model E(C) is simply added to the baseline model B(t),
the latter can be replaced with a more complex signal, if
needed, for non-quantitative imaging methods. For instance,
Fourier series have been used to model typical BOLD-
sensitive fMRI data over long time intervals. The baseline
model B(t) could be optimized further to best suit a specific
scanner, tracer or sequence, or to other experimental design
choices.

Similar comments hold for the signal as well as for noise:
the QuanDynTM quantitative pharmacodynamic imagingmethod
will perform less well if the PKPD model does not realistically
model the data. However, prior to initiating an expensive imaging
study, one would determine the appropriate family of PKPD
models for the drug to be tested, based on traditional dose-
response experiments. We discuss this point further in Black
et al. (2013). The choice of imaging method also affects the signal
characteristics; for instance, typical BOLD implementations may
not provide adequately linear responses to biological signal. On
the other hand, using a more traditional phMRI design, the
magnitude of the acute BOLD response to a single dose of drug
per imaging session did increase monotonically with larger doses
(Miller et al., 2013).

In vivo Data
Even with the relatively simple signal and noise models adopted
for this initial testing, the tested method appeared to handle
reasonably the in vivo data from a BOLD phMRI study
(Figure 7). Further validation will require a larger set of similar
multi-dose phMRI data, and comparison data from a more
traditional dose-response study design.

The QuanDynTM method described here has several potential
advantages compared to the traditional approach to quantifying
a drug effect, which is to estimate the population EC50 by
sampling a wide range of doses, one dose per subject and several
subjects per dose. That approach is an excellent choice when the
population under study is homogeneous (e.g., an inbred rodent
strain), but does not apply well to single human subjects. One
might adapt the traditional approach by repeatedly scanning
a single subject, one dose per scan session, but that option

brings its own complications, including scientific concerns such
as sensitization or development of tolerance with repeated
doses in addition to the practical and ethical consequences of
repeated scanning sessions in each subject. That option, like
the population method, would also require that subjects receive
doses substantially higher than the EC50, which may often be
inappropriate in early human studies. Specifically, to estimate
EC50, traditional population PKPD studies require drug doses
that produce effects of at least ∼ 95%Emax (Dutta et al., 1996).
For all these reasons, the QuanDynTM method may prove to
be a better choice when single-subject responses are important,
such as for medical diagnosis or individualized treatment dosing.
We elsewhere discuss potential challenges related to moving this
approach into humans (Black et al., 2013).
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