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Abstract: Partially coherent light provides promising advantages for

imaging applications. In contrast to its completely coherent counterpart, it

prevents image degradation due to speckle noise and decreases cross-talk

among the imaged objects. These facts make attractive the partially coherent

illumination for accurate quantitative imaging in microscopy. In this work,

we present a non-interferometric technique and system for quantitative

phase imaging with simultaneous determination of the spatial coherence

properties of the sample illumination. Its performance is experimentally

demonstrated in several examples underlining the benefits of partial coher-

ence for practical imagining applications. The programmable optical setup

comprises an electrically tunable lens and sCMOS camera that allows for

high-speed measurement in the millisecond range.
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1. Introduction

Coherent light is extensively applied in numerous imaging techniques. In particular, digital

holographic microscopy is a well-established interferometric technique that exploits the high

coherence of laser beams to reconstruct the phase information of the light scattered by the ob-

ject [1–5]. Phase-shifting holographic techniques, which require the measurement of several

interference patterns, have been developed for high-resolution topography analysis of the ob-

ject with an axial resolution up to nanometer range [3, 5]. Alternatively, non-interferometric

techniques based on the measurement few diffraction patterns have also been successfully ap-

plied for quantitative phase imaging. They comprise iterative phase retrieval algorithms [6–8],

or non-iterative methods that solve the so-called transport of intensity equation (TIE) [9, 10].

All these computational imaging techniques allow for marker-free live cell analysis, which is

highly demanded in biomedical sciences [10–12].

The main drawbacks of coherent laser-based imaging are the speckle noise and distortions

caused by parasitic reflections in the optical setup and the sample’s chamber itself. Speckle

noise, associated to multiple scattering arsing from cell clusters layered in biofilms or other

scattering media, decreases both the accuracy and signal-to-noise ratio of the reconstructed

phase images. Moreover, the image obtained under highly coherent illumination suffers from
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cross-talk caused by objects located in the same or surrounding depth layers comprising the

sample.

Temporal and spatial partially coherent light can be used to overcome such drawbacks, see

for example [13, 14]. In the case of low coherent sources the beams scattered by objects sep-

arated by more than the coherence length do not interfere each other at the detection plane.

This coherence gating effect allows for depth discrimination (optical sectioning) and therefore

is useful for cross-talk reduction. In addition, the partial coherence mitigates speckle noise.

Recently, low coherent light sources such as halogen lamps or light emission diodes (LEDs)

have also been applied in digital holographic microscopy, [15–18]. For instance, in [15,16] the

noise reduction in the reconstructed phase has been experimentally demonstrated for LED illu-

mination. Nevertheless, off-axis digital holographic microscopy is difficult to implement with a

coherent length of only few microns. In this case both interferometer arms have to be accurately

compensated, for example, by equal glass-based optical components in order to optimize the

contrast of the holograms.

The description of optical imaging with temporal and spatial partially coherent light is in-

herently complex and requires the consideration of the complex mutual coherence function.

In the stationary quasi-monochromatic case, which is often fulfilled for color LED sources, it

can be written as a product of temporal and spatial coherence functions J(τ)Γ(r1,r2) [19]. The

temporal function J(τ) describes the coherence gating effect often exploited for axial optical

sectioning [20]. According to the Wiener-Khinchin theorem, it corresponds to the Fourier trans-

form of the source power spectrum. In the case of quasi-monochromatic LED source (Δλ ≪ λ0)

with nearly Gaussian spectrum, the coherence length is often approximated as lc ≈ 0.88λ 2
0 /Δλ

where λ0 is the central wavelength and Δλ is the full width at half maximum (FWHM) of the

spectrum [19].

On the other hand, the spatial coherence function Γ(r1,r2), referred to as mutual intensity

(MI), describes the image formation of a sample’s layer. In the scalar paraxial approximation

the MI of a two-dimensional (2D) wavefield is described by a complex-valued 4D MI defined

as Γ(r1,r2) = 〈 f (r1) f ∗ (r2)〉, where: r1,2 = (x,y)1,2 is a position vector in a plane transverse

to the light propagation direction and 〈·〉 stands for ensemble averaging. Completely coherent

beams are characterized by Γc(r1,r2) = f (r1) f ∗ (r2) while Schell-model partially coherent

beams (SMBs) [21] are described by Γ(r1,r2) = f (r1) f ∗ (r2)γ (r1 − r2) = Γc(r1,r2)γ (△r),
where γ (△r) is an equal-time complex degree of spatial coherence (DSC). The Schell model

is widely used in different imaging applications, including microscopy. For instance, in bright

field microscopes under Köhler illumination with incoherent source, the SMB corresponds to

the beam scattered by an object described by the complex modulation function f (r). In this

case the DSC, γ (△r), at the sample plane is given by the Fourier transform of the intensity dis-

tribution of the illumination beam in the condenser lens aperture, according to the van-Cittert-

Zernike theorem [19]. Therefore, the SMB is present in illumination schemes with different

sources such as LEDs, halogen lamps and randomized laser beams, however, its experimental

characterization is challenging. The DSC can be tuned in several ways, for example, by spatial

filtering of the incoherent source or by using a moving diffuser in the case of a coherent source

(e.g. laser) [22–24]. We underline that a pinhole of few microns (e.g. 25 µm) is often used

as a spatial filter for LED and halogen sources in order to obtain high spatial coherence but

low temporal coherence [15–18]. In contrast, we consider quantitative phase imaging with an

illumination light exhibiting significantly reduced spatial and temporal coherence.

In this work, we present a non-interferometric technique and optical system for fast quan-

titative phase imaging of objects under quasi-monochromatic partially coherent illumination.

The technique allows for in-situ reconstruction of both the object wavefield f (r) and the DSC

of the illumination beam. Its performance is experimentally demonstrated in several examples
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which underline the advantages of partial coherent light for speckle-noise and cross-talk reduc-

tion. The reconstructed object wavefield can be numerically refocused for accurate topography

analysis or inspection of the sample. The proposed experimental setup comprises a high-speed

sCMOS camera and electrically tunable fluidic lens (ETL), which focal length is tuned in few

milliseconds by applying current control. In contrast to the widely used liquid-crystal spatial

light modulators, the ETLs have faster response. In addition, they are made from low dispersion

and polarization preserving materials. Such ETLs have been used for high-speed volumetric

imaging [25] and phase retrieval of coherent beams [10].

2. Principle of the MI recovery technique

In conventional optical microscopes the image of the object can be acquired by a digital camera

placed at the back focal plane of the tube lens. The proposed technique is able to reconstruct

both the object wavefield and the DSC of the illumination beam (MI recovery) at this imaging

plane. It requires the measurement of several intensity distributions (at least four) of the beam

transformed by an optical system comprising a relay lens (RL) and the ETL. The input plane of

this system coincides with the imaging plane of the microscope and the digital camera is fixed

at distance d from the ETL as sketched in Fig. 1(a). Therefore, the input beam is focused into

the ETL and then imaged into the detector plane (e.g. sCMOS camera) for several values of

the ETL’s focal length: fm. This measurement setup can be easily attached to the microscope as

sketched in Fig. 1(b). We underline that the tube lens and RL are identical.

For Schell-model input beams (as in Section 1), the intensity distribution at the detector plane

of the system [Fig. 1(a)] is given by the expression

I
(m)
PC (ro) = I

(m)
C (ro)⊗ γ̃m (ro) =

ˆ

I
(m)
C

(
r′o
)

γ̃m

(
ro − r′o

)
dr′o, (1)

where γ̃m (ro) is the scaled Fourier transform (FT) of the input DSC: γ̃m (ro) = FT [γ (r)] (roSm)
with Sm = fm/(d − fm) being the scaling factor, see Appendix. Note that FT [·] indicates the FT

optically performed by the RL. The expression Eq. (1) is the convolution between the coherent

intensity I
(m)
C (ro) = |F (m) [ f (r)] (ro) |2 and the function γ̃m (ro), where F (m) describes the

propagation of f (r) through the system (see Appendix). This makes possible the MI recovery

of SMBs as it was experimentally demonstrated in [24] for a similar optical system. Here, we

adapt the iterative algorithm developed in [24] for MI recovery to this particular case.

The iterative algorithm sketched in Fig. 1(c) reconstructs the wavefield g(ri) at the input

of the ETL by using the measured intensities I
(m)
PC (ro) as constraint images. This wavefield is

back propagated to the system’s input plane to obtain the object function: f (r) =FT [g(ri)] (r).
Specifically, the iterative algorithm comprises two loops labeled with index m = 1, . . . , M and

n = 1, . . . , N, where M is the number of measurements and M×N is the total number of itera-

tions. The wavefield at the detector plane is Wm,n(ro) = Fd [gn (ri)Lm (ri)] (ro):

Wm,n(ro) =
exp(i2πd/λ0)

iλ0d

ˆ

gn (ri)Lm (ri)exp

(
iπ

(ro − ri)
2

λ0d

)
dri, (2)

corresponding to the Fresnel diffraction integral of the current wavefield estimate gn (ri), where

Lm (ri) = exp
(
−iπr2

i /λ0fm

)
is the transmission function of the ETL. This approximation of

the ETL is justified in the Appendix and has also been assumed in other ETL-based setups,

see for example [10, 25]. For a realistic initial estimate of the input beam a circle function

circ(2 |r|/D) (in our case with diameter D = 5 mm) can be considered, thus it yields g1 (ri) =
FT [circ(2 |r|/D)] (ri). The whole iterative process is described as it follows: (i) A new estimate
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Fig. 1. (a) Setup for the measurement of constraint images IPC (ro). This setup is attached

to the microscope as sketched in (b). Collector lens projects the illumination beam (laser

or LED) into the condenser (10× MO). The sample is imaged by the objective lens (100×
MO) and tube lens, which is identical to the relay lens (RL) with focal length of 15 cm. Inset

displays the measurement device: ETL (Optotune, EL-10-30-C) and high-speed sCMOS

camera (Hamamatsu, Orca Flash 4.0). (c) Scheme of the iterative MI recovery algorithm.

of Wm,n(ro) is obtained from the current version of gn (ri), and then is replaced by the updated

version

W ′
m,n(ro) =Wm,n(ro)

√
I
(m)
PC (ro)/

√
I
(m,n)
PC (ro) , (3)

where the current estimate of the intensity is I
(m,n)
PC (ro) = I

(m,n)
C (ro) ⊗ γ̃m (ro), being

I
(m,n)
C (ro) = |Wm,n(ro)|2; (ii) Then, the wavefield Eq. (3) is back-propagated to the ETL in-

put plane obtaining a new estimate of the wavefield gn(ri) = F−d [W
′
m,n(ro)]×L∗

m (ri) , where *

denotes complex conjugation. The next estimate of Wm+1,n(ro) is transformed into W ′
m+1,n(ro);

(iii) the procedure described in (ii) is performed using the rest of measured intensities, until

m = M. Then W ′
M,n(ro) is inverted to obtain an updated estimate of the wavefield: gn+1(ri) =

F−d [W
′
M,n (ro)]×L∗

M (ri); The process (i)-(iii) is iterated over the index n and stops (at n = N)

when the estimated intensities I
(m,N)
PC (ro) coincide with the measured ones or when algorithm

convergence is reached. Note that in the completely coherent case, γ̃m (ro)→ δ (ro − r′o), ex-

pression Eq. (3) reduces to the usual modulus constraint that replaces the amplitude by the

measured one while retaining the phase.

In numerous practical applications the DSC of the illumination beam is unknown and difficult

to determine. The proposed algorithm can also estimate the DSC, which results crucial to re-

construct the object wavefield. This requires an additional routine in the algorithm for the DSC

determination, as for example the Richardson-Lucy deconvolution (RLD) reported in [26] for

the Fourier transform and generalized in [24] for more complex transformations and systems.
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Here, the RLD is performed in each iteration step (i) as it follows:

γ̃
(k+1)
m (ro) = γ̃

(k)
m (ro)×

(
P(m,n) (−ro)⊗

I
(m)
PC (ro)

P(m,n) (ro)⊗ γ̃
(k)
m (ro)

)
, (4)

with k = 1, . . . ,K being the RLD iteration index, where P(m,n) (ro) = 2I
(m,n)
C − I

(m,n−1)
C is a

combination of the current and previous estimate of the coherent intensity. As initial estimate

γ̃
(1)
m (ro) an arbitrary Gaussian function was used, which can be applied for any SMB because its

DSC is such that γ̃m (ro) is a real-positive function. Applying this algorithm the object wavefield

and the DSC can be successfully recovered from the experimental data [24]. We recall that the

DSC, γ (r) = FT−1 [γ̃m] (rS−1
m ), is obtained in the input plane of the setup.

The root-mean-square (RMS) error between reconstructed and measured constraint images

allows for monitoring the algorithm convergence as well as estimating the accuracy of the re-

constructed object wavefield. Here, we have considered the normalized RMS error (ε) given by:

ε2 = ∑
Q
q=1

[√
c′q −

√
cq

]2
/∑

Q
q=1 cq, where c′q= I

(m,n)
PC (q), cq= I

(m)
PC (q), with q being the pixel

index and Q the number of pixels of the image. In the experiments described in the follow-

ing Sections, the algorithm reached convergence with low RMS error (below 15 %) after few

iterations (typically N = 10 and K = 2, for M = 9).

The Fresnel diffraction integral [Eq. (2)] is numerically calculated using the angular spec-

trum decomposition method, see for example [3,27]. The described iterative algorithm reached

convergence within a minute (Intel Core i7 CPU and Matlab R2013a, with images of Q =
1024× 1024 pixels). Nevertheless, to speed up the MI reconstruction, the computation was

preformed using a Graphics Processing Unit (GPU, nVidia GeForce GTX550-Ti ), thus recon-

structing the object wavefield f (r) and DSC in few seconds (typically 20 s).

3. Experimental setup and testing results

In this Section we demonstrate that the described technique is well-suited for quantitative phase

imaging in microscopy with fully or partially coherent light illumination. Two alternative kinds

of illumination sources are considered: Laser (Qioptiq, iFLEX-Gemini, λlaser = 640±1 nm, co-

herence length ∼ 5 mm) and LED (Kingbright, GaAlAs, λ0 = 648±1 nm, Δλ = 12±2 nm cor-

responding to coherence length ∼ 17 µm in water), which provide fully and partially temporal-

spatial coherent illumination over the sample, correspondingly. In the transmission inverted mi-

croscope sketched in Fig. 1(b), the sample is enclosed between two glass coverslips (attached

with a double-sided tape ∼ 90 µm thick, glass thickness 0.17 mm) and imaged under Köhler

illumination by an oil immersion objective (Olympus UPLSAPO, 1.4 NA, 100×, oil Cargille

Type B). As a condenser we used a 10× objective (Nikon Plan Achromat, 0.25 NA).

In this setup the ETL (Optotune, EL-10-30-C) yields a tunable focusing scan of the sample

and the resulting imaged planes are acquired by a high-speed sCMOS camera (Hamamatsu,

Orca Flash 4.0, 16-bit gray-level, pixel size of 6.5 µm). The shift of the imaged plane is given

as a function of the focal length (f) of the ETL, the effective magnification of the objective-tube

lenses (M = 83) and focal length fRL of the relay lens as it follows: △z = nsf
2
RL(f− d)/fdM2,

where ns = 1.33 is the refractive index of the immersion medium (water). The focal range

of the ETL is 84− 208 mm and therefore the available focusing scan range is about 30 µm.

Nevertheless, the measurement of the constraint images is performed in a shorter focusing

scan range (15 µm) according to the coherence gating of the LED illumination. As previously

discussed, the proposed MI recovery technique reconstructs the object wavefield only within the

coherence gate defined by the longitudinal coherence length of the LED. To avoid distortions

in the reconstructed information (e.g. object’s phase and DSC) caused by the Brownian motion

in the sample, the acquisition of the constraint images (1024× 1024 pixels) was performed in
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Fig. 2. Measured images of a polystyrene bead and its thickness reconstruction using

coherent laser (a) and partially coherent LED (b) illumination sources. (c) Thickness profile

of a spherical bead (black line plot) and the reconstructed ones for laser and LED (red and

blue scatter plots). The phase retrieval algorithm fails to reconstruct the thickness when the

partial coherence of the LED is ignored, see cyan colored dotted-line plot in (c).

about 125 ms at 144 frames per second (fps). This was achieved by using a periodic current

driving signal of 2 Hz (triangular, current range 0−293 mA) applied to the ETL. Although 18

images are acquired in 125 ms, we considered only the nine ones belonging to the coherence

gate. The corresponding focal lengths are: 122.4, 115.7, 109.9, 104.6, 100.0, 95.8, 91.8, 87.9

and 84.3 mm (range 140− 293 mA, see Appendix). Note that the ETL can be set up to 10 Hz

for faster measurement that requires high frame rate acquisition above 200 fps. In our case an

electrical lens driver controller with 12-bit precision for current and frequency control has been

used. Both sCMOS camera and ETL were controlled with a Labview program developed by us.

To test the technique, let us first consider the reconstruction of the thickness distribution of

polystyrene spheres diluted in distilled water (4.7 µm bead diameter, Spherotech Lot. AD01)

using laser (no(640nm) = 1.587) and LED (no(648nm) = 1.586) illumination. From the re-

trieved phase φ(r) of the object wavefield, the particle thickness t(r) is determined as it fol-

lows: t(r) = φ(r)λ0/2π△n, where △n = no −ns is the refractive index difference between the

bead (no) and its surrounding medium (water, ns = 1.33) [3,4]. For accurate phase unwrapping

we applied the algorithm reported in [28]. The measured image of the best focused bead and

the reconstructed thickness distribution are shown for each illumination case in Fig. 2(a) and

2(b), respectively. These results are in good agreement with the expected thickness profile of a

spherical bead, as displayed in Fig. 2(c). Specifically, the diameter of the bead is 4.8±0.1 µm.

The reconstruction of the object wavefield completely fails [see thickness profile plotted by a

cyan dotted-line in Fig. 2(c)] when the LED illumination is incorrectly assumed as fully spatial

coherent. These facts prove that for accurate quantitative imaging the spatial coherence of the

illumination has to be taken into account.

Both fully and partially coherent illumination can be used for phase imaging, however, partial

coherence brings relevant advantages. As observed in Fig. 2(a), coherent laser illumination

yields multiple reflections and interference (mostly caused by coverslip glasses, surrounding

media, etc.) degrading the image. While, in the case of LED illumination the object’s image

exhibits uniform background with suppressed noise, see Fig. 2(b) and 2(c). This kind of noise

reduction have also been exploited in digital holographic microscopy with LED sources, see

[15, 16].

The advantages of partially coherent light are more relevant with samples exhibiting multiple

layers, e.g. blood smears, biofilms and scattering media. To illustrate this fact, let us consider

as an example a scattering media that consists of a layer of polystyrene beads fixed over the

top coverslip as sketched in Fig. 3. In the case of coherent laser illumination, the beam is scat-
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Fig. 3. Left panel: Sketch of the sample (scattering media on the top coverslip) illuminated

by a monochromatic laser beam and quasi-monochromatic partially coherent LED beam.

The measured power spectrum of LED (λ0 = 648± 1 nm, Δλ = 12± 2 nm) is displayed.

Right panel: (a)-(c) Images of the sample at the chamber’s top and bottom coverslips, for

each illumination case. Images acquired by the high-resolution sCMOS camera are dis-

played at the third row as a zoom inset.

tered by the layered structure yielding speckle noise in the image Fig. 3(a). In contrast, the

speckle noise is mitigated when using a partially coherent laser and LED beams as shown in

Fig. 3(b) and 3(c), respectively. The laser beam with low spatial coherence was generated by

using a moving diffuser (Optotune, LSR-3005-12D-VIS), [23, 24]. Note that the LED beam is

both temporal and spatial partially coherent. Its coherent length in the sample medium (water)

is ∼ 17 µm, which was estimated from the measured power spectrum of the LED displayed in

Fig. 3. In spite of the difference in the temporal coherence, the images of the particles at the

chamber’s top and bottom are similar in both cases [see second row of Fig. 3(b) and 3(c)], when

acquired by a conventional CMOS camera (exposure time of 60 ms, Thorlabs-DCC1240C).

This demonstrates that low spatial coherence allows for speckle noise suppression. Neverthe-

less, in high-speed measurement the image [see third row of Fig. 3(b) and 3(c)] is completely

free of speckle noise only under the LED illumination. A small amount of speckle noise per-

sists in Fig. 3(b) due to the limited refresh rate of the time-varying diffuser with respect to the

short acquisition rate of the sCMOS camera (10 ms in this case). Therefore, LED illumination

is preferable for coherent noise suppression in high-speed measurements.

The latter examples underline the importance of the partial coherence for speckle noise re-

duction in the image and the optical sectioning capabilities. In the next section, we experimen-

tally demonstrate that spatial coherence properties of quasi-monochromatic LEDs are also cru-

cial to obtain accurate quantitative phase imaging of biological samples such as blood smears.

4. Quantitative phase imaging of biological specimens with partially coherent light

In vivo analysis of blood smears reveals important information for clinical studies. Quantita-

tive phase imaging is a powerful tool for maker-free microscopy that has been extensively ap-

plied for analysis of red blood cells (RBCs) immersed in different environments [11,12]. Here,

we consider human blood smear (without staining) which has heterogeneous cell distribution

structured in several layers over the sample. This is a realistic example to study the benefits of
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Fig. 4. (a)-(d) Intensity and phase of the reconstructed object wavefield at different focus-

ing planes. RBCs, WBCs and platelets (P) are distinguished in the phase images (d) and

(e). Coherent laser illumination yields significant cross-talk degrading the phase image (f).

partially coherent light for quantitative phase imaging of living biological specimens.

As in the previous experiments discussed in Section 3, the sample was enclosed between

two glass coverslips and the measurement was performed at 144 fps to avoid motion artifacts

in the reconstruction, see Media 1. Here, we also used nine constraint images to reconstruct

both the object wavefield and the DSC. Figures 4(a) and 4(b) show the intensity and phase of

the retrieved object wavefield at the focusing plane z = 0. We underline that the reconstructed

object wavefield can be numerically refocused within the coherence gate, which is crucial in

the analysis of the sample. Indeed, both RBCs and white blood cells (WBCs) can be accurately

focused by numerical propagation of the object wavefield, as observed in Fig. 4(c) and 4(d)

for z = 2.82 µm. In contrast to the intensity image, these cells are clearly distinguished in the

phase image Fig. 4(d). Moreover, small cell structures and platelets (2−3 µm in diameter) are

observed as indicated in the zoom inset Fig. 4(e). These structures, however, are washed out

in the phase image obtained with the coherent laser illumination Fig. 4(f). Indeed, the overall

image quality is significantly degraded and only RBCs are distinguished.

The accuracy of the object wavefield reconstruction can be estimated by the RMS error

between the measured constraint images and the ones calculated from the retrieved informa-

tion (DSC and object wavefield), see Fig. 5(a). In the case of LED illumination the algorithm

reached convergence with RMS error about 12 %. This low value of RMS error demonstrates

high accuracy in the reconstruction of both the object wavefield and the DSC. As in the testing

experiments discussed in Section 3, the DSC amplitude [see Fig. 5(b)] fits well to the Gaussian

function |γ (△r)| = exp(−|△r|2 /2σ2) with σ = 4.8 µm, which is often referred to as lateral

coherent length or spatial coherence radius.

For coherent illumination the object wavefield was reconstructed with a RMS error about

15%, however, the cells in the retrieved phase [Fig. 4(f)] are barely distinguished in comparison

to the partially coherent case [Fig. 4(e)]. This degradation in the phase image is caused by

the cross-talk arising from the light scattered by different objects (mostly RBCs and WBCs)

distributed in volume.

The temporal and spatial partial coherence of LED illumination work together to significantly
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Fig. 5. (a) Measured constraint images and the reconstructed ones with RMS error about

12 %. The measured stack of images is provided as video file in Media 1 to illustrate the

high-speed acquisition. (b) Amplitude of the reconstructed DSC and its 1D profile.

mitigate the cross-talk. We recall that the reduced temporal coherence mostly prevent from in-

terference caused by light scattered by objects distributed in volume (axial sectioning). While

the limited spatial coherence mostly contributes to cross-talk reduction in transverse planes.

A detailed description of the interplay between temporal and spatial coherence effects needs

further research. In the case of multi-layered samples, the use of narrow-band partial coherent

illumination and high-NA objectives has been demonstrated powerful for high resolution imag-

ing with interference microscopy [20]. The proposed technique paves another way to exploit

the spatial coherence in this context. Although the studied blood smear consists of few layers,

the quantitative phase images obtained with partially coherent light exhibit higher resolution

than the coherent ones.

5. Discussion

The proposed non-interferometric iterative technique reconstructs, in-situ, both the object

wavefield and degree of spatial coherence of the illumination beam. Its optical implementation

is straightforward in conventional microscopes at low cost, without altering the microscope de-

sign. In general, it can be combined with digital image processing methods which, for example,

take into account the point spread function of the microscope.

We have experimentally demonstrated accurate quantitative phase imaging with partially co-

herent illumination. It requires the knowledge of the degree of spatial coherence that, in the

proposed technique, is determined from the same measured data as used for the object wave-

field recovery. The reconstructed phase images are free of speckle noise and exhibit higher res-

olution than in the coherent case for samples comprising several layers such as blood smears.

The measurements were performed in the millisecond range and the object wavefield was re-

constructed in a few seconds, that is well-suited for real-life applications.

Light sources with the spatial coherence tailored [13, 14] to a particular imaging application

may provide an additional advantage to the proposed technique. We underline that as the spatial

coherence becomes low the measurement defocusing range has to be shorter. In this range

the object’s diffraction patterns have to be well resolved and vary with defocus such that the

algorithm can recover the phase information. This fact has also been pointed out in [24, 29],
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where further information about the domain of applicability is discussed.

Appendix

A1. Intensity distribution of a partially coherent SMB at the output of the ABCD system

The beam propagation through the measurement system discussed in Section 2, Fig. 1(a), is

described in paraxial approximation by the ABCD transform F (m). This transformation can be

easily calculated by using the ray transfer matrix [30] of the setup comprising the RL (fixed

focal length fRL) and ETL (variable focal length fm). Specifically, it is given by

F
(m) [ f (ri)] (ro) =

ˆ

f (ri)K(m) (ri,ro)dri, (5)

where the kernel is

K(m) (ri,ro) = σβ1 exp
[
iπσ

(
−2riroβ1 + r2

i β2 + r2
oβ3

)]
,

with: σ = 1/λ fRL, β1 = fm/(d − fm), β2 =−β1fRL/fm and β3 =−β1d/fm.

In the case of the partially coherent light, with Γ(r1,r2) at the input plane of the system, the

intensity distribution at its output plane is expressed as it follows:

I
(m)
PC (ro) =

¨

Γ(r1,r2)K(m) (r1,ro)K∗(m) (r2,ro)dr1dr2, (6)

Taking into account that the beam is described by the Schell model and introducing new vari-

ables, △r = r1 − r2 and R = (r1 + r2)/2, the Eq. (6) is expressed as

I
(m)
PC (ro) = (σβ1)

2

¨

f

(
R+

△r

2

)
f ∗
(

R− △r

2

)
exp [i2πσβ1 (Xx+Y y)]dR

× γ (△r)exp [i2πσβ1 (xox+ yoy)]d△r. (7)

Since for the coherent case the intensity I
(m)
C (ro) is also obtained from the latter expression

with γ (△r) = 1, one can rewrite Eq. (7) as a convolution:

I
(m)
PC (ro) = I

(m)
C (ro)⊗ γ̃m (ro) =

ˆ

I
(m)
C

(
r′o
)

γ̃m

(
ro − r′o

)
dr′o, (8)

where γ̃m (ro) is the scaled FT of the input DSC: γ̃m (ro) = FT [γ (△r)] (roβ1). This fact has

been found for other ABCD systems in [19, 24, 26] as well. Note that the FT [·] is optically

performed by RL.

A2. Calibration data of the ETL and its paraxial approximation

In our case, the electrically tunable lens (Optotune EL-10-30-C) is made from a low dispersion

and polarization preserving material with refractive index nlens = 1.299. It has a plano-convex

shape that is accurately controlled in the focal tuning range 84−208 mm. We assume that the

ETL can be described by the transmission function

T (r) = exp(i2π(ρ · (nlens −1)+ρ0)/λ ) , (9)

where its parabolic shape is given by

ρ =

√(
ρ0

2
+

a2

2ρ0

)2

− r2 +
ρ0

2
− a2

2ρ0
, (10)
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Fig. 6. (a) Calibration functions for the back focal length of the ETL and (b) for its radius

of curvature. (c) Correction function for the current (red line) and experimental data (red

scatter plot).

with ρ0 being the central deflection of the lens, a = 5.5 mm is the semi-diameter of the lens and

r2 = x2 + y2. The parameter ρ0 is a function of the applied current IET L (range 0− 293 mA).

Expression Eq. (10) and a Zemax model of the ETL were provided by the manufacturer.

To deal with the paraxial approximation, the expression Eq. (10) is written as a series expan-

sion at first order:
√

b2 − r2 ≃ b−r2/2b, where b = (ρ2
0 +a2)/2ρ0. Therefore, the transmission

function of the thin tunable lens is given by

L(r) = exp
(
−iπr2/λ f

)
exp(i2πρ0nlens/λ ) , (11)

where its focal length f is a function of ρ0 and thus of the applied current:

f(ρ0) =
ρ2

0 +a2

2ρ0(nlens −1)
. (12)

The term exp(i2πρ0nlens/λ ) in Eq. (11) yields a variable phase shift with ρ0 = ρ0(IET L).
To calibrate the focal length of the thin tunable lens, the function ρ0(IET L) has to be deter-

mined. The back focal length of the ETL ( fET L) is given as a function of IET L as displayed in

Fig. 6(a), according to the manufacturer’s data. Note that the Zemax model of the ETL allows

for estimation of both fET L and the corresponding radius of curvature (R). Since the central

deflection of the lens is ρ0 = R−
√

R2 −a2, the values ρ0(IET L) can be estimated from R( fET L)
taking into account the calibration fET L(IET L), see Fig. 6(b). In our case, ρ0 ∈ [0.25, 0.55] mm

and the ETL is well approximated by the thin tunable lens, Eq. (11), when using a correc-

tion function of the current for the expression Eq. (12). This correction takes into account

the effects of variable thickness of the real ETL in such a way that the thin lens behaves

as a calibrated virtual ETL in the iterative algorithm. In Fig. 6(c) this correction function

(I′ = 0.73IET L + 19.1 mA) is plotted as a function of the applied current IET L. It has been

estimated by linear fitting of the focal length shift of the uncorrected thin lens with respect the

measured values fET L. The calibrated focal length values used in the measurement (see Sec-

tion 3) correspond to the current values: 140, 160, 180, 200, 220, 240, 260, 280 and 293 mA.

Finally, we underline that coma aberration caused by gravity (about 0.21λ RMS, in the 80 %

of ETL’s central aperture) can be included in this lens model to prevent distortions in the recon-

structed image. Nevertheless, in the proposed setup [Fig. 1(b)] the object wavefield is focused

into the ETL and thus illuminates the central region (about 40 % of the aperture) where such a

phase aberration can be neglected.
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