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Abstract: In many regions, chemical recovery in lakes from acidic deposition has been generally slower

than expected due to a variety of factors, including continued soil acidification, climate-induced

sulphate (SO4) loading to lakes and increases in organic acidity. In central Ontario, Canada,

atmospheric sulphur (S) deposition decreased by approximately two-thirds between 1982 and 2015,

with half of this reduction occurring between 2005 and 2015. Chemical recovery in the seven lakes

was limited prior to 2005, with only small increases in pH, Gran alkalinity and charge-balance ANC

(acid-neutralizing capacity). This was because lake SO4 concentrations closely followed changes in S

deposition, and decreases in base cation concentration closely matched declines in SO4. However,

decreases in S deposition and lake SO4 were more pronounced post-2005, and much smaller decreases

in lake base cation concentrations relative to SO4 resulted in large and rapid increases in pH, alkalinity

and ANC. Dissolved organic carbon concentrations in lakes increased over the study period, but had

a limited effect on lake recovery. Clear chemical recovery of these lakes only occurred after 2005,

coinciding with a period of dramatic declines in S deposition.
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1. Introduction

Chemical recovery in lakes from the large reductions in acidic deposition that occurred in eastern

North America and Europe over the past 40 years or so has been mixed [1,2]. While sulphate

(SO4) and nitrate (NO3) are the main components of acidic deposition, SO4 has traditionally been

the primary contributor to aquatic acidification because NO3 inputs in deposition are retained in

terrestrial ecosystems [3]. In some cases, such as in regions near smelters, rapid and large reductions in

atmospheric S deposition have occurred, which have resulted in strong recovery responses [4]. In other

areas, chemical recovery has been less than expected, owing to a number of confounding factors,

including S release from upland and organic soils, depletion of exchangeable base cation pools and

increases in organic acidity that have offset declines in mineral acids [5–7].

Reductions in atmospheric sulphur (S) deposition have generally led to decreases in SO4

concentrations in lakes, however, in some regions, the net release of S from soils from historical

S deposition has resulted in a slower response than expected [8]. Similarly, climate-induced SO4 release

from organic soils in catchments can lead to higher SO4 loadings to lakes than would be expected

from deposition alone [9]. In other studies, decreases in base cation (primarily calcium (Ca) and

magnesium (Mg)) concentrations in lakes have approximately matched decreases in SO4 concentrations,

which also contribute to delayed chemical recovery [10]. The decrease in base cation concentration

is largely attributable to continued soil acidification [11]. Chemical recovery from acidification in

lakes has also been affected by increases in organic acidity caused by higher dissolved organic carbon

(DOC) export from catchments [12]. It is important to recognize that three different metrics typically

are used to describe chemical recovery: pH, owing to its biological relevance, charge-balance ANC
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(acid-neutralizing capacity), because of its direct connection to geochemical models, and Gran or

titratable alkalinity, which takes into account other chemical species that contribute to alkalinity such

as DOC and aluminum (Al). In regions where substantial increases in DOC have occurred, there is

often a limited increase in alkalinity (or organic acid adjusted ANC), even though there is an increase

in charge balance ANC, due to the increasing importance of organic acidity [6].

Widespread lake acidification in central Ontario was first documented in the 1970s [13,14]. Since

then, large reductions in SO2 (and NOx) emissions in North America have occurred [15]. However,

despite these large declines, only a limited chemical response was observed in lakes prior to 2000 [16,17].

More recently, Palmer et al. [18] re-evaluated lake chemistry in central Ontario between 1982 and 2005

and showed that chemical recovery remained slow. Palmer et al. [18] found that even though the

median decrease in SO4 concentration in eight intensively monitored lakes was 1.84 µeq L−1 yr−1,

the median increase in alkalinity over this period was just 0.19 µeq L−1 yr−1, and the median increase

in pH was just 0.01 pH units yr−1. This lack of chemical recovery was attributed to a decline in Ca and

Mg concentrations that approximately matched the decrease in SO4. Regional increases in lake DOC

concentrations have also been reported in central Ontario between 1982 and 2010, and although the

cause of this increase is debated [19], an increase in DOC will lead to an increase in organic acidity that

may further delay chemical recovery from acidic deposition.

More recently, Watmough et al. [11] reported that recovery from acidification in central Ontario,

prior to 2010, was restricted by soil acidification and drought-related SO4 release from soils. However,

mass balance studies indicated that net losses of base cations from soils became smaller between 1982

and 2010, and input–output budgets were almost in balance, suggesting the possibility of a more rapid

recovery from acidification in the future [11]. Further, since 2005, SO2 emissions in North America

have decreased substantially [20], which could enhance chemical recovery in lakes. In light of these

observations, the objective of this study was to re-assess seven intensively monitored lakes in central

Ontario that are regionally representative [18], to evaluate whether recent reductions in SO2 emissions

have led to a substantial chemical recovery from acidic deposition.

2. Materials and Methods

2.1. Study Area

The seven small (<550 ha) headwater lakes have been monitored intensively by the Ontario

Ministry of Environment, Conservation and Parks (OMECP) since the mid-1970s, and are considered

representative of lakes in the broader region [18]. The study’s lakes are located within a 30 km

radius of one another in the Muskoka–Haliburton region of Ontario, on a southern extension of the

Precambrian Shield in the Great Lakes–St. Lawrence ecozone (Figure 1). They have minimal lakeshore

development, and their watersheds are almost entirely forested, with little-to-no agriculture. Sugar

maple (Acer saccharum) is the dominant deciduous tree species in the region, along with American

beech (Fagus grandifolia) and yellow birch (Betula allegheniensis). White pine (Pinus strobus) and eastern

Hemlock (Tsuga canadensis) are the dominant coniferous species. Bedrock is dominated by slowly

weathering metamorphic and igneous rock, and soils are typically shallow (<0.5 m) Podzols or

Brunisols [21]. Exchangeable soil Ca pools are low (113–1300 kg ha−1) and were shown to decrease

between 1983 and 1999 [3]. According to the Köppen Climatic Classification System, the climate is

humid continental, with long cool summers (Dfb), [22].

Total annual precipitation averaged 101 cm over the 34-year study period, with approximately

30% falling as snow. The mean annual temperature over the same period was 4.9 ◦C (range 3.3–6.7 ◦C).
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Figure 1. Location of the seven study lakes in south–central Ontario. Stars indicate the location of the

three bulk deposition monitoring stations.

2.2. Lake and Bulk Precipitation Sampling

Lakes were sampled approximately monthly over the ice-free season (May–October) between

1982 and 2015, at a single station situated above the deepest part of the lake, which is common

for limnological studies on relatively small lakes. For each lake, volume-weighted water samples

(whole-lake samples during overturn periods and separate epi-, meta- and hypolimnetic samples

during thermal stratification) were collected for chemical analysis. Specifically, during the summer

months of thermal stratification, water samples were collected at the midpoint of every 2 m stratum,

using a peristaltic pump fitted with a polyvinyl chloride hose, and samples were immediately filtered

through 80 µm mesh, to remove zooplankton. Water samples from the epilimnion, metalimnion

and hypolimnion were analysed separately, and the resultant concentration values were multiplied

by the volume of water in each stratum, summed and then divided by total lake volume, to create

monthly volume-weighted values. During periods of lake overturn (spring and fall months), whole-lake

integrated samples of the entire water column were analyzed. Monthly volume-weighted concentrations

were then averaged over the entire ice-free season (May–October), to create ice-free means. Between

seven and eight monthly volume-weighted samples per lake were collected in each year of the

34-year period.

Bulk deposition was collected typically weekly, using continuously open, lined plastic buckets at

open areas at three locations in the region: Plastic and Heney Lakes and at the Dorset Environmental

Science Centre (DESC; Figure 1). Each bulk collector is 1.7 m above the ground and topped with a

funnel covered with a Nitex screen (10 cm × 10 cm; 500 µm mesh), to limit entry of coarse particles and

insects [23]. During each sampling event, deposition samples were removed and buckets were refitted
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with clean food-grade plastic bag liners and Nitex screens. Similar to lake samples, bulk deposition

samples were coarse filtered (80 µm) prior to transport to the laboratory in insulated coolers.

2.3. Chemical Analyses

All chemical analyses were conducted at the DESC, which is part of the OMECP (Ontario Ministry

of Environment, Conservation and Parks), located in Dorset Ontario. Analytical methods have been

generally consistent over the 34-year period and are described in detail by the Ontario Ministry of

the Environment [24]. In brief, total inflection end-point alkalinity was measured by titration and

determined by using the Gran method, and is expressed in equivalence units of CaCO3. Dissolved

organic carbon was measured colourimetrically with phenolphthalein after first acidifying samples

and flushing with nitrogen gas, to remove inorganic C, and then oxidizing organic carbon to CO2 by

exposure to UV light in acid-persulfate media. Water samples for C determination were not filtered

(0.45 µm) prior to analysis, because previous studies have shown that the majority of total organic

carbon present in lakes and deposition is dissolved, and so TOC is assumed to by synonymous with

DOC [25]. Charge balance Acid Neutralizing Capacity (CB_ANC) was computed as the sum of positive

charges associated with base cations minus the sum of negative charges associated with acid anions.

CB_ANC = [Ca2+ +Mg2+ + K+ + Na+] − [SO4
2− + NO3

− + Cl−] (1)

Similar to Futter et al. [2], an organic acid adjusted ANC was further computed based on the

concentration of DOC and strong acid fraction of DOC as follows:

OAA_ANC = CB_ANC − (1/3)*[DOC]*SD (2)

where a site density (SD) of 10.2 µeq L−1 is used for DOC (mg C L−1), assuming one-third of these

charged sites are permanently dissociated.

Organic acidity (OAA) was calculated by following the method described in Oliver et al. [26],

as follows:

OAA = (K*[CT])/(K + [H+]) (3)

where CT is the organic acid concentration estimated by multiplying the DOC concentration in mg L−1

by 10 µeq mg−1, and the mass action quotient, K, is estimated from pK = 0.96 + 0.90 pH − 0.039 (pH)2.

2.4. Statistical Analyses

Long-term trends in annual volume-weighted bulk deposition and lake chemistry over the 34-year

period were assessed by using the Mann–Kendall test, and trend slopes were calculated by using Sen’s

slope [27].

3. Results

3.1. Bulk Deposition

Bulk deposition of SO4 and NO3 decreased significantly, and pH increased over the 34-year period

of record (Figure 2; Table 1). The decline in SO4 deposition was particularly large (~2/3; 40 meq/m2

over 34 years); however, half of this decline occurred in the final 10 years of record (2005–2015),

and deposition fell below 20 meq m−2 yr−1 by 2015 (Figure 2). Nitrate deposition also decreased

significantly over the study period (Table 1), but the pattern in NO3 deposition differed from that of

SO4 (Figure 2). Nitrate deposition exhibited little change between 1982 and the early 2000s, averaging

40 meq m−2 yr−1, but subsequently dropped substantially by approximately 50%, reaching 20 meq m−2

yr−1 by 2015. There was no significant trend in base cation deposition over the entire study period,

but base cation deposition decreased slightly between 1982 and 2005 and increased between 2005

and 2015 (Figure 2; Table 1). Base cation deposition was generally between 10 and 20 meq m−2 yr−1,
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although it was highest (~25 meq m−2 yr−1) at the end of the study period (Figure 2). Consequently,

the pH of bulk deposition increased steadily from around 4.4 to just over 5.0 over the entire period of

record (Figure 2).

Figure 2. Bulk deposition of nitrate-N, sulphate, sum of base cations (Ca + Mg + K + Na) and pH

between 1980 and 2017 in the study region.

Table 1. Trends in bulk deposition chemistry. Asterisks indicate significance; *** < 0.001 ** < 0.05 * <0.1.

1982–2015 (n = 34) 1982–2005 (n = 24) 2005–2015 (n = 11)

SO4 (meq m−2 yr−1) − 1.32 *** − 1.35 *** − 2.08 **

NO3 (meq m−2 yr−1) − 0.64 *** − 0.42 ** − 0.58 (not sig)

pH + 0.03 *** + 0.01 *** + 0.04 ***

Sum of base cations (meq m−2 yr−1) No trend − 0.22 * + 2.02 **

3.2. Lake Chemistry

The seven lakes exhibited generally consistent patterns in water chemistry over the study period

(Table 2; Figure 3). Sulphate concentrations were between 140 and 160 µeq L−1 in the early 1980s and

fell to around 100 to 130 µeq L−1 by 2005, a decrease of approximately 30%, which is consistent with

changes in bulk SO4 deposition. In contrast to bulk deposition, however, SO4 concentrations in all

lakes increased slightly between 1987 and 1991 (Figure 3A). After 2005, SO4 concentrations in lakes

decreased more rapidly, averaging between 50 and 60 µeq L−1 by 2015 (Figure 3A).

Between 2005 and 2015, the median annual rate of decrease in SO4 concentration across the

seven lakes was 5.0 µeq L−1 yr−1, compared with 1.7 µeq L−1 yr−1 between 1982 and 2005 (Table 2).

Concentrations of NO3-N in the seven lakes were very low (<10 µeq L−1), and although several lakes

exhibited decreases in NO3-N concentration (Table 2), NO3-N was only a small contributor to the

strong acid concentration of the lakes (average <6%).
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Table 2. Sen’s slopes—medians of the seven lakes, ranges of slopes (in parentheses) and number of

lakes with significant trends at p < 0.05.

Sen’s Slopes 1982–2015 (n = 34) 1982–2005 (n = 24) 2005–2015 (n = 11)

SO4 (µeq L−1 yr−1) −2.4 (−2.0 to −2.9) 7/7 −1.7 (−1.3 to −2.6) 7/7 −5.0 (−3.8 to −6.5) 7/7

Gran Alk (µeq L−1 yr−1) 0.38 (0.01 to 0.59) 5/7 0.26 (−0.17 to 0.43) 3/7 2.1 (1.5 to 2.9) 5/7

NO3-N (µeq L−1 yr−1) −0.03 (−0.04 to 0.07) 3/7 0.002 (−0.1 to 0.05) 0/7 0.09 (−0.01 to 0.16) 1/7

ANC (µeq L−1 yr−1) 0.70 (0.23 to 1.0) 6/7 0.46 (−0.39 to 0.94) 4/7 2.3 (1.1 to 3.4) 5/7

pH (pH units yr−1) 0.005 (0 to 0.01) 5/7 0.007 (0 to 0.01) 4/7 0.028 (0.02 to 0.05) 4/7

DOC (mg L−1 yr−1) 0.025 (0.02 to 0.07) 7/7 0.027 (0 to 0.06) 6/7 0.020 (−0.02 to 0.06) 2/7

Org acid adj ANC (µeq L−1 yr−1) 0.55 (0.17 to 0.97) 6/7 0.25 (−0.36 to 0.88) 4/7 2.3 (1.2 to 3.1) 5/7

Ca (µeq L−1 yr−1) −1.4 (−1.6 to −0.60) 7/7 −1.0 (−1.3 to −0.38) 6/7 −2.0 (−2.5 to −1.1) 5/7

SBC (µeq L−1 yr−1) −1.9 (−2.2 to −1.0) 7/7 −1.5 (−1.8 to −0.6) 7/7 −2.7 (−3.6 to −1.8) 6/7

Figure 3. Change in volume-weighted sulphate (A), pH (B), alkalinity (C) and total organic carbon (D)

in the seven study lakes between 1982 and 2015. The mean value of the seven lakes is shown as a solid

black line.

Between 1982 and 2005, there were modest increases in the pH (+0.007 units yr−1), Gran alkalinity

(0.26 µeq L−1 yr−1) and charge balance ANC (0.46 µeq L−1 yr−1) of lake water (Figure 3B,C and Figure 4;

Table 2), but there were also large decreases in the sum of base cation concentrations (Figure 4; Table 2).

Median base cation concentrations fell from around 190 µeq L−1 in 1982 to around 170 µeq L−1 in

2005, which is a median decrease of 1.5 µeq L−1 yr−1 (Figure 4; Table 2). Calcium is the dominant base

cation in lake water and is primarily responsible for these trends (Table 2). In contrast, changes in
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alkalinity, charge balance ANC and pH post-2005 were much more dramatic (Figure 3B,C and Figure 4;

Table 2). Between 2005 and 2015, base cation concentrations continued to fall, with a median decrease

of 2.7 µeq L−1 yr−1, but this decrease was only about half of the median decline in SO4 (Table 2).

As a consequence, median alkalinity, pH and charge balance ANC of the seven lakes increased by

2.1 µeq L−1 yr−1, 0.028 pH units yr−1 and 2.5 µeq L−1 yr−1, respectively (Table 2).

Figure 4. Mean values of the sum of strong acid anions (SO4 + NO3 + Cl), base cations and calculated

organic acidity in the seven study lakes (A), and mean Gran alkalinity, charge balance acid neutralizing

capacity (ANC) and organic acid adjusted ANC (B), between 1982 and 2015, in the seven study lakes.

Dissolved organic carbon concentrations were between 2.0 and 6.0 mg L−1 in the seven lakes and

increased significantly over the study period (Figure 3d). The increase in DOC, however, was quite

modest (<0.03 mg L−1 yr−1; Table 2), and changes in organic acid adjusted-ANC mirrored changes in

charge balance ANC, changing very little between 1982 and 2005 (0.25 µeq L−1 yr−1), but increasing

dramatically post-2005, from around 45 to 65 µeq L−1, an increase of 2.3 µeq L−1 yr−1 (Figure 4; Table 2).

4. Discussion

Numerous surface waters in eastern North America and Western Europe have shown a

less-than-expected chemical response to declines in acidic deposition, and this has generated substantial

discussion of potential causes of delayed recovery, although it is generally recognized that soil processes
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are important [1,2,5,7,11]. This paper utilizes a 34-year-long dataset from seven regionally representative

lakes, to provide further insight into the factors contributing to this variable response. Specifically,

lakes in south–central Ontario showed minimal improvement in pH, alkalinity or charge balance

ANC prior to 2005, despite a ~40% decline in SO4 deposition between 1982 and 2005. Only after

further substantial declines in SO4 deposition post-2005 did all lakes exhibit a large and rapid chemical

recovery. A similar recent acceleration of chemical recovery has been reported in the northeastern

United States [15].

The lack of recovery from acidic deposition over the earlier period has been attributed to both

climatically induced SO4 loadings to lakes [9] and continued soil acidification [11]. Specifically, all seven

lakes exhibited a slight increase in SO4 concentration between 1988 and 1991 that was caused by

extended back-to-back periods of summer drought that led to declines in water table height in wetlands

within the region [28]. During summer droughts, S that is stored in wetland sediment is oxidized to

SO4, which is flushed to lakes when streamflow resumes in the fall [29]. High SO4 export following

droughts leads to a decrease in pH in streams draining into lakes, and this decrease can persist through

the subsequent winter season [30]. While these acidic pulses may have an immediate impact on biota in

streams, the overall impact of these droughts on the chemical recovery of lakes appears to be temporary.

Sulphate concentrations in lakes decreased more rapidly after 1991, such that, between 1982 and 2005,

the median decrease in SO4 concentrations in lakes was consistent with measured changes in bulk SO4

deposition (median ~ 30%). Nitrate deposition also decreased over the study period, but although

some lakes exhibited a significant decrease in NO3 concentration, it contributed little to lake acidity,

because the majority of deposited N is retained within terrestrial catchments in this region [3].

While drought-induced SO4 release slowed the lake response to deposition declines, decreases

in base cation concentrations that more or less compensated for decreases in strong acids (i.e., SO4)

were the primary driver of limited chemical recovery between 1982 and 2005. Calcium is the dominant

base cation in lake water, and decreases in base cations are largely attributed to declines in lake

Ca concentration. Several studies have suggested that Ca levels in lakes are approaching, or have

passed, critical biological thresholds in many lakes in the region [31–33]. Studies in Europe and

North America have similarly found that recovery from acidic deposition has been less than expected,

because of a sharp decline in surface-water base cation concentrations [10]. The decrease in lake cation

concentrations is largely attributable to soil acidification [11], and mass balance studies in the region

have indicated that the net export of Ca relative to inputs in deposition and mineral weathering has

resulted in soil acidification [3]. Over time, however, the estimated base cation deficit has decreased,

and recent studies indicate that base cation budgets are approximately in balance and that soils are no

longer acidifying [11]. This suggests that further declines in acid inputs to the region should result in a

more rapid and immediate chemical response in lake water, as soils start to recover and base cation

pools increase.

Indeed, over the 11-year period between 2005 and 2015, SO4 deposition decreased by a further

20 meq m−2, which is similar to the magnitude of S deposition decline that occurred over the previous

23 years. These deposition changes led to a much more rapid reduction in SO4 concentration in lakes.

Over the same period, base cation concentrations in lakes also fell, but, whereas declines before 2005

were comparable to declines in lake SO4, the median decrease in base cations post-2005 was only

half of the observed change in lake SO4 concentration. This suggests that past declines in lake base

cation concentrations, and Ca in particular, effectively retarded the chemical recovery of lakes from

acidification. In contrast, large increases in alkalinity, charge balance ANC and pH post-2005 are due

to smaller declines in base cations relative to SO4. Similarly, Strock et al. [34] reported more dramatic

declines in SO4 relative to base cations in lakes in the northeastern USA after 2002. The rate of chemical

recovery measured post-2005 is greater than has typically been observed in regional studies remote

from point emission sources [10,35] and is more consistent with changes observed close to smelters

where substantial reductions in S deposition have occurred [4].
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The reason for the much lower relative decline in base cations after 2005, compared with the

previous two decades, is unclear. Base cation mass balance studies in the region indicate soils are

no longer acidifying [11], and Lawrence et al. [36] reported that pH and Al mobility in upper soil

horizons at many sites in eastern North America are starting to recover from past acidification.

Kirchner et al. [37] showed that base cation export relative to strong acids is associated with the size of

the soil exchangeable base cation pool. An increase in exchangeable soil base cations would therefore

lead to greater chemical recovery in lakes. Even so, an increase in soil base cation pools alone is unlikely

to fully account for the much smaller decrease in base cation concentrations relative to strong acids that

was observed in the seven lakes after 2005 because soil recovery from acidification is slow. Treating

soils as a single homogeneous “box” may also be too simplistic. Even though soils are generally shallow

in this region, all catchments have some areas of deeper till that can contribute groundwater that is

more enriched in base cations, and groundwater has been shown to neutralize acidic precipitation in

the region [38]. As a consequence, the relative importance of base cation contributions to lakes from

groundwater may have increased as base cation losses from upper soil horizons have stabilized.

An additional explanation is that an increase in organic acidity can lead to a disconnect between

strong acid and base cation concentrations in lakes [12]. Futter et al. [2], for example, found that

chemical recovery from acidic deposition in Swedish lakes between 1987 and 2012 was slow because of

several factors, including a decrease in base cation concentration, an increase in sea salt deposition

and an increase in DOC. In our study, sea salt deposition is not relevant, but there was a significant

increase in DOC concentration in the study lakes. The increase in DOC concentration was quite modest,

however, and the organic acid adjusted ANC exhibited a similar recovery pattern to that of charge

balance ANC or alkalinity, indicating that, in contrast to other studies [6], increases in lake DOC are

having a limited impact on chemical recovery from acidic deposition in this region.

Other studies have suggested that increases in temperature could positively affect base cation

levels by stimulating decomposition [39,40] or weathering processes [41], thereby resulting in greater

base cation availability in soils. Another factor to consider is that base cation deposition, while generally

low, also increased after 2005, which may have contributed to the chemical recovery in lakes. In some

regions, a decline in base cation deposition has contributed to a delay in recovery [42], and other

studies have shown that atmospheric base cation deposition can play an important role in preventing

acidification. The reason for higher base cation deposition after 2005 is unknown, but may be linked

to a variety of factors, including greater dust emissions or long-range transport from forest fires [43].

None of the lakes in this analysis are surrounded by unpaved roads, but other studies in the region

have documented large increases in lake Ca concentrations caused by the application of Ca-containing

dust suppressants (e.g., calcium chloride; [43]). While dust suppressants are not directly affecting

lakes considered in this study, it is possible that regional increases in dust suppressant use could have

contributed to higher atmospheric base cation levels that were observed in bulk deposition. Hence,

while rapid chemical recovery in lakes occurred post-2005, due to a much greater decline in lake SO4

concentrations relative to base cations, the mechanisms driving base cation behavior remain unclear

and warrant further study. This is especially important in light of model forecasts that predict Ca

levels in many lakes will continue to fall below critical thresholds in regions experiencing timber

harvesting [44].

5. Conclusions

Between 1982 and 2015, bulk deposition of SO4 decreased by approximately 70%, with half of

this decrease occurring prior to 2005, and a more rapid decrease in SO4 bulk deposition occurred

between 2005 and 2015. Patterns in lake SO4 concentrations were generally coherent, with changes in

bulk deposition; however, back-to-back droughts in the late 1980s temporarily increased lake SO4 and

decoupled lake and deposition trends. Very limited chemical recovery occurred prior to 2005 because

decreases in base cation concentration approximately matched declines in lake SO4. In contrast, SO4

concentrations in lakes declined more rapidly after 2005, and the decrease in base cation concentrations
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over the same period was only about half as great, leading to large and rapid increases in lake pH,

measured alkalinity and charge balance ANC. Dissolved organic carbon concentrations increased over

the entire study period but had a minimal impact on lake chemical recovery. Importantly, these results

suggest that lags in chemical recovery may be temporary, and that greater chemical recovery is likely if

declines in acidic deposition continue. Nevertheless, the specific mechanisms responsible for the lower

decline in lake base cation concentrations relative to acidic anions require further study.
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