
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

11-1-1994

Rapid Relaxation of an Axisymmetric Vortex
Andrew J. Bernoff
Harvey Mudd College

Joseph F. Lingevitch
Northwestern University

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Rapid relaxation of an axisymmetric vortex. Andrew J. Bernoff and Joseph F. Lingevitch, Phys. Fluids 6, 3717 (1994).

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


Rapid relaxation of an axisymmetric vortex 
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(Received 22 January 1994; accepted 8 July 1994) 

In this paper it is argued ~hat a two-dimensional axisymmetric large Reynolds number (Re) 
monopole when perturbed will return to an axisymmetric state on a time scale (Rel/3) that is much 
faster t~an the visc?us evolution time scale (Re). It is shown that an arbitrary perturbation can be 
broken .1~to three pIeces; first, an axisymmetric piece corresponding to a slight radial redistribution 
of vorhc~t~; second, a translational piece which corresponds to a small displacement of the center 
of the ongmal vortex; and finally, a nonaxisymmetric perturbation which decays on the Rel/3 time 
scale due to a shear/diffus~on averaging mechanism studied by Rhines and Young [J. Fluid Mech. 
133, 13~ (19~3)] f~r a passIve .scalar and Lundgren [Phys. Fluids 25,2193 (1982)] for vorticity. This 
mechamsm IS ~erified num:flcally for the canonical example of a Lamb monopole. This result 
suggests a phYSIcal explanatiOn for the persistence of monopole structures in large Reynolds flows 
such as decaying turbulence. ' 

I. INTRODUCTION 

Isolated nearly axisymmetric vortices are a common fea
ture in two-dimensional (2-D) flows. They dominate the 
fields of two-dimensional decaying turbulence, I and are 
commonly observed in the wakes of bluff bodies.2,3 Ting and 
his collaborators4,5 studied the advection and evolution of 
these vortices in an external flow in the limit of large Rey
nolds number; they can be thought of as viscous regulariza
tions of point vortices. 

Previously it has been argued that smooth localized con
centrations of vorticity in the absence of external flow tend 
to approach axisymmetric states.6 Dritschel has shown for 
axisymmetric inviscid flows that if the concentration of vor
ticity is a monotonically decreasing positive function of ra
dius, that the monopole is Lyapunov stable.7 These results 
suggest that axisymmetric distributions of vorticity may be 
attracting asymptotic states in large Reynolds flows. 

In this paper we consider the large Reynolds number 
(Re~ 1) linear stability theory for axisymmetric monopoles 
whose vorticity is a positive decreasing function of radius 
that tends to zero exponentially. In this case the unperturbed 
monopole evolves on the viscous diffusion time scale 
[&(Re)], and in fact will eventually evolve toward the 
Gaussian profile of the well-known Lamb vortex.4 The linear 
stability analysis is closely related to the mixing of a passive 
scalar by a vortex. In both instances the concentration of 
vorticity (passive scalar) is Lagrangian advected with the 
fluid velocity and diffuses. In the case of a passive scalar, a 
shear/diffusion mechanism studied by Rhines and Young ho
mogenizes the concentration of passive scalar along the 
streamlines of the flow on a Pel

/
3 time scale where Pe is the 

Peclet number.s The shear/diffusion mechanism applied to 
vorticity perturbations is complicated by the fact that vortic
ity is dynamically coupled to the streamfunction. This cou
pling allows for a nonaxisymmetric deformation of the 
streamlines of the vortex. Lundgren9 has argued that, for 
large times, nonaxisymmetric vorticity perturbations become 
rapidly radially varying which causes the streamfunction
vorticity coupling to cancel at leading order. Consequently, 

he concludes that the shear/diffusion homogenization mecha
nism is qualitatively identical to the passive scalar case and 
that these perturbations decay on the Re l

/3 time scale. 
GilbertlO uses similar reasoning to treat the homogenization 
of vorticity in the far field of a strong vortex. However, these 
analyses are only applicable to rapidly varying vorticity per
turbations. 

Here we argue that almost all vorticity perturbations de
cay on the shear/diffusion time scale [C¢(Rel/3)]. The excep
tions to this are axisymmetric perturbations, which corre
spond to a small radial redistribution of vorticity, and two 
modes which correspond to spatial translates of the vortex. 
Our method for studying this problem is to first identify the 
axisymmetric perturbations and the two modes correspond
ing to spatial translates. It is shown that choosing a pertur
bation orthogonal to the translates is equivalent to choosing a 
perturbation that leaves the first moment of the vorticity 
fixed. We then introduce the mixing hypothesis, which states 
that nonaxisymmetric perturbations that leave the first mo
ment fixed decay on a time scale 8'(Re1/3) due to the shear/ 
diffusion mechanism. A Wentzel-Kramers-Brillouin (WKB) 
theory is presented to verify this mechanism for a spatially 
rapidly varying perturbation to the monopole; this result is 
essentially a recasting of Lundgren's large time asymptotics. 
We address the issue that the WKB theory is only valid for 
rapid variations by numerically validating the mixing hy
pothesis for the canonical Lamb vortex. The numerical stud
ies show that asymptotically as the perturbation decays it is 
expelled to larger and larger radii; the WKB result can be 
used to explain this expUlsion. In the conclusions we discuss 
the role of this result for vortex monopoles in external flows. 

II. STABILITY THEORY 

A. Axisymmetric vortices 

The 2-D Navier-Stokes equation can be written in terms 
of the advection and diffusion of vorticity (w): 

(1) 
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where the velocity (u) and vorticity can be related to a 
streamfunction in polar coordinates by 

u= ~8 r-I/J)}, VZI/J=-w. (2) 

We are considering an exponentially localized distribution of 
vorticity which implies the velocity is decaying in the far 
field; this yields boundary conditions on the streamfunction, 
lui = IVI/JI--.o as Irl--'co which specify it up to a constant. For 
the WKB analysis presented below, the evolution of vorticity 
will be contrasted with the related problem of the advection 
and diffusion of the concentration of a passive scalar, C, 

Ct+u·VC=Pe- 1 VZC, (3) 

where u is a known incompressible velocity field and Pe is 
the Peelet number. 

Any axisymmetric distribution of vorticity yields a 
steady inviscid solution to (1). The viscous evolution is 
purely diffusive as the velocity field is azimuthal leading to 
the vanishing of the nonlinearity; as such it evolves on the 
viscous diffusion time scale, T = tiRe. If W = W( r, T), 
I/J='J!(r,T), their evolution is specified by 

WT=.,goW, ..0l'J!= - W, ~=arr+(llr)ar. (4) 

Note that the vorticity has decoupled from the streamfunc
tion. A solution of particular interest to this problem is the 
Lamb vortex3,4 which corresponds to the self-similar viscous 
decay of an initial point vortex, 

_ 1 (rZ ) 
W(r,T)=W(r,T)= 41TT exp - 4T ' (5) 

'J!(r,T)=W(r,T)==- 2~ J:[ l-exp( - ;~)] ~. (6) 

Ting showed that any axisymmetric exponentially localized 
distribution of vorticity evolves toward a Lamb vortex with 
the same integrated vorticity.4 

B. Linear stability equations 

Consider a small disturbance to an axisymmetric vortex, 
such as the Lamb vortex, 

w~ W(r,T) + (~o w.(r,t)e'·'+ c.c.), (7) 

q,~"'(r,T) + (io q,.(r ,t)e,·8 + c.c} (8) 

where c.c. stands for the complex conjugate. The linearized 
equations which govern wn , I/Jn satisfy 

(Wn)t+ in ( Own+ :r I/In)=Re- 1 Yi"wn , 

.:3"(l/In) = - wn, .:3"=~-(nzlrZ). 

(9) 

(10) 

Here 0 = - 'J! rl r is the angular velocity which is positive 
and decreasing in r. The boundary conditions on (9) and (10) 
are 
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(11) 

The first condition assures continuity of vorticity and its de
rivatives at the origin. The second reflects the localized na
ture of the disturbance; it is natural to consider exponentially 
localized vorticity perturbations. 

Note that the evolution of a passive scalar advected by 
the same flow as described above can also be written in 
terms of Fourier modes, 

C= 2: Cn(r,t)e in8+c.c., 
n=O 

which yields upon substitution into (3), 

(Cn)t+inOCn=Pe-l 2fnwn , 

with boundary conditions 

(12) 

(13) 

Cn'Xrn as r--.O, Cn--.O as r-. co • (14) 

This is analogous to the linearized vorticity equation with the 
coupling to the streamfunction suppressed. 

c. Axisymmetric perturbations 

Note first that for n = a the vorticity equation (9) de
couples from the streamfunction as we are looking at the 
axisymmetric portion of the perturbation, 

(wo)t=Re- l 5(Dwo· (15) 

This corresponds to a small axisymmetric vorticity perturba
tion to W(r,T) which will also evolve on the viscous diffu
sion time scale. 

D. Translation modes 

In this section we show that the evolution of n = 1 per
turbations is constrained to preserve the first moment of vor
ticity. The conservation of the first moment of vorticity is 
then related to existence of translational modes of the linear
ized disturbance equation. We conclude that a general n = 1 
perturbation can be decomposed into a component which 
corresponds to a translation of the vortex (which is nonde
caying) and a component orthogonal to the translation modes 
(which we will argue decays on the shear/diffusion (Re1!3) 
time scale). The translational modes are significant because 
they are nonaxisymmetric perturbations which do not decay 
through the shear/diffusion mechanism. 

It is useful to note that the first moment of vorticity, 

M= J~ooJ~oo wr dx dy, r=(x,y), (16) 

is a conserved quantity of both the full and linearized 
Navier-Stokes equations, related to the conservation of 
momentum.3 Note that M=O for our base state, W(r). Sub
stituting (7) into this expression yields that 

M 1 = fo"" wlrz dr (17) 

A J. Bernoff and J. F. Lingevitch 

Downloaded 02 Mar 2011 to 134.173.130.140. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



must also be conserved. The first moment of the perturba
tion, M 1, is actmilly a measure of the displacement of the 
vortex. To see this we need to examine the structure of the 
linearized equation for the n = 1 mode closely. 

The translational invariance implies that displacing the 
base state, W(r,T), by a distance ro=(xo,yo) corresponds to 
a linear perturbation, 

(18) 

which must be an exact solution to the linearized equations; 
this implies that 

W1 = a Wr , If!! = aW r , (19) 

where 

a=t(xo-iyo), (20) 

is also an exact solution for the n = 1 linearized equations (9) 
and (10). This exact solution provides a useful example for 
verifying our numerical code below. 

To understand the role of this translational mode in the 
evolution, we rewrite the linearized equation in terms of W1, 

Wlt+i92'w1=Re-1 £,l W1 . (21) 

Here 92' is the inviscid linearized operator, 

f7J=n+Q, (22) 

(23) 

where the integral operator, Q, results from inverting £,1 in 
(10) to obtain the streamfunction as an integral of the vortic
ity. 

At this point we need to deal with the difficulty that 9 
through n and W is varying on the slow viscous time T. If 
we restrict ourselves to considering evolutions for t~Re-l, 
we can approximate g> as being independent of time by con
sidering T as a parameter. This allows us to analyze the evo
lution as an eigenvalue problem. 

If eigenmodes of the form 

(24) 

are considered, Eq. (21) can be reduced to the eigenvalue 
problem 

(25) 

where (11) yields boundary conditions 

(26) 

Analyzing the far field leads to the conclusion that W1 is 
exponentially decaying with r. 

To analyze the properties of this eigenvalue problem we 
introduce an inner product, 

(61' ,6/')= f: (w')* w"r dr, (27) 

where * corresponds to complex conjugation. This allows us 
to introduce an adjoint problem 

(28) 
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with boundary conditions, 

wi rxr as r--+O, 
{ 

r, 

wtrx 
1 lIr, 

Here ~ is the adjoint of 9, 

~=n+&, 

f"" dr fr 
d=r 3"" dr rWr • 

r r 0 

if A=O 

as r--+ oo 

(29) 

(30) 

(31) 

The far-field boundary conditions (29) are obtained from 
dominant balances at large r; the algebraic behavior is suffi
cient to cause the boundary terms in the inner product to 
vanish when deriving the adjoint. 

First consider the inviscid problem (Re-1=0); from the 
stability result of DritscheC we know that the inviscid spec
trum is pure imaginary and we expect it to be continuous.ll 

We can also show there is a single zero eigenvalue; this 
follows from solving 9O&[ = 0 to yield a unique null vector, 

(32) 

Note that is exactly the solution generated by the transla
tional invariance (19). Similarly, there is unique adjoint null 
vector which satisfies gff ( wf) t = 0, 

(wf)t=r, (33) 

which is equivalent to noting that the moment M 1 is con
served. Now, if we choose an initial condition with M 1 = 0, 
by the Fredholm alternative it will be orthogonal to the trans
lational mode. This demonstrates the connection between the 
first moment and the translation mode. 

For the viscous problem (Re-1*0), we first note that the 
inviscid adjoint null vector (33), remains a null vector corre
sponding to the conservation of M 1. The inviscid null vector 
is no longer a null vector for the viscous problem, although it 
can be used as the leading-order term in a power series ex
pansion for the viscous null vector in powers of Re - \ the 
reason for this discrepancy is the suppression of the depen
dence on the slow time T. For small Re -1, setting M 1 = 0 can 
still be interpreted as enforcing orthogonality to the transla
tional mode at leading order. 

Finally, note that even if we include the slow time evo
lution of the vortex, a perturbation with M 1 = 0 initially will 
remain so for all time. This can be interpreted as saying that 
a perturbation that is initial perpendicular to the translation 
mode (which evolves on the slow time scale) will remain 
orthogonal for all time. Note that for a perturbation with 
M 1 *0, we can subtract out a multiple of the exact solution 
(32) to yield a problem with M 1 = 0; this can be interpreted 
as being equivalent to perturbing a slightly translated vortex. 

In conclusion, what we have argued in this section is that 
the n = 1 perturbation can be broken into two components; a 
translational mode which is nondecaying, and which van
ishes with the first moment of the vorticity (a conserved 
quantity) and a component orthogonal to the translational 
mode which decays due to the shear/diffusion mechanism as 
will be discussed below. 
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FIG. 1. Gray-scale contour plots of an n = 2 vorticity perturbation to a Lamb 
vortex at Re=105. Black (white) corresponds to a negative (positive) and 
gray is zero vorticity. The six frames (a)-(f) show the vorticity a times r==0, 
10, 20, 30, 40, 50, respectively. 

E. The mixing hypothesis 

The basic hypothesis of this paper can now be stated: 
Mixing hypothesis: If the vorticity distribution 
W(r,T) is subject to a nonaxisymmetric (wo=!fro=O) 
linear perturbation that preserves the first moment of 
vorticity (Ml=O), this perturbation will decay on a 
time scale &(Re1/3). 

The interpretation of this result is that a general perturbation 
to the vortex will result in a slight axisymmetric redistribu
tion of vorticity (the n = 0 perturbation), a slight translation 
of the vortex (the translational mode component of the n = 1 
perturbation), and the remainder will rapidly decay due to 
the mixing of vorticity through a shear/diffusion mechanism 
(see Refs. 8-10, 12, and citations therein). A qualitative un
derstanding of this mechanism can be had by looking at Fig. 
1. Note the initial distribution of vorticity is wound into a 
tight spiral by differential rotation (axial shear). The rapid 
variation in vorticity then acts to enhance diffusion which 
smooths out the variations. The shear/diffusion leads to 
variations on a length scale Re -1/3 and on a time scale Re1/3; 
below we develop a WKB theory for this mechanism when 
vorticity is rapidly radially varying and then verify numeri
cally that perturbations satisfying the conditions of the mix
ing hypothesis eventually decay in this predicted fashion. 
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F. WKB theory 

In this section we give an argument that small-scale 
variations in the vorticity decay rapidly due to the shear/ 
diffusion mechanism. Under the assumption of rapidly vary
ing vorticity perturbations, the streamfiinction-vorticity cou
pling is shown to be small and the vorticity perturbation is 
homogenized like a passive scalar as shown by Lundgren.9 

Here we recast his large time asymptotics using a WKB an
satz of a rapidly varying vorticity perturbation. 

For n"" 1, the action of advection will be to rapidly shear 
the vorticity into the spiral shape mode seen in Fig. 1. We 
can represent the solution as a complex exponential, 

Wn =A (r ,t)eiq,(r,t), (34) 

where we assume that ¢r is negative corresponding to 0 
decreasing in r and make a WKB ansatz of rapid variation, 
Re~ - ¢ r~ 1. The upper limit excludes variation on the dif
fusive scale which we expect would decay on an order unity 
time scale; note this range includes the shear/diffusion scale, 
Rel/3• First we solve Eq. (10) for the streamfunction in terms 
of the vorticity and estimate its size in terms of the WKB 
ansatz (34), 

(35) 

Physically this implies that the vorticity's effect on the flow 
field tends to cancel due to its rapid variation. This cancella
tion suppresses the coupling of the perturbation streamfunc
tion to the vorticity and consequently the decay of these 
perturbations is identical for the passive scalar and the vor
ticity problems. This result generalizes Lundgren'S 
observation9 that at large times the streamfunction decays 
like t- 2 • 

Substituting this ansatz into (9) and expanding yields 

¢t= -nO+&(Re~l ¢,,¢;2), (36) 

A t = - Re~l ¢~A +&(Re-1 A,A¢;3). 

Solving these equations at leading order yields, 

¢(r ,f) = ¢o(r) - nOt, 

A(r,t)=AoCr)exp( - Re- 1 n20~f3/3), 

(37) 

(38) 

(39) 

where <Po, Ao are determined by matching to initial data. 
This allows us to conclude that these rapid variations decay 
on a time scale Rel/3 in agreement with LundgrenY 

The question that remains to be answered is if all the 
perturbations allowed by the conditions of the mixing hy
pothesis eventually cascade down to these rapidly varying 
scales or if there is some anomalous mode with a different 
spatial structure and asymptotic decay rate. Note that the 
existence of the translation mode augurs that other such 
modes may exist. To answer this question we investigate the 
behavior numerically. 

III. NUMERICAL VERIFICATION OF THE MIXING 
HYPOTHESIS 

In this section we give the results of a numerical solution 
to the linearized disturbance equations for the Lamb vortex 
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(9) and (10). We demonstrate that nonaxisymmetric distur
bances that are orthogonal to the translation modes (Le., dis
turbances for which M=O as discussed in Sec. II D) are at
tenuated on the Re1/3 time scale by the shear/viscous
diffusion mechanism discussed in Sec. II. 

We solved the linearized Navier-Stokes equations (9) 
and (10) by a second-order splitting of the advection and 
diffusion operators. Second-order spatial finite differences 
were used; the advection step was implemented explicitly 
with a fourth-order Runge-Kutta scheme using a tridiagonal 
inversion to find the perturbation streamfunction at each step. 
The diffusive step was solved implicitly with a Crank
Nicholson scheme. To test this numerical code we used the 
nontrivial exact solution (19) generated by the translational 
invariance of the Navier-Stokes equations. 

In the numerical results presented below, the slow evo
lution of the Lamb vortex on the Re time scale has been 
suppressed by taking T= 1 in (5). This corresponds to con
sidering perturbations to a vortex with an initial nonzero 
width. We note that since it is shown a posteriori that vor
ticity disturbances decay asymptotically faster than the 
spreading of a Lamb vortex we are justified in neglecting the 
slowly increasing width of the vortex. The mixing hypothesis 
has been tested with the slow spreading included and we 
observe that this does not qualitatively change the results 
presented below. 

Figures l(a)-l(f) are gray-scale contour plots showing 
the mixing of an n = 2 vorticity perturbation to the Lamb 
vortex. The initial vorticity perturbation is proportional to, 

(40) 

and is shown in Fig. 1Ca). Black (white) corresponds to a 
negative (positive) vorticity and gray corresponds to zero 
vorticity, which is shown for a circular domain of radius 6. 
Figures l(b)-I(t) show that on the Rel/3 time scale the initial 
vorticity distribution becomes rapidly radially varying due to 
the shearing along the streamlines of the unperturbed Lamb 
vortex. Once the initial perturbation is sheared to small 
enough radial scales, viscous diffusion can effectively 
smooth the vorticity gradients and the vorticity perturbation 
is homogenized. Note that as time increases the maximum 
amplitude of the vorticity perturbation is expelled toward 
larger radii due to the decrease of shear with increasing ra
dius. 

Figures 2(a) and 2(b) show the numerical data for the 
decay of n= 1,2 vorticity disturbances for Reynolds num
bers in the range 103_106

• We define the quantity, let), as a 
measure of the root-mean-squared vorticity perturbation nor
malized by its initial value, 

( 
f~rl (Un(r,t)j2dr) 1/2 

[(t)= <Xl 1 12 ' for w,,(r,O) dr 
(41) 

The initial condition for the n = 1 disturbance in Fig. 2(a) is 
specifically chosen to be orthogonal to the translational 
modes of the Lamb vortex and is proportional to 

(42) 
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FIG. 2. Decay of root-mean-squared vorticity of a perturbation, I, to a Lamb 
vortex. For large Reynolds numbers the decay data approach an asymptotic 
limiting curve showing that disturbances decay on a Rel/3 time scale. (a) 
Fourier mode n = 1 perturbation that is orthogonal to the translational 
modes. (b) Fourier mode n=2 perturbation. 

and the initial condition for the n = 2 disturbance is given by 
(40). Figures 2(a) and 2(b) are plots of InCl) versus the 
scaled time i3/4 and show that the perturbation decays expo
nentially on the r=t/Rel/3 time scale. For large times, In(l), 
asymptotes to a straight line when graphed with ,f/4 as the 
abscissa. We explain this asymptotic behavior below as re
sulting from the slow decay of the vorticity perturbation in 
the limb of the Lamb vortex (relative to the decay in the core 
of the vortex). Various initial conditions satisfying the con
ditions of the mixing hypothesis have been tested by this 
numerical method and we find that all such disturbances de
cay in a qualitatively similar fashion to those illustrated in 
Figs. 2(a) and 2(b). We interpret this as numerical verifica
tion that a general nonaxisymmetric disturbance which does 
not translate the vortex will be sheared to small radial scales 
and hence decay on the Rel/3 time scale as shown by the 
WKB analysis of Sec. II F. 

It is instructive to compare the decay of vorticity pertur
bations and the mixing of a passive scalar by a Lamb vortex. 
The similarity of the governing equations for these processes 
was discussed in Sec. II B. First we note that far from the 
core of the vortex, the streamline perturbation term Ci.e., 
(Wrlr)I/In] in the linearized Navier-Stokes equations (9) be
comes exponentially small. Neglecting this term, the distur
bance equation, (9), becomes exactly the advection
diffusion equation, (13), with vorticity replacing the 
concentration of the passive scalar. Thus a vorticity distur
bance in the far field should be homogenized exactly analo
gously to a passive scalar. Figures 3(a) and 3(b) show the 
magnitude of a concentration (vorticity) disturbance versus 
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10 

FIG. 3. Comparison of the mixing of a (a) passive scalar and (b) a vorticity 
perturbation by a Lamb vortex. Shown here is the modulus of the concen
tration (vorticity) as a function of radius for Re=103• The initial condition is 
an n = 2 Fourier mode. 

radius in a Lamb vortex at five equally spaced time intervals. 
The initial conditions for the passive scalar and vorticity are 
identical. Initially the disturbance is concentrated in the core 
region of the vortex and the difference between the decay of 
vorticity and the mixing of the passive scalar is evident. The 
maximum of the shear rate, an occurs at r= 1.8_ In Fig. 
3(a) it can be seen that the location of most rapid homogeni
zation coincides with the streamline for which the shear rate 
is maximized in agreement with the WKB analysis_ Although 
the details of the vorticity and passive scalar mixing differ 
strongly within the core, the time scales for mixing are the 
same. For later times when the concentration (vorticity) 
within the core is homogenized the majority of the remaining 
unmixed concentration (vorticity) is in the limb of the vortex 
where the shear rate decays algebraically (ocl/r3). This mi
gration of the region of maximum unmixed vorticity toward 
the limb Can also be observed in Fig. 1. The similarity be
tween the mixing of a passive scalar and vorticity in the limb 
can be seen in Fig. 4 where the root-mean-squared concen
trations (vorticity) asymptote to the same curve for large 
times. 

As noted above and shown in Fig. 2, at large times the 
In(l) data asymptotes to a straight line when graphed versus 
71/4• We have also seen (see Fig. 1) that at large times the 
unmixed vorticity is concentrated in the limb of the vortex 
where the vorticity is mixed like a passive scalar. By an 
argument analogous to the WKB theory described in Sec. 
n F, we have shown elsewhere12 that the nonaxisymmetric 
Fourier components of a passive scalar concentration will 
decay with the same exponential factor given in (38). Here 
we utilize this result and consider an initial vorticity pertur-
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FIG. 4. Comparison of the decay of the root-mean-squared concentration of 
a passive scalar and vorticity for the Lamb vortex with Re=103 and the 
same initial condition as Fig. 3. At large times the data asymptotes to the 
same curve because concentration (vorticity) in the limb of the vortex is 
mixed like a passive scalar. 

bation, wn~rn exp( - r2/4). Substituting Or= -1/( 'lTr3), 

the far-field shear rate, into (38) gives an expression for the 
decay of the far-field vorticity, 

wn-rn exp[ - f(r,t)], (43) 

f(r,t)=(: +3'lT~:~3Re)' (44) 

Using (43) in (41), the leading-order contribution to the in
tegrall(t) at large times is obtained by applying Laplace's 
method. The maximum in the vorticity distribution occurs at 

r=r*=(2n/'lT)1/4-,3IB, (45) 

which we note is monotonically increasing in time. At lead
ing order the root-mean-squared vorticity is approximated by 

& 
In(I)~- \/---:;- -,314+&{n In 7). (46) 

Figure 5 shows the numerical data for the decay of vorticity 
perturbations with Fourier modes n=2,3,4 and Reynolds 
number Re = 106

. The slopes of the long time asymptotes to 
the numerically computed decay data in Fig. 5 are -0.345, 
-0.417, -0.474 for n=2,3,4 which compare with the cor
responding values of -0.375, -0.461, -0.532 given by 
(46). The differences between the asymptotic and numerical 
values scale with n in agreement with the logarithmic correc
tions to (46). 

IV. CONCLUSIONS 

The observation of axisymmetric vortex monopoles in 
large Reynolds number fluid flows leads to the speculation 
about the stability of such solutions to the Navier-Stokes 
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point vortex in a slow spatially varying irrotational flow by 
including the effects of a small viscosity; however, they 
failed to consider the shear/diffusion mechanism discussed 
here. We are presently using the results of this paper to ex
tend their theory for the evolution of a monopole in a back
ground irrotational flow (e.g., straining flow) at large Rey
nolds numbers. The irrotational flow causes the vortex to 
propagate with a velocity determined by the conservation of 
the first moment of vorticity. Nonuniformities in the irrota
tional flow allow for the distortion of the vortex from an 
axisymmetric state. In addition, we are also numerically 
studying the nonlinear stability of the monopole (with Dr. L. 
Rossi). We also hope to extend these ideas to study the sta
bility of large Reynolds number axisymmetric vortex fila-

o ments. 

-25 '--___ --'-___ -L-___ --'---- --'-----'----' 

o u m w 40 50 

r 3/ 4 

FIG. 5. Comparison of the decay of the root-mean-squared vorticity for 
three different Fourier modes (n=2,3,4). The Reynolds number is Re=106 

and the initial conditions are IiJnCCrn exp( -r2/4). At large times the data 
asymptotes to straight lines with logarithmic corrections. 

equations. In this paper we have examined the stability of an 
isolated Lamb vortex to linear disturbances. By a WKB ar
gument we reproduce the result of Lundgren that nonaxisym
metric rapidly varying vorticity perturbations to a circular 
vortex monopole decay rapidly [G(Re1/3) time scale] com
pared to the viscous evolution time scale [&(Re)]. A numeri
cal solution of the linearized equations for a Lamb vortex 
demonstrates that almost all nonaxisymmetric initial condi
tions become rapidly varying due to velocity shear in the 
vortex whence they are effectively dissipated by viscous dif
fusion on the Re1

/
3 time scale. This is the same mechanism 

that enhances the mixing of a passive scalar within a vortex. 
The exceptions to this mixing hypothesis are the vorticity 
perturbations which correspond to infinitesimal translations 
of the vortex monopole. Perturbations of this type are not 
attenuated; they evolve on the viscous time scale and are 
related to conservation of the first moment of vorticity in the 
Navier-Stokes equations. 

This work has implications for the understanding of lo
calized vorticity distributions in external flows. In particular, 
it forms the foundation of our study of the viscous regular
ization of a point vortexY Previously, Ting and his 
collaborators4,5 have investigated the regularization of a 
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