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Rapid response to climate change 
in a marginal sea
K. Schroeder1, J. Chiggiato1, S. A. Josey2, M. Borghini1, S. Aracri1 & S. Sparnocchia  1

The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as 

reported by recent studies. The Sicily Channel is a choke point separating the sea in two main basins, 

the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here, we report and analyse a 

long-term record (1993–2016) of the thermohaline properties of the Intermediate Water that crosses 
the Sicily Channel, showing increasing temperature and salinity trends much stronger than those 

observed at intermediate depths in the global ocean. We investigate the causes of the observed 
trends and in particular determine the role of a changing climate over the Eastern Mediterranean, 
where the Intermediate Water is formed. The long-term Sicily record reveals how fast the response to 
climate change can be in a marginal sea like the Mediterranean Sea compared to the global ocean, and 

demonstrates the essential role of long time series in the ocean.

Because of their small volume to surface area ratio, marginal seas tend to respond to global warming and to 
changes in freshwater inputs (via evaporation-precipitation-river runo�, E-P-R) much more strongly than the 
open ocean. �e Mediterranean Sea (Fig. 1A) is an outstanding example for this: it has much shorter turnover 
timescales (1/10th) than the global ocean1 and it is an evaporation-dominated region for which a further decrease 
in precipitation is projected in the twenty-�rst century as a result of anthropogenic climate change2, 3. In addition, 
the second half of the twentieth century has seen a high rate of dam constructions for Mediterranean rivers, the 
building of the Aswan Dam in 1964 being the most impactful intervention, which greatly reduced (by about 50%, 
according to ref. 4) the freshwater input to the sea.

�e Mediterranean is connected to the global ocean by the Strait of Gibraltar (sill depth ≈300 m) and is 
formed by several regional sub-basins, separated by a number of channels5. The most important one, after 
Gibraltar, is the Sicily Channel (SC, sill depth ≈500 m, Fig. 1B and C), a key choke point, where all water masses 
exchanged between Eastern Mediterranean (EMED) and Western Mediterranean (WMED) can be intercepted. 
�is makes it possible to observe the variability of heat and salt carried by the most ubiquitous Mediterranean 
water mass, the Intermediate Water (IW), which forms in the EMED and �ows towards the WMED, eventually 
exiting towards the Atlantic Ocean.

�e in�ow of fresh surface Atlantic Water (AW), the evaporation excess over the basin and strong heat losses 
during winter in speci�c areas, drive an antiestuarine circulation, i.e. a circulation characterized by the in�ow 
of low-salinity surface water over a deeper out�owing, dense, high-salinity water layer (the IW). As the AW 
spreads through the basin it is modi�ed: in the EMED it is transformed into salty and warm IW, called Levantine 
Intermediate Water (LIW) or Cretan Intermediate Water (CIW), depending on the speci�c formation location 
(Levantine or Cretan Sea, respectively, Fig. 1A). �e formation of these water masses is driven by wind-induced 
strong evaporation and heat loss during winter, both processes increasing the density of the surface layer until 
it sinks via convection to an intermediate depth (about 150–300 m)6. �e LIW/CIW layer is identi�able in the 
whole Mediterranean Sea by a subsurface S maximum. While �owing back towards the WMED, crossing the 
SC, it tends to gradually lose its characteristics, due to dilution with adjacent water masses, becoming thus less 
salty and less warm (and less oxygenated due to respiration processes). A�er the SC the LIW/CIW is topograph-
ically forced to steer north-eastward and enter directly the Tyrrhenian Sea, and eventually reaches the northern 
WMED. �e role of LIW/CIW is crucial in determining the amount and characteristics of the deep waters7, that 
are formed in and ventilate both the EMED and the WMED (see locations in Fig. 1A). �e heat and salt content 
of the IW preconditions the formation process and in the long-term determines the thermohaline characteristics 
of the deep waters. Finally, the LIW/CIW forms the bulk of the Mediterranean Out�owing Water (MOW), which 
exits through Gibraltar and settles down to about 1000 m in the Atlantic due to its high density. Multidecadal 
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salinity increases of the order of 0.0013 yr−1 have been observed in the Atlantic Ocean at these depths between 
30°N and 40°N, corresponding to the heart of the MOW in�uence, and have been ascribed by refs 8 and 9 to the 
salinity increases occurring in the Mediterranean, which are shown in the following section.

Results
�e time series of temperature (T) and salinity (S) at 400 m depth show notable interannual variations and 
long-term trends, with both tracers co-varying (Fig. 2). Since the beginning of the time series (22 years ago), 
the T of LIW/CIW has increased by about 0.53 °C and its S by about 0.13, thus with mean trends of 0.024 °C yr−1 
and 0.006 yr−1, respectively. It is evident in Fig. 2 that the thermohaline trends are subject to changes, slowdowns 
and accelerations throughout the 22 years, related to a number of forcings, some of which have been explored in 
previous studies [e.g refs 10 and 11.] and others that will be discussed here for the �rst time.

A change point analysis12 identi�es an initial period, up to 1997, when T decreased (−0.01 °C yr−1). �is 
period was under the in�uence of the Eastern Mediterranean Transient (EMT)13, during which an upli�ing of old 
Eastern Mediterranean Deep Water allowed its upper part to cross the SC, with a consequent T reduction14, 15. �e 
S signal was less intense, visible mainly in 1991–1993, prior to the start of the mooring record14. �e successively 
observed S increase, up to mid-2000, is consistent with previous studies14, 16, 17.

Among others18, have related the internal EMED salt distribution to a periodic reversal of the Northern Ionian 
Gyre (NIG, see Fig. 1A)19. An anticyclonic phase (that occurred during 1993–1997 and 2006–2011)19 inhibits the 
AW advection to the southern EMED and favours its de�ection towards the Adriatic. Conversely a cyclonic phase 
(that occurred during 1998–2005)19 leads to a stronger dilution in the southern EMED. Consequently, an anticy-
clonic NIG favours the production of salty and warm LIW/CIW, and a cyclonic NIG does not. Other authors20, 21  

Figure 1. (A) �e Mediterranean Sea where deep (yellowish ellipses) and intermediate (reddish ellipses) 
water formation sites are highlighted as well as the circulation schemes for the Atlantic Water (AW, light blue 
arrow) and the Levantine/Cretan Intermediate Waters (LIW/CIW, red arrow), the black rectangle indicates 
the monitored area; (B) zoom on the Sicily Channel where the positions of the two moorings (C01 and 
C02) are shown (red diamonds), that allow both branches of the bifurcated LIW/CIW �ow (red arrow) to 
be intercepted; (C) vertical schematic section of the 150 km-long transect between Tunisia and Sicily (black 
line in (B)), showing the two-layer system of water masses �owing in opposite directions (AW in light blue 
�owing eastward; IW in orange �owing westward, where the darker orange indicates higher salinity, the salinity 
maximum identifying the core of the IW) and the positions of instruments along the C01 and C02 lines located 
in two parallel deep trenches. �e data discussed in the paper come from the conductivity-temperature sensors 
at about 400 m depth, located in the intermediate water (IW) (the yellow stars). Maps were generated by using 
MATLAB 7.1 http://uk.mathworks.com/products/matlab.

http://uk.mathworks.com/products/matlab


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 4065  | DOI:10.1038/s41598-017-04455-5

prefer to speak about a “thermohaline pump”: a quasi-decadal oscillation between competing dense water for-
mation regions that forces the AW to be mainly advected to the Levantine or the Adriatic. �e main di�erence 
between these two postulated mechanisms consists in that cause and e�ect are inverted. What matters here is that 
they act at the same temporal scales and have the same e�ect on LIW/CIW. �is e�ect seems to be detected in the 
SC choke point with a temporal lag of about 4–5 years, although this interpretation remains unaddressed yet and 
deserves further research.

During fall 1997 – summer 2004 an increase of the T trend occurred (0.055 °C yr−1). �e S time series does not 
cover most of this period, but the approximate raise is of the order of 0.05 in 7 years. �is period comes immedi-
ately a�er a period of anticyclonic NIG and the augmented trends in the SC are likely to be a response to a warmer 
and saltier IW production during this phase. In this context, we note that22 reports two major peaks in LIW T and 
S in the Levantine (1992 and 2008), and relate them to a contemporary anticyclonic regime of NIG.

�e period summer 2004 – winter 2010/2011 sees an abrupt end of the increasing trends in the SC. �is 
period follows a long cyclonic phase of NIG, which is the most plausible candidate to explain this behaviour. Since 
then (winter 2010/11 – spring 2016) the thermohaline trends of LIW/CIW have undergone a dramatic increase, 
each year reaching higher peaks (during the 22 years the maximum values of T and S were reached in spring 2015, 
with Tmax = 14.86 °C, and spring 2016, with Smax = 38.9, respectively). �e T and S trends are now about 2.5 times 
stronger than the overall trends: 0.064 °C yr−1 and 0.014 yr−1, respectively. �e NIG in 2006–2011 was indeed 
anticyclonic again, which might have favoured the production of saltier and warmer IW.

Previous studies reported much lower trends for the IW in the Mediterranean Sea, e.g ref. 23. reported mean 
trends for 1943–2000 of 0.004 °C yr−1 and 0.002 yr−1, respectively for T and S, in the WMED. Using only the CTD 
data collected in the SC (red dots in Fig. 2), we found slightly (but not signi�cantly) lower trends (0.02  °C yr−1, 
for T, and 0.005 yr−1, for S), which are still higher that those calculated by ref. 23. �ese di�erences are potentially 
related to at least three aspects: (i) the trend increased recently, during 2010–2016 (it has more than doubled the 
longer term trend values), (ii) the SC record provides an “integral“ assessment of what happens in the EMED, 
while most previous studies were focusing on di�erent regions (mainly of the WMED), where the signal carried 
by the IW could have been diluted by spreading along di�erent pathways, and (iii) assessing long term trends 
based on continuous eulerian measurements gives di�erent results to assessments based on sparse, in time and 
space, CTD casts. Indeed, only the very recent study by ref. 22, analysing CTD data in the Levantine basin from 
1979 to 2014, reports trends for LIW T and S that are comparable to those reported here, i.e. 0.03 °C yr−1 and 
0.005 yr−1.

Furthermore, the trends observed in the SC are at least one order of magnitude greater than those reported 
for the global ocean intermediate layer (ref. 24 dT/dt = 0.003 °C yr−1, 0–700 m, global, 1955–2010; ref. 25 dT/

Figure 2. Time series (3-hourly in light grey) of (A) temperature and (B) practical salinity at 400 m depth 
(mooring C02). Red dots indicate CTD measurements from ship during servicing. �e monthly mean time-
series is shown in black. �e green line represents the long-term trend line while short-term trends found 
for di�erent periods detected by means of the change point analysis are shown in orange. For each trend line 
the trend value is given, if signi�cant, in the same colour as the corresponding line. �e vertical dashed lines 
indicate change points.
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dt = 0.0006–0.0013 °C yr−1, 100–300 m, global, 2004–2013; ref. 26 dT/dt = 0.005 °C yr−1, 0–500 m, global, 2006–
2013; ref. 27 dS/dt = 0.0002–0.0006 yr−1, 200–700 m, Atlantic Ocean).

Overall, the 22-year-long record shows a superposition of di�erent time scales of variability: (i) high fre-
quency episodes (daily to annual, not discussed), (ii) prolonged periods (6–7 years) of decreased/increased trends 
(ascribed to internal variability, exceptionally intense wintertime atmospheric forcings, NIG reversals, EMT), and 
(iii) longer term increasing trends (>10 years). Now that the time series is growing longer, revealing the ceaseless 
nature of T and S increases, the e�ect of global warming (and in particular of “enhanced regional warming in a 
hot temperature extreme” like the Mediterranean region, see ref. 28) needs to be taken into account, as will be 
discussed in the following section.

Discussion
In order to explain long-term changes in the properties of a water mass transformation product, it is necessary 
to focus on the “hydrographic” preconditioning29, 30: i.e. the (increased) heat content and salinity of the water 
masses that contribute to the water mass formation. �e (atmospheric and oceanographic) conditions within the 
formation areas during winter are critical in determining the properties of the water formed in that particular 
year. In fact, the process of water mass formations is localized in time and space and the newly formed water is 
rapidly advected out of the area31. �is is why the long-term forcing that causes the observed overall trends in 
the LIW/CIW should not be sought in their formation regions, but rather in those regions that contribute to set 
the “hydrographic” preconditioning, i.e. “upstream” of the formation area. A warmer and drier regional climate 
in the EMED, as well as a reduced freshwater input from rivers10, 11, favours the formation of warmer and saltier 
IW, given that LIW/CIW is formed by transformation (densi�cation due to evaporation and cooling) and sink-
ing of Levantine Surface Water (LSW), either in the Levantine6 or in the Cretan Sea32. LSW originates from the 
modi�cation of AW along its path through the Ionian and the Levantine, where it becomes particularly warm 
and salty. Hence the climatic conditions along this path are likely to be crucial in eventually determine the heat 
content and the salinity of Mediterranean IW. In this regard, it is worth noting that33 reports a recent drought in 
the Levant (since 1998) which is the driest in the past 500 years. �e small size of the Mediterranean and its being 
enclosed between continents renders this “miniature ocean”1 particularly sensitive to changes in external forcings 
and climate. Indeed, recent studies indicate the Mediterranean to be one of the most responsive areas to climate 
change34.

Long-term analyses of fixed moorings, ARGO floats and ship-based CTD data21, 22, 35, 36 suggested that 
there are important intermediate T and S peaks in both areas (Levantine, Cretan). In particular36, analyzed the 
long-term variability of the water column properties in the Cretan Sea (1986–2014) based on historical CTDs 
and found that a�er S peaks in 1993 and 1999, between 2008 and 2011 the S of CIW has increased by 0.2–0.25. 
According to refs 21 and 35 this is a manifestation of the salinity preconditioning of the Cretan Sea (due to mech-
anisms such as NIG reversals or the thermohaline pump mentioned before), i.e. a recurrent phenomenon. But 
what is not considered in these studies is that there is also a tendency of the peaks (in the Levantine and in the 
Cretan Sea, as appears from the datasets published by refs 21, 35 and 36) to reach greater values, whose causes 
cannot be found in the local hydrographic and atmospheric conditions. Instead they occur “upstream” re�ecting 
the increasingly strong water mass transformation that AW and LSW experience while on their path towards the 
formation regions of LIW/CIW. �e same tendency is observed in the SC where from our time series we esti-
mated a trend in the T and S peaks by �tting a linear regression model to the annual maximum T and S values: in 
both cases a signi�cant (p-values ≪ 0.01) increasing trend of 0.036 °C yr−1 and 0.0046 yr−1, for T peaks (R2 = 0.84) 
and S peaks (R2 = 0.75) respectively, was found.

So, in contrast to other studies that explored (winter) atmospheric conditions over the Cretan or the 
Levantine, we investigate whether the transformation of AW into a saltier and warmer LSW in recent decades 
is likely due to changes in the net evaporation (E-P) over the EMED, and in particular in its southern part. Also 
continental freshwater input (R) reduction has been considered as a plausible candidate to induce salini�cation 
of the Mediterranean waters [e.g ref. 10]: the construction of major dams during the 1950s was able to produce 
signi�cant S increases from surface to bottom in the EMED. �e reduction of R may also play a role in the for-
mation of warmer and saltier water masses [e.g refs 10, 11, 37 and 38, such studies indicate that environmental 
driving forces should also be considered alongside climatic factors. However, the impacts of dam construction are 
no longer felt a�er about 40 years37. Consequently, damming in the 1950s is not a major in�uence in the period 
that we are considering and the cause of the recent changes must be found elsewhere than river runo�. �us, here 
we focus on the E-P components of the freshwater budget. �e change in the Mediterranean surface E-P �eld 
from ERA-Interim, together with E and P component changes, are shown in Fig. 3. �e maps show the di�erence 
of 2000–2015 from 1990–1999 (these periods are chosen as the time series in Fig. 2B reveals a strong increase 
in salinity values between the 1990s and 2000s). In particular, the E-P increase between the two periods in the 
south-eastern Mediterranean (Fig. 3a) is mostly due to an E increase (Fig. 3b) that is reinforced to some extent by 
a slight reduction in P (Fig. 3c). �e �gure shows a change in E-P in the whole southern part of the EMED, that 
coincides with the eastward pathway of the surface water, a pattern that is consistent with increasing warming 
and salini�cation of this layer and a consequent T and S increase in the IW in the SC. Further support for this 
conclusion is provided by the E-P anomaly time series (Fig. 4) for a box that covers the area of the AW pathway 
in the southern EMED (black outline in Fig. 3, note the time period 1979–2015 has been selected as it covers all 
available data from the ERA-Interim reanalysis employed for our investigation). A noticeable switch in the sign 
of the anomalies is evident in 1998 (coherent with the �ndings by ref. 33) and is maintained through to 2014 
revealing a prolonged intensi�cation of net evaporation in this region.

�e increasing import of salt and heat from the EMED to the WMED, via the IW, will have (and already had) 
signi�cant consequences. Once advected to the dense water formation region in the Gulf of Lion, more salt and 
heat in the IW will further enhance the tendency of this site to produce warmer and saltier deep waters30. �is 
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process started in 2005 with the advent of the Western Mediterranean Transition (WMT1) and will ultimately 
have an impact on the MOW8, 9. �e strong changes in the Mediterranean Sea stand out when compared with 
globally averaged trends, indicating the potential for regional ampli�cation of climate signals. Note that it is also 
possible that regional modes of climate variability, principally the North Atlantic Oscillation and East Atlantic 
Pattern, play some role through their impact on regional evaporation and precipitation. However, for the period 
from the early 1990s to mid 2010s, the NAO and EAP show strong interannual variability in their index values 
rather than a prolonged trend39, thus unforced climate variability arising from these modes is not expected to be 
a signi�cant factor in our analysis.

�e ongoing climate change has certainly increased the scienti�c interest in time series analyses and their 
importance is increasingly recognized even at the political level. �is time series contributes to explicitly show 
how long oceanographic time series are fundamental for climate studies. Nonetheless, due to their high mainte-
nance costs and the di�culty in establishing and maintaining an observing system they are still widely lacking, 
both at the global scale and in marginal seas. It is important to stress that an understanding of physical (as well as 
chemical and biological) processes in the oceans requires regular and long-term observations, that enable us to 
separate real long-term trends in environmental drivers from the natural variability of the system.

Methods
�e SC site has been monitored for thermohaline properties and water mass exchanges since 1993 by two moor-
ings located within parallel trenches in the 150 km-long transect between Tunisia and Sicily (Fig. 1C). �ey form 
two of the longest Mediterranean time series of thermohaline properties and are part of the HYDROCHANGES 
network (Mediterranean Science Commission, CIESM)40. Due to the Coriolis e�ect, the IW core at the sill that 

Figure 3. Di�erence of ERA-Interim annual mean surface freshwater �ux and its components averaged over 
2000–2015 from 1990–1999. (a) Evaporation – Precipitation (mm yr−1), (b) Evaporation (mm yr−1) and (c) 
Precipitation (mm yr−1). �e black outline shows the south-eastern Mediterranean box used to determine the 
time series shown in Fig. 4.

Figure 4. ERA-Interim annual mean surface freshwater �ux (E-P in mm yr−1) anomaly (relative to 1979–2013) 
for the south-eastern Mediterranean box shown in Fig. 3.
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funnel its westward �ow is squeezed to the right, in both trenches (Fig. 1B), with the 400 m deep record in the 
north-eastern mooring (called C01) showing slightly warmer (by about 0.04 °C) and saltier (by about 0.01) values 
than the south-western one (called C02). As the temperature (T) and salinity (S) time series at both sites are very 
similar only the C02 time series is shown here. As an additional point of reference, Fig. 2 shows also the values 
retrieved by CTD casts performed at the mooring location during each servicing cruise. �e nominal depth of 
the instruments is 400 m, which is however subject to slight variations between servicing of the mooring, of the 
order of few tens of meters.

From 1993 to November 2002 temperature and conductivity have been recorded by means of Aanderaa RCM7 
current meters, with an accuracy of 0.05 °C and 0.05 for T and S, respectively. Since November 2002, SBE37 
probes have been used, which further improved the quality of the measurements, yielding 0.002 °C and 0.001 
for T and S, respectively. Both types of instruments (RCM and SBE) have been regularly calibrated (at least on 
an annual basis). �e order of magnitude of the changes observed over the 22 years is such that the di�erence in 
accuracy does not a�ect the computation of trends. �ese trends have been computed using linear regression on 
monthly means and t-tested for signi�cance (α = 0.01) using MATLAB®. In order to detect short-term trends, 
a change-point analysis12 has been run on monthly means of T using MATLAB®, with gaps �lled with linear 
interpolation. A�er visual inspection and following the posterior distribution of selecting a given number of 
change points, the maximum number (kmax in ref. 12) was set to 3, while the temporal distance between change 
points (dmin in ref. 12) was set to 1 year. Results are rather insensitive to other choices of dmin, e.g. up to 5 years. 
A dmin longer than 5 years instead would not be consistent with the selected kmax considering the length of the 
time-series. Due to substantial gaps in the S time-series, the change points detected based on T time-series have 
been assumed to be the same for the S time-series.

ERA-Interim evaporation and precipitation �elds have been obtained from the European Centre for Medium 
Range Weather Forecasting (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim). Anomalies have 
been calculated with respect to the period 1979–2013.
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