

Open access • Posted Content • DOI:10.1101/2020.10.04.20206466

Rapid SARS-CoV-2 antigen detection by immunofluorescence - a new tool to detect infectivity — Source link [2]

Lorena Porte, Paulette Legarraga, Mirentxu Iruretagoyena, Valeska Vollrath ...+4 more authors

Institutions: Universidad del Desarrollo

Published on: 06 Oct 2020 - medRxiv (Cold Spring Harbor Laboratory Press)

Topics: Infectivity and Immunofluorescence

Related papers:

- Antigen-Based Testing but Not Real-Time Polymerase Chain Reaction Correlates With Severe Acute Respiratory Syndrome Coronavirus 2 Viral Culture.
- Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit.
- Evaluating a novel, highly sensitive, and quantitative reagent for detecting SARS-CoV-2 antigen.
- Antigen-based testing but not real-time PCR correlates with SARS-CoV-2 virus culture.
- Evaluation of clinical utility of novel coronavirus antigen detection reagent, Espline® SARS-CoV-2.

1	Rapid SARS-CoV-2 antigen detection by immunofluorescence – a new tool to detect
2	infectivity
3	
4	Lorena Porte ^{1,*} , Paulette Legarraga ¹ , Mirentxu Iruretagoyena ¹ , Valeska Vollrath ¹ , Gabriel
5	Pizarro ¹ , José M. Munita ^{2,3,4} , Rafael Araos ^{2,3,4} , Thomas Weitzel ^{1,3,*}
6	
7	¹ Laboratorio Clínico, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
8	² Servicio de Infectología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana,
9	Universidad del Desarrollo, Santiago, Chile
10	³ Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana,
11	Universidad del Desarrollo, Santiago, Chile
12	⁴ Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R),
13	Santiago, Chile
14	
15	*Correspondence: L. Porte (lporte@alemana.cl) and T. Weitzel (thomas.weitzel@gmail.com)
16	
17	Abstract
18	The evaluated SARS-CoV-2 antigen rapid fluorescence immunoassays reliably identified
19	patients within the first 5 days of symptom onset, when respiratory secretions carried high viral
20	loads. This high performance suggests that these tests might play an important role for future
21	PCR-independent strategies to detect early or infective cases.
22	

23 Key words: SARS-CoV-2; Covid-19; Diagnosis; Rapid diagnostic test; Antigen detection

24 Introduction

25 Since its emergence in 2019, the SARS-CoV-2 pandemic has resulted in over 30 million 26 confirmed cases and almost 1 million deaths worldwide, as of September 2020 27 (https://covid19.who.int). Early detection of cases by highly sensitive and specific real-time 28 reverse-transcription polymerase chain reaction (RT-PCR) is the currently recommended 29 diagnostic strategy [1]. However, the high cost of RT-PCR, shortage of reagents, and need for 30 trained personnel have limited the testing capacities of laboratories to provide results in a timely 31 manner [2]. Thus, alternative diagnostic tools allowing the fast testing of large numbers of 32 samples are of high priority [3]. In addition, new aspects of SARS-CoV-2 testing include the 33 ability to evaluate infectivity to help tailor control measures of known or suspected Covid-19 34 cases [4]. 35 Rapid antigen detection tests (Ag-RDT) using immunochromatographic tests (ICT) or 36 fluorescent immunoassays (FIA) have recently become available; many of which are CE-IVD 37 licensed and some have received FDA emergency use authorization (EUA) [5]. As previously 38 suggested, FIAs are highly specific and can reach remarkably high sensitivities, if applied in 39 samples from early phases of infection or with high viral loads [6,7]. Here we present the 40 performance of two novel FIA automated antigen detection systems in samples from Covid-19 41 patients presenting within 5 days of symptom onset. 42 43 Material and methods

Samples derived from patients attending Clínica Alemana in Santiago, Chile, for Covid19 testing. Specimens consisted of naso-oropharyngeal flocked swabs obtained by trained
personnel and placed in universal transport media (UTM-RT[®] System, Copan Diagnostics,

47	Murrieta, CA, USA). Samples were examined for SARS-CoV-2 RNA by RT-PCR assay
48	(COVID-19 Genesig [®] , Primerdesign Ltd., Chander's Ford, UK). Samples exhibiting exponential
49	amplification curves and cycle thresholds (Ct) values ≤ 40 were considered positive.
50	RT-PCR characterized UTM samples were aliquoted and kept at -80° C until analysis by
51	the two FIA kits, "SOFIA SARS Antigen FIA" (Quidel Corporation, San Diego, CA, USA) and
52	"STANDARD [®] F COVID-19 Ag FIA" (SD Biosensor Inc., Gyeonggi-do, Republic of Korea).
53	Both tests detect SARS-CoV-2 nucleocapsid protein by lateral flow immunofluorescence, which
54	is interpreted by automated analysers (SOFIA 2, Quidel Corporation; F2400, SD Biosensor Inc.).
55	Both kits are CE-IVD labelled; Quidel recently received FDA EUA. Manufacturers state that
56	both tests should be performed using nasopharyngeal swabs collected from symptomatic
57	individuals within 5 days of symptom onset. The use of samples stored in certain brands of
58	transport media (including Copan UTM) is permitted for the SD Biosensor assay; the Quidel test
59	initially also allowed using UTM, but a recent instruction update discourages the use of
60	prediluted samples [8].
61	For the evaluation, 32 RT-PCR positive UTM samples, all collected within the first 5
62	days after symptom onset, and 32 negative specimens were selected. All positive samples were
63	from symptomatic patients, 12 negative samples were from asymptomatic patients screened
64	before surgery. Some of the positive $(n = 27)$ and negative samples $(n = 19)$ had been used in a
65	previous evaluation [7]. Assays were performed using the same sample aliquot, following
66	manufacturers' instructions, by the same laboratory personnel, who were blinded to RT-PCR
67	results. In brief, specimens were mixed with an extraction reagent, dispensed into the cassette's
68	sample well, and read after incubation by an instrument. All procedures, except the reading, were
69	performed under a BSL2 cabinet. Results were compared to those of RT-PCR as reference

70	method; in case of discordant results, tests were repeated. Demographic and clinical data were
71	obtained from mandatory notification forms and analysed in an anonymized manner. Statistical
72	analysis considered the calculation of sensitivity, specificity, and accuracy using standard
73	formulas, and Wilson score Confidence Interval at 95% (OpenEpi version 3.01). Test
74	performance was evaluated for all samples and for those with high viral loads (Ct \leq 25), as
75	previously described [9]. Kits and analysers were provided by manufacturers at reduced costs for
76	evaluation purposes. The study was approved by the institutional review board (Comité Etico
77	Científico, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile)
78	and a waiver of informed consent was granted.
79 80	Results
00	Neguris
81	The study included a total of 64 samples, 32 were RT-PCR positive and 32 RT-PCR
82	negative. The median age was 39 years (IQR 36.7-57) and 52% were male. Median days from
83	symptom onset to RT-PCR testing of positive and negative cases were 2 (IQR 1-3) and 1 (IQR
84	0.75-4), respectively. Ct values had a median of 17.95 (IQR, 16.4-22.4); 29/32 samples (90.6%)
85	had a Ct \leq 25.
86	Both assays demonstrated an overall sensitivity >90%, reaching 100% for samples with
87	high viral loads (Table 1). False negative results were observed with the Quidel and SD
88	Biosensor assays in two and three samples, respectively, which had Cts of 30.89 to 32.57 and
89	were taken on the fourth or fifth day after symptom onset. Specificity was 96.7% for both tests,
90	i.e. both kits displayed a single false positive result, from two distinct symptomatic RT-PCT
91	negative cases. Both assays were user friendly, included ready-to-use reagents and required little
92	hands-on time. Moreover, analysers were easy-to-use, stored the results, and included options for
93	QR coding, printing, and connection to laboratory information systems.

94 Discussion

95 At present, RT-PCR is the recommended diagnostic method in patients with 96 suspected SARS-CoV-2 infection [1]. However, material shortages and laboratory capacity 97 limitations, especially during high transmission situations, have caused significant problems and 98 led to the emergence of various new PCR-independent diagnostics [10]. Antigen-based assays 99 are among the most recent developments, but peer-reviewed evaluations of their diagnostic 100 performance are scarce. Hence, their role within the routine diagnostic workup is yet not defined 101 [9,11]. Since antigen detection per se has a lower sensitivity than RT-PCR, it will most likely not 102 replace it [9]. However, the results of this and former studies indicate that antigen detection by 103 immunofluorescence, especially when used with an automated reader, has an excellent sensitivity to detect SARS-CoV-2 in samples with estimated viral loads above $\sim 10^6$ copies/mL 104 105 (Ct values ≤ 25) [9], which are found in pre-symptomatic (1-3 days before symptom onset) and 106 early symptomatic Covid-19 cases (5-7 days after symptom onset) [9,12-14]. According to recent 107 modelling studies, elevated viral titers are associated to infectivity [15]. This is in accordance 108 with *in vitro* experiments, which showed no viral growth from samples with Cts >24 or taken >8 days after symptom onset [16,17]. A viral load of 10^6 copies/mL has therefore been suggested as 109 110 the limit of infectivity for clinical practice [18]. However, until the exact threshold of 111 contagiousness is known, other authors have considered a more conservative approach (1,000 112 copies/mL) [19].

For samples with high viral loads both evaluated tests were 100% sensitive. In our panel of positive samples, false negatives only occurred with Cts >30, which translates to viral loads $<10^4$ for the used RT-PCR protocol [20], although this finding has to be confirmed with a larger number of specimens. The high-performance value coincides with recent studies of a similar FIA

117	with automated reading (BioEasy), which demonstrated sensitivities of 100% for samples with
118	Cts \leq 25 [6,7] and of 98% for samples with Cts \leq 30 [21]. In contrast, immunochromatographic
119	SARS-CoV-2 antigen tests demonstrated lower sensitivity values of 74%-85% for samples with
120	Cts ≤25 [7,22,23].
121	Although additional studies with larger numbers of samples are needed, the excellent
122	performance data of FIA Ag-RDTs suggest their potential use in the following scenarios, when
123	RT-PCR is unavailable or impractical: 1) closed or semi-closed remote communities such as
124	cruise ships or military camps [9], 2) High-risk congregate facilities including schools, care-
125	homes, dormitories, etc., when testing daily or every other day could reduce secondary infections
126	by 100% or 90%, respectively [24], and 3) screening of asymptomatic attendees at potential
127	superspreader events, like conferences, weddings, and sports or cultural events. In the future, due
128	to their high sensitivity to detect infective patients, FIA Ag-RDTs might also play an important
129	role within "test-out" strategies, i.e. the early release of suspected cases from self-isolation or
130	shortening quarantine for proven cases.
131	
132	Funding
133	This research did not receive any specific grant from funding agencies in the public,
134	commercial, or not-for-profit sectors.
135	
136	CRediT authorship contribution statement
137	L. Porte: Conceptualization, Data curation, Formal analysis, Investigation, Methodology,
138	Project administration, Supervision, Validation, Writing - original draft, Writing - review &

139 editing. **P. Legarraga:** Formal analysis, Supervision, Validation, Writing - review & editing. **M.**

- 140 Iruretagoyena: Formal analysis, Validation, Writing review & editing. G. Pizarro: Data
- 141 curation, Investigation. V. Vollrath: Supervision, Validation, Writing review & editing. J.M.
- 142 Munita: Validation, Writing review & editing. R. Araos: Validation, Writing review &
- 143 editing. T. Weitzel: Conceptualization, Formal analysis, Methodology, Project administration,
- 144 Validation, Writing original draft, Writing review & editing.
- 145
- 146 **Declaration of competing interest**
- 147 There is no conflict of interest.
- 148

Antigen detecti	RT-PCR			Sensitivity				Specificity		Accuracy	
		Positive			All		High VL ^a		67		<u> </u>
Assay	Result	All	High VL ^a	Neg.	%	CI95%	%	CI95%	%	CI95%	%
Sofia SARS	Positive	30	27	1	93.8	79.9-98.3	100	87.5-100	96.9	84.3-99.4	95.3
Antigen FIA	Negative	2	0	31							
Standard F	Positive	29	27	1	90.6	75.8-96.8	100	87.5-100	96.9	84.3-99.4	93.8
COVID-19 Ag FIA	Negative	3	0	31							

149 **Table 1.** Performance of two automated SARS-CoV-2 antigen detection assays compared to RT-PCR

150 VL, viral load; CI95%, confidence interval 95%; Neg., negative

151 ^aSamples with Ct \leq 25

153 **References**

154 1. World Health Organization. Diagnostic testing for SARS-CoV-2: Interim guidance. 155 Available at: https://www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2 156 2. World Health Organization. Advice on the use of point-of-care immunodiagnostic tests 157 for COVID-19: Scientific brief. Available at: https://www.who.int/news-158 room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-159 for-covid-19 160 3. European Centre for Disease Prevention and Control. COVID-19 testing strategies and 161 objectives. 15 September 2020. ECDC: Stockholm; 2020. 162 4. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of SARS-CoV-2 infectivity: when is it safe to discontinue isolation. 2020; https://academic.oup.com/cid/advance-163 164 article/doi/10.1093/cid/ciaa1249/5896916 165 5. Foundation for Innovative New Diagnostics. SARS-CoV-2 Diagnostic pipeline 2020. 166 Available at: https://www.finddx.org/covid-19/pipeline/ 167 6. Porte L, Legarraga P, Vollrath V et al. Evaluation of a novel antigen-based rapid 168 detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis 169 2020; 99:328-333. doi: 10.1016/j.ijid.2020.05.098 170 7. Weitzel T, Legarraga P, Iruretagoyena M et al. Head-to-head comparison of four 171 antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory 172 samples. Preprint doi: 10.1101/2020.05.27.119255 173 8. Quidel Sofia SARS Antigen FIA Package Insert. Available at: 174 https://www.guidel.com/immunoassays/rapid-sars-tests/sofia-sars-antigen-fia 175 9. World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection 176 using rapid immunoassays: Interim guidance. 177 https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-178 2infection-using-rapid-immunoassays 179 10. Cheng MP, Papenburg J, Desjardins M et al. Diagnostic testing for severe acute 180 respiratory syndrome-related coronavirus-2: A narrative review. Ann Intern Med 13 April 181 2020; doi:10.7326/M20-1301

182	11. Dinnes J, Deeks JJ, Adriano A et al. Rapid, point-of-care antigen and molecular-based
183	tests for diagnosis of SARS-CoV-2 infection. Cochrane Database of Systematic Reviews
184	2020, Issue 8. Art. No.: CD013705. DOI: 10.1002/14651858.CD013705.
185	12. He X, Lau E, Wu P et al. Temporal dynamics in viral shedding and transmissibility of
186	COVID-19. Nature Medicine 2020; 26:1491-1493. doi:10.1038/s41591-020-0869-5
187	13. Lee CY, Lin RTP, Renia L, Ng LFP. Serological approaches for COVID-19:
188	Epidemiologic perspective on surveillance and control. Front Immunol 2020;11:879.
189	14. Zou L, Ruan F, Huang M et al. SARS-CoV-2 viral load in upper respiratory specimens of
190	infected patients. N Engl J Med 2020; 382:12
191	15. Larremore DB, Wilder B, Lester E et al. Test sensitivity is secondary to frequency and
192	turnaround time for COVID-19 surveillance. Preprint doi: 10.1101/2020.06.22.20136309
193	16. Bullard J, Dust K, Funk D et al. Predicting infectious SARS-CoV-2 from diagnostic
194	samples. Clin Infect Dis 2020; ciaa638. doi: 10.1093/cid/ciaa638.
195	17. Wölfel R, Corman VM, Guggemos W et al. Virological assessment of hospitalized
196	patients with COVID-2019. Nature 2020; 581(7809):465-469. doi:10.1038/s41586-020-
197	2196-x.
198	18. Drosten C. Coronavirus Update 54 (podcast), 1 Sept 2020. Transcript available at
199	https://www.ndr.de/nachrichten/info/coronaskript222.pdf (accessed 16 Sept 2020)
200	19. Jacot D, Greub G, Jaton K, Opota O. Viral load of SARS-1 CoV-2 across patients and
201	compared to other respiratory viruses. Preprint doi: 10.1101/2020.07.15.20154518
202	20. Scohy A, Anantharajah A, Bodéus M, Kabamba-Mukadi B, Verroken A, Rodriguez-
203	Villalobos H. Low performance of rapid antigen detection test as frontline testing for
204	COVID-19 diagnosis. J Clin Virol 2020; doi:10.1016/j.jcv.2020.104455
205	21. Diao B, Wen K, Chen J et al. Diagnosis of acute respiratory syndrome coronavirus 2
206	infection by detection of nucleocapsid protein. Preprint
207	doi:10.1101/2020.03.07.20032524v2
208	22. Mertens P, De Vos N, Martiny D et al. Development and potential usefulness of the
209	COVID-19 Ag respi-strip diagnostic assay in a pandemic context. Front. Med. 2020;
210	7:225. doi: 10.3389/fmed.2020.00225

- 211 23. Lambert-Niclot S, Cuffel A, Le Pape S et al. Evaluation of a rapid diagnostic assay for
- detection of SARS CoV-2 antigen in nasopharyngeal swab. J Clin Microbiol 2020;
- 213 58(8):e00977-20. doi:10.1128/JCM.00977-20.
- 214 24. Paltiel DA, Zheng A, Walensky RP. Assessment of SARS-CoV-2 screening strategies to
- 215 permit the safe reopening of college campuses in the United States. JAMA Netw Open
- 216 2020; 3(7):e2016818