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Binary mixtures of model systems consisting of the an- 
tibiotic ampicillin with either Escherichia coli or Staphy- 
lococcus aureus were subjected to pyrolysis mass spec- 
trometry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PyMS). To deconvolute the pyrolysis mass 
spectra, so as to obtain quantitative information on the 
concentration of ampicillin in the mixtures, partial least 
squares regression (PLS), principal components regres- 
sion (PCR), and fully interconnected feedforward artificial 
neural networks (ANNs) were studied. In the latter case, 
the weights were modified using the standard back- 
propagation algorithm, and the nodes used a sigmoidal 
squashing function. It was found that each of the meth- 
ods could be used to provide calibration models which 
gave excellent predictions for the concentrations of 
ampicillin in samples on which they had not been 
trained. Furthermore, ANNs trained to predict the 
amount of ampicillin in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. coli were able to generalise so 
as to predict the concentration of ampicillin in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. aureus 
background, illustrating the robustness of ANNs to 
rather substantial variations in the biological back- 
ground. The PyMS of the complex mixture of ampicillin 
in bacteria could not be expressed simply in terms of 
additive combinations of the spectra describing the pure 
components of the mixtures and their relative concentra- 
tions. Intermolecular reactions took place in the pyroly- 
sate, leading to a lack of superposition of the spectral 
components and to a dependence of the normalized 
mass spectrum on sample size. Samples from fermenta- 
tions of a single organism in a complex production me- 
dium were also analyzed quantitatively for a drug of 
commercial interest. The drug could also be quantified in 
a variety of mutant-producing strains cultivated in the 
same medium. The combination of PyMS and ANNs con- 
stitutes a novel, rapid, and convenient method for exploi- 
tation in strain improvement screening programs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1994 
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INTRODUCTION 

There is a large and growing interest in the screening of 
microbial cultures for the production of biologically active 
metabolites (e.g., refs. 9, 10, 35, and 36), which can pro- 
vide structural templates for synthetic programs using ra- 
tional methods of drug design. Modem screens for such 
metabolites are targeted on the modulation of particular bio- 
chemical steps in the disease process and show a high de- 
gree of both specificity and sensitivity. This sensitivity 
means that metabolites showing activity during screening 
need only be produced in very small amounts by the organ- 
ism. In such cases, increasing the titer of the metabolite is 
vital to provide enough material for further biological eval- 
uation and chemical characterization. 

The process of titer improvement will frequently involve 
the search for overproducing mutants derived from the orig- 
inal producing organism (e.g., refs. 1, 3, 10, 27, and 48). 

Titer-improving mutants are rare, typically at frequencies 
around 10-4*37 and therefore, many thousands of mutants 
need to be screened in search of an overproducing strain. 
Previous methods of high-throughput mutant screening 
have relied on assessing antibiotic activity of the metabo- 
lites (e.g., ref. 4) or use rapid thin layer chromatography 
(e.g., ref. 43). Such methods were designed to accommo- 
date 15,000 and 40,000 isolates, respectively, per month. 

The ideal method for culture screening would have min- 
imum sample preparation; would analyze samples directly 
(i.e., be reagentless); would give information about recog- 
nizable chemical characters; and would be rapid, auto- 
mated, quantitative, and (at least relatively) cheap. Pyrol- 
ysis mass spectrometry (PyMS) is an automated, instru- 
ment-based technique for which, given an initial outlay of 
some E50,OOO on the machinery, running costs are inex- 
pensive, typically about E l  per sample. It is rapid (the typ- 
ical sample time is less than 2 min) and is automated such 
that the throughput of samples in a working day may be 300 
or more. We therefore considered that PyMS might be a 
very suitable method for exploitation in the rapid screening 
of microbial and other cultures. 
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Pyrolysis is the thermal degradation of complex mole- 
cules in a vacuum causing their cleavage to smaller, volatile 
fragments separable on the basis of their mass-to-charge 
ratio ( d z )  so as to produce a pyrolysis mass spectrum, 
which can then be used as a “chemical profile” or finger- 
print of the complex material analyzed. PyMS has been 
applied to the characterization and identification of a variety 
of microbial systems over a number of years’2*20,34*40 and, 
because of its high discriminatory ability, l3 presents a pow- 
erful fingerprinting technique, which is applicable to any 
organic material. Only rarely, however, has the method 
been used in quantitative (bio)chemical analysis. 

The pyrolysis mass spectra of complex organic mixtures 
may be expressed in the simplest terms as subpatterns of 
spectra describing the pure components of the mixtures and 
their relative  concentration^.^^ This may not always be true 
because during pyrolysis, intermolecular reactions can take 
place in the p y r ~ l y s a t e $ ~ * ~ ~  leading to a lack of superposi- 
tion of the spectral components and to a possible depen- 
dence of the mass spectrum on sample size. However, suit- 
able (nonlinear) numerical methods could still be employed 
to measure the concentrations of biochemical components 
from pyrolysis mass spectra of complex mixtures. 

Our own aims have therefore been to exploit PyMS for 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAquantitative analysis of the chemical constituents of mi- 
crobial and other samples. To this end, we have sought to 
apply fully interconnected feedforward artificial neural net- 
works (ANNs) (see refs. 11, 21, 26, 38, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45 for excel- 
lent introductory surveys), and the multivariate linear re- 
gression techniques of partial least squares regression (PLS) 
and principal components regression (PCR) (see refs. 6 and 
30-33 for first-rate texts) to the deconvolution and interpre- 
tation of pyrolysis mass spectra. Thus, we have been able to 
follow the production of indole in a number of strains of E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
coli grown on media incorporating various amounts of tryp- 
t ~ p h a n , ’ ~  to estimate the amount of casamino acids in mix- 
tures with g ly~ogen, ’~  and to deconvolute the pyrolysis 
mass spectra of complex biochemical and microbiological 
mixtures. l8 With regard to classifications and discrimina- 
tions, we have also exploited the combination of PyMS and 
A ” s  for the rapid and accurate assessment of the presence 
of lower-grade seed oils as adulterants in extra virgin 
oils, l6,l7 and for the identification of strains Propionibac- 
terium spp.” Chun et aL8 have also used the combination of 
PyMS and ANNs for the discrimination of strains of Strep- 
tomyces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Industry exploits the biosynthetic capabilities of micro- 
organisms to produce pharmaceuticals and other products 
through fermentation. It is imperative, therefore, that the 
concentration of the product (the determinand) is assessed 
accurately so as to optimize control of the fermentation 
process. Whereas on-line mass spectrometry (MS) has been 
used to analyze fermentation broths for f la~ones,*~ the ma- 
jority of MS applications during fermentations have been 
for the analysis of gases and volatiles produced over the 
reactor,25 or by employing a membrane inlet probe for vol- 

atile compounds dissolved in the broths (e.g., refs. 5, 23, 
and 28). It is obvious that more worthwhile information 
would be gained by measuring the nonvolatile components 
of fermentation broths. Indeed, Heinzle et al.24 were able to 
characterize the states of fermentations using off-line by 
PyMS, and this technique was extended to on-line analy- 
s ~ s . ~ ’  The authors, however, were not very satisfied with 
their system and, although they have continued to use mass 
spectrometry for the analysis of volatiles produced using 

the analysis of nonvolatiles by PyMS does 
not seem to have been investigated further. 

The fermentor may be treated as a complex mixture of 
bacteria, growth medium, and product. Using this model as 
a starting point, we used PyMS to analyze a mixture of 
ampicillin added to suspensions of the bacteria E.  coli or S .  
aureus, as representative of pharmaceutical product and mi- 
crobial background, and exploited ANNs, PCR, and PLS to 
estimate the amount of ampicillin in “unknown” (i.e., un- 
seen) spectra. We also evaluated the ability of the ANNs 
further to generalize by creating prediction models using 
pyrolysis mass spectra solely of mixtures of ampicillin in E.  
coli and interrogated with pyrolysis mass spectra from mix- 
tures of ampicillin and S. aureus. We observed that the 
normalized spectra of ampicillin mixed in E.  coli was not 
the same as the appropriately weighted sum of the individ- 
ual normalized spectra of ampicillin plus E. coli. We there- 
fore studied the dependence of the mass spectra on sample 
size. 

Finally, in addition to the above fermentation model we 
also studied samples from real fermentations producing a 
molecule of commercial interest. The aim was to demon- 
strate that PyMS, with multivariate calibration and ANNs, 
can be used to predict rapidly the amount of determined in 
fermentor broths. 

MATERIALS AND METHODS 

Preparation of the Ampicillin Mixture in Bacteria 

The bacteria used were Staphylococcus aureus NCTC657 1 
and Escherichia coli W3110. l5 These strains are ampicillin- 
sensitive, indicating that any spectral features observed are 
not due, for instance, to p-lactamase activity. Both strains 
were grown in 4 L liquid media (glucose [BDH], 10.0 g; 
peptone [LabM], 5.0 g; beef extract [LabM], 3.0 g; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH20, 1 
L) for 16 h at 37°C in a shaker. After growth, the cultures 
were harvested by centrifugation and washed in phosphate- 
buffered saline (PBS). The dry weight of the cells were 
estimated gravimetrically and used to adjust the weight of 
the final slurries using PBS to approximately 40 mg/mL. 
Ampicillin (desiccated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD[ - ] - a-aminobenzylpenicillin so- 
dium salt, 398% [titration], Sigma) was prepared in each of 
the bacterial slurries to give a concentration range of from 0 
to 5000 pg/mL in 250-pg/mL steps. 
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Pyrolysis Mass Spectrometry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Five-microliter aliquots of the bacterial suspensions were 
evenly applied onto iron-nickel foils. Prior to pyrolysis the 
samples were oven dried at 50°C for 30 min. Samples were 
run in triplicate. 

The pyrolysis mass spectrometer used for the main part of 
this study was the Horizon Instruments PYMS-200X (Ab- 
erystwyth), as initially described by Aries et a1.2 The Ho- 
rizon Instruments RAPyD-400 (Heathfield) was also used 
for one experiment. For full operational procedures see 
Goodacre and Kell15 and Goodacre et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.'4,'8 The sample 
tube carrying the foil was heated, prior to pyrolysis, at 
100°C for 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (This was found to be extremely helpful in 
ensuring the reproducibility of the spectra obtained, and this 
was particularly true for high-molecular-weight fragments). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Curie-point pyrolysis was at 530°C for 3 s, with a temper- 
ature rise time of 0.5 s. Data were collected over the m/z 
range 51 to 200 and normalized to the total ion count. 

Data Analysis 

The data from PyMS may be displayed as quantitative py- 
rolysis mass spectra (e.g., as in Fig. 1). The abscissa rep- 
resents the m/z ratio, while the ordinate contains informa- 
tion on the ion count for any particular m/z value ranging 
from 51 to 200. Data were normalized as a percentage of 
total ion count to remove the influence of sample size per 
se zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

The data (normalized as above but not weighted by their 
standard deviations) were then analyzed by principal com- 
ponents analysis (PCA) using the Unscrambler package 
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Figure 1. Normalized pyrolysis mass spectra of 200 pg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  coli (A), 50 pg ampicillin (B), of 5 pL of a sample comprising 2500 pg/mL ampicillin mixed 
in 40 mg/ml E.  coli (C), and of 200 pg S. aureus (D). E is the subtraction spectrum of the normalized average of three pyrolysis mass spectra of E.  coli 
(A) from the equivalent normalized average spectra from (C). 
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(vide infra and see ref. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31). PCA is a well-known technique 
for reducing the dimensionality of multivariate data while 
preserving most of the  variance^'^^^^^^ and is an excellent 
technique for observing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnatural relationships between 
samples. 

For deconvolution of the pyrolysis mass spectra by 
ANNs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, PLS , or PCR the training data (ANNs) or the X-vari- 
ables (PLS and PCR) were the three normalized replicate 
pyrolysis mass spectra derived from the mixtures containing 
0, 500, 1000, 1500, 2000, 2500, 3000, 3500,4000,4500, 
and 5000 pg/mL ampicillin, with the output (ANN) or 
Y-variables (PLS and PCR) being the actual (true) concen- 
tration of ampicillin in the mixtures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Artificial Neural Networks 

All ANN analyses were carried out using a user-friendly, 
neural network simulation program, NeuralDesk (Version 
1.2; Neural Computer Sciences, Lulworth Business Centre, 
Nutwood Way, Totton, Southampton, Hants SO1 OJR, 
U.K.), which runs under Microsoft Windows 3.1 on an 
IBM-compatible PC. For in-depth descriptions of the modus 
operandi the reader is referred to Goodacre and KelIl5 and 
Goodacre et al. 14*18 

The algorithm used was standard back-propagation 
(BP).38,46 This algorithm employs processing nodes (neu- 
rons or units) connected using abstract interconnections 
(connections or synapses). Connections each have an asso- 
ciated real value, termed the weight, that scale signals pass- 
ing through them. Nodes sum the signals feeding to them 
and output this sum to each driven connection scaled by a 
‘‘squashing” function (f) with a sigmoidal shape, typically 
the functionf = 1/(1 + CX), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = %puts. 

For the training of the ANN each input (i.e., normalized 
pyrolysis mass spectrum) is paired with a desired output 
(i.e., the amount of determinand); together these are called 
a training pair (or training pattern). An ANN is trained over 
a number of training pairs; this group is collectively called 
the training set. The input is applied to the network, which 
is allowed to run until an output is produced at each output 
node. The differences between the actual and the desired 
output, taken over the entire training set, are fed back 
through the network in the reverse direction to signal flow 
(hence, back-propagation) modifying the weights as they 
go. This process is repeated until a suitable level of error is 
achieved. In the present work, we used a learning rate of 
0.1 and a momentum of 0.9. 

The structure of the ANN used in this study to analyze 
pyrolysis mass spectra therefore consisted of 3 layers con- 
taining 159 nodes made up of the 150 input nodes (normal- 
ized pyrolysis mass spectra), 1 output node (amount of de- 
terminand), and 1 “hidden” layer containing 8 nodes (i.e., 
a 150-8-1 architecture). Each of the 150 input nodes was 
connected to the 8 nodes of the hidden layer, which in turn 
were connected to the output node. In addition, the hidden 
layer and output node were connected to the bias, making a 
total of 1217 connections, whose weights will be altered 

during training. Before training commenced, the values ap- 
plied to the input nodes were normalized between 0.4 and 
0.6 for each node,18 and the connection weights were set to 
small random values.45 The output layer was scaled to ex- 
ploit less than the full range of the normalized scale between 
0 and 1 l4 and was scaled from - 2500 to 7500. Each epoch 
represented 12 17 connection weight updatings and a recal- 
culation of the root mean squared (RMS) error between the 
true and desired outputs over the entire training set. A plot 
of the RMS error versus the number of epochs represents 
the “learning curve,” and was used to estimate the extent 
of training. Finally, after training, all pyrolysis mass spectra 
of ampicillin in E .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli or S. aureus were used as the “un- 
known” inputs (test data); the network then output its es- 
timate in terms of the concentration of ampicillin in the 
mixtures. 

Principal Component Regression and Partial 
Least Squares 

All PCR and PLS analyses were carried out using the pro- 
gram Unscrambler I1 (Version 4.0; (CAM0 A / S ,  Olav 
Tryggvasonsgt. 24, N-7011 Trondheim, Norway) (and see 
ref. 31) which runs under Microsoft MS-DOS 6.2 on the 
IBM-compatible PC. 

The first stage was the preparation of the data. This was 
achieved by presenting the “training set” as two data ma- 
trices to the program: X-, which contains the normalized 
triplicate pyrolysis mass spectra; and Y-, which represents 
the concentration of ampicillin in the bacterial slurry. The 
Y-matrix contains one Y-variable of 0 to 5000 pg/mL (in 
steps of 500 pg/mL) ampicillin mixed in 40 mg/mL E .  coli 
or S .  aureus (i.e., 33 objects representing 11 triplicate con- 
centrations). Unscrambler I1 also allows the addition of 
“start noise” (i.e., noise to the X-data); this option was not 
used. Finally, the X-data were scaled in proportion to the 
reciprocal of their standard deviations. 

The next stage is the generation of the calibration model; 
this first requires the user to specify the appropriate algo- 
rithm. The Unscrambler I1 program has one PCR algorithm 
and two PLS-algorithms: PLSl , which handles only one 
Y-variable at a time; and PLS2, which will model several 
Y-variables sim~ltaneously.~~ Because we wanted to predict 
only one Y-variable the PCR and PLSl algorithms were 
used. 

The method of validation used was full cross-validation, 
via the leave-one-out method. This technique sequentially 
omits one sample from the calibration; the PCR or PLS 
model is then redetermined on the basis of this reduced 
sample set. The concentration (pg/mL) of the omitted sam- 
ple is then predicted with the use of the model. This method 
is required to determine the optimal size of the calibration 
model, so as to obtain good estimates of the precision of the 
multivariate calibration method (i.e., to neither under- nor 
overfit predictions of unseen data). ,42 Unscrambler also 
has reasonably sophisticated outlier detection methods; al- 
though these were employed, we did not find it necessary to 
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delete any of the objects from the calibration models 
formed. 

Cross-validation can indicate the optimal number of prin- 
cipal components (PCs) or PLS factors to use in predictions 
after the model is calibrated. To establish the accuracy of 
the suggestions produced by Unscrambler we therefore cal- 
culated the RMS error between the true and desired con- 
centrations over the entire calibration model, both for the 
known and unknown mass spectra, and plotted these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARMS 
errors vs. the number of PCs or PLS factors used in pre- 
dictions. We also generated plots of the RMS error of the 
test set versus the error in the training set to assist in deter- 
mining the calibration model that best generalized. Using 
this approach, after calibration, to choose the optimal num- 
ber of PCs or PLS factors to use in the prediction, all py- 
rolysis mass spectra of the mixtures (0 to 5000 pg/mL) were 
used as the “unknown” inputs (test data); the model then 
gave its prediction in terms of the concentration of ampi- 
cillin in the bacterial slurry. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RESULTS AND DISCUSSION 

Pyrolysis mass spectral fingerprints of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli, ampicillin, 
ampicillin mixed with E .  coli, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. aureus are shown in 
Figure 1 .  These pyrolysis mass spectra are fairly complex, 
and there is quite a lot of difference between the spectra of 
E .  coli (Fig. la) and of ampicillin (Fig. lb), notably the 
very large peak at mlz 100 in the mass spectra of ampicillin. 
The spectrum of the mixture of ampicillin in E .  coli (Fig. 
lc) is rather similar to the spectrum of E .  coli (Fig. la) 
alone, the exceptions being most noticeable at m/z 100 and 
m/z 160. The occurrence of a strong peak at m/z 160 is 
perhaps surprising, because this peak is not very intense in 
either the spectra of pure ampicillin (Fig. lb) nor of E .  coli 
(Fig. la). 

Figure le  shows a simple subtraction of the normalized 
averages of three spectra of E .  coli from those of the above 
E .  colilampicillin mixture. The positive half of the graph 
indicates the peaks that are more intense in the ampicillin 
spectra. The main similarity to the pyrolysis mass spectrum 
of pure ampicillin (Fig. lb) is again the strength of the peak 
at mlz 100; although (in the difference spectrum) m/z 160 
also seems to feature as a major component arising from 
ampicillin (alone), Figure lb  shows that this is not the case. 
Subtractions of the spectra of S. aureus (Fig. Id), which did 
not contain strong peaks at m/z 100 or m/z 160, from those 
of S. aureudampicillin mixtures also suggested that m/z 
100 and m/z 160 were the major components from ampi- 
cillin (data not shown). 

It seems llkely, therefore, that m/z 100 has arisen in the 
spectra of the mixture mainly because of its genesis in the 
pyrolysate of ampicillin. However, in contrast to this, m/z 
160 is present in the spectra of the mixture but is not a major 
component in the spectra either of E .  coli or of pure ampi- 
cillin; therefore, this peak must have resulted from inter- 
molecular reactions which took place in the pyrolysate. One 
might predict, therefore, that this lack of superposition of 
the spectral features of the components in the mass spec- 

trum of the mixture should depend on the size of sample 
analyzed, because larger sample sizes would be expected to 
promote greater intermolecular reactivities in the pyroly- 
sate. (One might also comment that a more detailed analysis 
of these peaks might have been effected using tandem MS- 
MS; however, this facility was not available to us.) 

We therefore prepared a mixture of 40 mg/mL E .  coli 
containing 2500 pg/mL ampicillin and analyzed various 
sample sizes of this suspension using PyMS. The sample 
size varied from 42.5 to 850 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApg, and Figure 2 shows the 
intensity of m/z 100 (open circles) and m/z 160 (closed 
circles) plotted against the sample size (Fig. 2). In addition, 
the total ion count (open squares) was also plotted against 
the same abscissa. It can be seen that relationship between 
the total ion count and sample size is linear from 42.5 to 400 
pg after which the graph tends to level off. This is due to 
saturation effects on the intense peaks in the spectrum, 
which can be seen when the smaller peaks increase in size 
(data not shown), and is because the electron multiplier in 
the mass spectrometer is being overloaded with ions. The 
graph (Fig. 2) thus shows that provided the working range 
for the sample size is kept between 42.5 and 400 pg then 
saturation should not occur. Not surprisingly (given the ar- 
guments above) the percentage intensity of m/z 100 stays 
constant within this range; this is what one would predict for 
a peak that is derived from a single component in a mixture 
(here mainly ampicillin) and which does not undergo any 
pyrolysate-pyrolysate reactions. However, the percentage 
intensity of m/z 160 starts at about 1% and then increases 
approximately linearly to about 2.5% (at 212.5 pg sample 
size). When samples of greater than 200 pg were analyzed, 
the percentage intensity of m/z 160 was constant at around 
2.5%. This result strongly suggests that not only is m/z 160 
a result of intermolecular reactions (between fragments de- 
rived from both ampicillin and E .  coli) within the pyrolysate 
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Figure 2. Effect of sample size (micrograms) on the percentage intensity 
of m/z 100 (open circles), m/z 160 (closed circles), and the total ion count 
(open squares) in pyrolysis mass spectra of suspensions of 40 mg/mL E .  
coli containing 2500 pg/mL ampicillin. Error bars show the standard de- 
viation. 
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but that the extent of this reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdoes depend on the 
amount of the mixture analyzed (at least until the sample 
size is >200 pg, when the reaction has presumably gone to 
completion). Samples of a200 pg were therefore used for 
the rest of this work. 

If these masses can be considered characteristic for ampi- 
cillin, the intensities should alter linearly depending on the 
relative proportion of ampicillin mixed in E. coli (because 
the concentration of ampicillin is much lower than that of E. 
coli and any interreaction might be expected to be pseudo- 
first order with respect to the ampicillin concentration). A 
plot of the average intensities of the two masses, m/z 100 
and 160, against the amount of ampicillin in the mixtures, 
with standard error bars and the best linear fits, is shown in 
Figure 3. It can be seen that m/z 100 and m/z 160 do indeed 
alter in a fashion that is approximately linear with the 
amount of ampicillin. Similar results were observed when 
ampicillin in S. aureus was examined in a similar way (data 
not shown). 

One might presume that it could be possible simply to use 
the normalized intensities of these two peaks to estimate the 
relative amount of ampicillin in these mixtures. However, 
m/z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA160 could not be used for this because the variation in 
intensity (i.e., noise) is very large (Fig. 3), while there are 
two problems associated with using m/z 100. The first is 
that there is some variation in the intensity of m/z 100; in 
the region above 1500 pg ampicillin the standard deviation 
error bars in fact overlap from one data point to the next. 
The other problem is that although the relationship between 
the percentage ion count with m/z 100 and the amount of 
ampicillin is (approximately) linear, it is not proportional 
(i.e., the line does not pass through the origin), which 
means that the source of m/z 100 is not purely from ampi- 
cillin, and there is some contribution from E. coli (as is also 
clear from the data in Fig. la). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.5 

.z 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2.5 

.- 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 

IA 
fi 

c 
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2 1.5 

c) 9 1  
8 0.5 

8 0  
P. 

-0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7’ 
0 1000 2000 3000 4000 5000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ampicillin @g/ml) in E. coli 

0 m/zloO - Best linear fits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 dZ160 

Figure 3. Effect of the concentration of ampicillin on the percentage 
intensity of m/z 100 and 160 in the pyrolysis mass spectra of mixtures of 
ampicillin in E .  coli. Ampicillin solutions were added to give a final 
concentration of 0 to 5000 pg/mL (in steps of 250 pg/mL), in a constant 
cellular background of 40 mg/ml E .  coli. Error bars show standard devi- 
ation. The best linear fits are shown. 

The next stage was to look at the relationship between the 
pyrolysis mass spectra of the various amounts of ampicillin 
mixed in the two bacteria using principal components anal- 
ysis (PCA). PCA is the best method for reducing the di- 
mensionality of multivariate data while preserving most of 
the variance; in our pyrolysis mass spectral data this reduc- 
tion will be from the 150 m/z values to two or three prin- 
cipal components (PCs). Plots of the first two PCs of the 
variance in the PyMS for ampicillin in E. coli (Fig. 4a) and 
for ampicillin in S .  aureus (Fig. 4b) show that the great bulk 
of the variation was indeed preserved in the first PC; this in 
fact accounted for 91.9% and 86.1% of the variance, re- 
spectively. It was also evident that the first PC largely 
served to account for or describe the difference in the 
amount of ampicillin in the bacterial backgrounds. Both sets 
of mixtures were then analyzed by PCA and the resulting 
three-dimensional ordination plot is shown in Figure 4c. 
Not surprisingly, the first PC now described the difference 
between E. coli and S .  aureus and accounted for 69.7% of 
the total variation, whereas the second PC, which accounted 
for 25.9% of the total variance, was related to the influence 
of ampicillin on the pyrolysis mass spectra. Finally, the 
same samples were reanalyzed with the pyrolysis mass 
spectra of pure ampicillin, and the PCA plot shown in Fig- 
ure 4d. This plot demonstrates further that the spectrum of 
pure ampicillin is only weakly related to the spectra- of 
increasing amounts of ampicillin in E. coli and S. aureus, 
and that the addition of ampicillin to a cellular background 
changes the mass spectra in a nonlinear fashion; this is due 
to the intermolecular reactions that had occurred in the py- 
rolysate of ampicillin mixed with E. coli and S. aureus. 

We therefore trained ANNs, using the standard back- 
propagation algorithm, with normalized ion intensities from 
the pyrolysis mass spectra from 0, 500, 1000, up to 4500 
and 5000 pg/mL ampicillin in 40 mg E. coli as inputs and 
the stated concentrations of ampicillin as outputs, the latter 
being scaled between - 2500 and 7500. The effectiveness 
of training was expressed in terms of the RMS error be- 
tween the actual and desired network outputs; this “learning 
curve” is shown in Figure 5a (open circles). The learning 
curve of the test data (closed circles) is also shown in Figure 
5a; it can be seen that, whereas the learning curve of the 
training set continues to decrease during training, the test 
set’s learning curve initially decreases for approximately 
lo3 epochs and then increases. This indicates that the ANN 
was being overtrained, and it is important not to overtrain 
A ” s ,  because (by definition) the network will not gener- 
alize well. 15,21 This overtraining appears even more marked 
when the RMS error of the test set is plotted against the 
RMS error of the training set (Fig. 5b); the minimum RMS 
error in the test set was reached (1.14%) when the RMS 
error of the training set was 1 .OO% and optimal training had 
occurred. The ANN was then interrogated with the training 
and test sets and a plot of the network’s estimate versus the 
true concentration of ampicillin mixed in E. coli (Fig. 6) 
gave a linear fit which was indistinguishable from the ex- 
pected proportional fit (i.e., y = x). It was therefore evident 
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Figure 4. Principal components plots based on PyMS data showing the relationship between the ampicillin mixed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  coli (A) or S. aureus (B). The 
first two principal components are displayed which for (A) account for 91.9% and 3.8% of the total variation, and for (B) 86.1% and 9.1%. (C) Ordination 
plot of the first three principal components (containing 69.7%, 25.98,  and 1.5% of the total variation) showing the relationships between ampicillin mixed 
in E.  coli and S. aureus. Pure ampicillin was also analyzed by PCA with both of the mixtures (D); the first three latent variables are shown, which account 
for 57.8%, 29.6%, and 9.1% of the total variation. The upper case letters (A, B, C, . . . U) represent suspensions of 40 mglml E .  coti containing ampicillin 
from 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5000 kg/mL in steps of 250 pg/mL. In the same manner, the lower case letters symbolize the same concentrations of ampicillin mixed in 40 
mg/mL S. aureus. 

that the network’s estimate of the quantity of ampicillin in 
the mixtures was very similar to the true quantity, both for 
spectra that were used as the training set (which is not 
surprising) and, most importantly, for the “unknown” py- 
rolysis mass spectra. 

In other studies, ANNs were set up using the same ar- 
chitecture as the one used above except that they were 
trained on mixtures of ampicillin S. aureus, with the same 
concentrations of ampicillin as above. Networks were able 
to converge and optimal training occurred when the RMS 
error of the training set was 1.3%, the RMS error in the test 
set then being 3.35% (data not shown). 

As outlined above, PCR and PLS were also used to create 
calibration models, using the same data that were used to 
train ANNs, to predict the amount of ampicillin (0 to 5000 

pg/mL) mixed in 40 mg E .  coli or S. aureus. Table I gives 
the percentage RMS error on the predictions produced by 
PCR and PLS on both the training and test sets for ampi- 
cillin mixed in E .  coli and S. aureus and is compared with 
results from A ” s .  The number of latent variables used to 
obtain optimal calibration models are also given, the values 
in brackets being the points at which Unscrambler stated 
that the optimal model should be formed, and one would 
have presumed that using more than three factors would 
cause overfitting4* (i.e., inaccurate predictions on the test 
data). It is therefore perhaps surprising that optimal calibra- 
tion always occurred using more latent variables, a phe- 
nomenon that has, however, been seen previously’* and 
which usually implies that there are nonlinear relationships 
within the pyrolysis mass spectral data.31 It can be seen 

GOODACRE ET AL.: SCREENING METABOLITES IN FERMENTOR BROTHS USING PyMS 1211 



A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B 

0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
loo 10’ 102 103 104 

0 1000 2000 3000 4000 5000 

Ampicillin @g/ml) in E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli Number of epochs 

0 Training set (data used to train A ” s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0- Test set (data not shown to the A ” s )  

0.01 0.1 1 10 

% RMS error of the training set 

Figure 5. Typical learning curves for the ANN, using the standard back- 
propagation algorithm and with one hidden layer consisting of eight nodes, 
trained to estimate the amount of ampicillin (pg) in E. coli (A). The open 
circles represent the percentage RMS error of the data used to train the 
neural network (the training set) and the closed circles the data from the 
test set. A plot of the percentage RMS error of the test set versus the 
percentage RMS error of the training set (B) shows that optimal training (to 
produce a network which generalized well) occurred at 1 .O% RMS error; 
the number of epochs (and, hence, extent of training) increases from right 
to left. 

(Table I) in all instances that the number of PCs used to give 
optimal calibration models in PCR was higher than the 
number of PLS factors needed, but that the percentage RMS 
error on prediction was approximately the same, typically 
between 1% and 1.9% for the training set and 1.3% to 3.5% 
for the “unknown” mass spectra in the test set. These val- 
ues were very similar to the estimates obtained using ANNs 
and illustrates that all three methods could be used to pro- 
vide an accurate deconvolution of the pyrolysis mass spec- 
tra of ampicillin mixed in E .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli or S. aureus. 

It has previously been shown that to obtain good network 
generalization, the training set should normally consist of a 
reasonable number of samples equally spaced over the de- 
sired concentration range. l4 Sufficient generalization is 
needed because it is undesirable to have to collect new 
pyrolysis mass spectra of the product against a variable 
microbial background, e.g., different metabolic state or 
changes in strain populations. Therefore, the question arises 
as to whether ANNs trained to predict the amount of ampi- 

0 Results from data used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto train the ANN 

Results from unseen data 

- Expected proportional fit 

Figure 6. The estimates of trained 150-8-1 neural networks versus the 
true amount of ampicillin (0 to 5000 pg/mL in steps of 250 pg/mL) mixed 
in 40 mgimL E. coli. Networks were trained using the standard back- 
propagation algorithm, to 1.0% RMS error (the point at which Fig. 5 

indicated that optimal training took place). Data points are the averages of 
the triplicate pyrolysis mass spectra. Open circles represent spectra that 
were used to train the network and closed circles indicate “unknown” 
spectra which were not in the training set. Error bars show standard de- 
viation. The expected proportional fit is shown. 

cillin in a background of E .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli would be able to generalize 
sufficiently to estimate the amount of ampicillin against a S. 
aureus background. 

Thus, ANNs were set up using the same architecture as 
the one used above, and trained on mixtures of ampicillin in 
E .  coli. After training to 1.00% RMS error of the training 
set, the point at which optimal generalization occurred pre- 
viously (Fig. 5 and 6), the ANNs were interrogated with the 
pyrolysis mass spectra of ampicillin mixed in 40 mg S. 
aureus. Table I1 gives the percentage RMS error on the 
predictions produced by ANNs on both the training and test 
sets for ampicillin mixed in E .  coli and S. aureus. It can be 
seen that the RMS error in predicting ampicillin in S. aureus 
was only 5.16% and that the network had generalized to a 
rather remarkable degree. 

ANNs were then trained on the 11 triplicate spectra of 
ampicillin in E .  coli and the spectra of S. aureus. It was 
interesting to observe that using only this small piece of 
extra information the RMS error in estimating ampicillin in 
S. aureus had now reduced to 4.05%. When 5000 p,g/mL 
ampicillin in S. aureus was also used in network training, 
generalization improved again and the error in the test set 
was now 3.27%, which was equivalent to ANNs trained on 
only examples of ampicillin in S. aureus (Table I). When all 
11 triplicates of ampicillin in E .  coli and S. aureus were 
used to train ANNs the RMS error of prediction of ampi- 
cillin in S. aureus was 2.26% and was much improved over 
using only ampicillin in S. aureus; however, this was at the 
expense of the network’s ability to estimate ampicillin in E .  
coli, which had 2.17% RMS error in the test set compared 
with 1.14% observed previously. Nevertheless, it was evi- 
dent that, for the deconvolution of the pyrolysis mass spec- 
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Table I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pyrolysis mass spectra from ampicillin mixed in either E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS.  aureus. 

Comparison of artificial neural network calibration with principal components regression and partial least squares in the deconvolution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
%FWS error 

No. latent 
Calibration method No. of epochs variables Training set Test set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

__ ~~ 

For the prediction of the amount of ampicillin 
mixed in E. coli 

ANNs 1140 
PLS” 
PCR“ - 

- 

For the prediction of the amount of ampicillin 
mixed in S. aureus 

ANNs 670 
PLS 
PCR 

- 
- 

- 1 1.14 
7 (2) 1.00 (2.34) 1.30 (3.90) 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) 1.35 (3.93) 1.49 (4.57) 

- 1.3 3.35 
3 (2) 1.87 (2.16) 3.44 (3.46) 
3b 2.03 3.18 

“The values in brackets are the optimal number of latent variables for PCR or PLS calibration models as predicted by Unscrambler 11, and the %RMS 

%e optimal number of latent variables calculated was the same as those predicted by Unscrambler 11. 
errors when predicted with models containing these numbers of latent variables. 

tra of the determinand ampicillin, that ANNs are robust 
enough to generalize well to new biological backgrounds. 

The use of the combined technique of PyMS and ANNs 
was then extended to the off-line analysis of fermentation 
broths. The identity of the producing organism and the 
structure of the metabolite of interest are confidential; the 
microorganism and the product are therefore coded M and P 
respectively. 

Samples were taken aseptically from fermentations and 
frozen until they were analyzed by PyMS. The medium 
used to grow organism M was a complex medium contain- 
ing mixed sugars and hydrolyzed protein, and samples were 
taken at different times. The amount of P was determined 
using high-performance liquid chromatography (HPLC). 
The error in these values was typically 2% to 5%. 

Figure 7a shows a PCA plot of the pyrolysis mass spectra 
of the samples analyzed; it was again evident that the first 
PC, which accounted for 84.9% of the total variation, was 
largely related to the amount of P. 

ANNs were then trained, using the standard back- 
propagation algorithm, with normalized ion intensities from 
the triplicate pyrolysis mass spectra from 0, 20.46, and 
48.77 pg/mL P in M as inputs and the stated concentrations 
of P (as assessed by HPLC) as outputs, the latter being 
scaled between - 25 and 75. In these networks only three 
nodes were used in the hidden layer as an attempt at limiting 
the ANNs from learning the three examples perfectly (i.e., 
overfitting) and not generalizing. The effectiveness of train- 
ing was expressed in terms of the RMS error between the 
actual and desired network outputs; to assess the extent of 
training, the RMS error of the test set was plotted against 
the RMS error of the training set (Fig. 7b). The minimum 
RMS error in the test set was reached (6.91%) when the 
RMS error of the training set was 3.00% and optimal train- 
ing had occurred, which was after approximately 2.5 X lo3 
epochs. These percent RMS (%RMS) errors are higher than 
those achieved using ampicillin mixed in either E .  coli or S. 
aureus and could be because of the lower numbers of ex- 

Table II. 
of ampicillin in E. coli with increasing numbers of ampicillin in S. aureus examples in the training set. 

Artificial neural network generalization. %RMS errors of test sets of ampicillin in S. aureus using networks trained on pyrolysis mass spectra 

%RMS error 
Predictions of 

Set Composition of training set No. of epochs” ampicillin in Training set Test set 

A Zero to 5000 pg/mL ampicillin (amp) (in 250-pg/mL 1120 E. coli 1 .OO 1.14 
increments) mixed in E. coli S. aureus - 5.16 

B Set “A” and 0 pg/mL amp in S. aureus 

C Set “A” and 0 and 5000 pg/mL amp in 

Set “A” and 0, 2500, and 5000 pg/mL 

Zero to 5000 pg/mL amp (in 250-pg/mL 

S .  aureus 

D 
amp in S. aureus 

increments) mixed in E. coli and 
S. aureus 

E 

1590 E .  coli 1.03 1.23 
S .  aureus 0.47 4.05 

1620 E .  coli 1.06 1.32 
S .  aureus 0.52 3.27 

2660 E .  coli 1 . 1 1  1.39 
S.  aureus 0.38 3.70 

3500 E .  coli 1.18 2.17 
S .  aureus 0.78 2.26 

“ANNs were trained to 1% RMS error in the training set. 
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Figure 7. Relationship between the pyrolysis mass spectra of substance P mixed in organism M. (A) Principal components plots based on PyMS data 
analyzed by Unscrambler; the first two principal components account for 84.9% and 10.8% of the total variation. The amount of P in micrograms per 
milliliter is shown on the graph; this was established using HPLC. ANNs were trained using the standard back-propagation algorithm, employing one 
hidden layer consisting of eight nodes, to estimate the amount of P (kg/mL) in M. The generalization of the ANNs and the extent of training was elucidated 
by plotting the percentage FWS error of the test set versus the percentage RMS error of the training set (B); this shows that optimal training occurred at 
3.00% RMS error. The number of epochs (and, hence, extent of training) increases from right to left. At this point the network was interrogated and the 
estimates of trained 150-8-1 neural networks versus the true amount of P (pg/mL) in M (as estimated by HPLC) were plotted (C). Data points are the 
averages of the triplicate pyrolysis mass spectra. Open circles represent spectra that were used to train the network and closed circles indicate “unknown” 
spectra which were not in the training set. Error bars show standard deviation. The expected proportional fit is shown. 

emplars in the training set or, alternatively, due to addictive 
effect of inaccuracies in the HPLC analyses. The ANN was 
then interrogated with the training and test sets and a plot of 
the network’s estimate versus the true concentration of P in 
M (Fig. 7c) gave an approximately linear fit. The network’s 
estimate of the quantity of drug P in the fermentation broth 
was very similar to the true quantity, as judged by HPLC 
analysis, both for spectra that were used as the training set 
and, most importantly, for the “unknown” pyrolysis mass 
spectra. 

The next stage was to assess the ability of PyMS and 
ANNs to indicate new strains producing drug P. If success- 
ful, then this approach could be used as a screening tech- 
nique in addition to fermentation monitoring. 

Mutants derived from organism M were grown under the 
same fermentation conditions as used previously. Samples 
were taken aseptically from the fermentations, treated to 
release the product from the biomass, and the supernatants 
frozen prior to analysis by PyMS. The amount of P was 
previously determined using HPLC. Because this experi- 
ment was to screen for overproducing strains, in addition to 
the above cultures, samples were also prepared by taking M 

(or its mutants) and spiking with P. This would enable the 
neural network training to include these levels. The maxi- 
mum amount of P produced in the last experiment was 
48.77 pg/mL; the maximum amount of P spiked in M was 
86.59 pg/mL. 

ANNs were then trained, using the standard back- 
propagation algorithm, with normalized ion intensities from 
17 triplicate pyrolysis mass spectra as inputs and the con- 
centrations of P (as assessed by HPLC) as outputs, the latter 
being scaled between -40 and 120. These networks con- 
tained eight nodes in the hidden layer. The effectiveness of 
training was again expressed in terms of the RMS error 
between the actual and desired network outputs; to assess 
the extent of training, the RMS error of the test set (con- 
taining 22 samples) was plotted against the RMS error of 
the training set (data not shown). The minimum R M S  error 
in the test set was reached (9.25%) when the RMS error of 
the training set was 5.00% and optimal training had oc- 
curred, which was after approximately 7 X lo3 epochs. The 
ANN was then interrogated with the training and test sets 
and a plot of the network’s estimate versus the true concen- 
tration of P in mutants of M (Fig. 8) gave an approximately 
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Figure 8. The estimates of trained 150-8-1 neural networks versus the 
amount of drug P (pg/mL) in a variety of mutants of M; the quantity of P 
was established using HPLC. Networks were trained using the standard 
back-propagation algorithm, to 5% RMS error; this was after approxi- 
mately 7 X lo3 epochs. Data points are the averages of the triplicate 
pyrolysis mass spectra. Open circles represent spectra that were used to 
train the network and closed circles indicate “unknown” spectra which 
were not in the training set. Error bars show standard deviation. The best 
linear fit is shown and the slope of this line is 0.82. The expected propor- 
tional fit is also shown. 

linear fit, the slope of the linear regression line on the net- 
work’s estimates was 0.82 and this intersected the ordinate 
at 5.1 pg/mL. It was therefore evident that the network’s 
estimate of the quantity of drug P was very similar to the 
true quantity, as judged by HPLC, both for spectra that 
were used as the training set (open circles) and, most im- 
portantly, for the “unknown” pyrolysis mass spectra 
(closed circles). This demonstrates great promise for the 
application of PyMS and ANNs to the rapid screening of 
many cultures for the overproduction of specific metabo- 
lites. 

CONCLUSIONS 

We have shown that the combinations of PyMS with mul- 
tivariate calibration (PLS and PCR) and ANNs were able 
quantitatively to analyze the PyMS of mixtures of ampicil- 
lin in E. coli or S. aureus. Further, ANNs trained to predict 
the amount of ampicillin in E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoli were able to generalize 
sufficiently to predict ampicillin in the completely different 
S. aureus background. This illustrates the robustness of 
A ” s  to variations in the biological background. 

It is also evident that the PyMS of complex organic mix- 
tures can not necessarily be expressed solely in terms of 
linear superpositions of subpatterns of spectra describing 
the pure components of the mixtures and their relative con- 
centrations as suggested by Windig and Me~zelaar.~’ Dur- 
ing pyrolysis, intermolecular reactions do take place in the 
pyrolysate, as is particularly evident from the occurrence of 

m/z 160 in the mass spectra of mixtures of ampicillin in E. 
coli and S. aureus. Such reactions lead to a lack of super- 
position of the spectral components and also to a depen- 
dence of the mass spectrum on sample size. 

Fermentation broths could also be analyzed quantitatively 
for the determinand P using PyMS and A ” s ,  and this 
combination of techniques was used to screen many mutants 
(or new isolates) for the (over-)production of the metabolite 
of interest. One might also remark that the pyrolysis mass 
spectra contains information on the entire molecular consti- 
tution of the samples. Thus, if subsequent analyses showed 
the presence of a different “target” molecule in the iso- 
lates, one could train a small subset of the samples to learn 
the concentration of the “new” molecule, and use the rest 
of the entire data as the test set, without having to repeat the 
pyrolysis mass spectrometry. 

PyMS is rapid (the typical sample time is less than 2 min) 
and automated; the present system allows 300 samples to be 
analyzed in 8 h 45 min. Thus, in a working day of two shifts 
(and allowing for 2 days down-time per month), one might 
expect to be able to analyze some 12,000 isolates per 
month. Furthermore, after the initial outlay of some 
E50,000 on the instrumentation and software, running costs 
are relatively cheap, typically about El per sample. We 
conclude that the combination of PyMS and ANNs consti- 
tutes a novel, rapid, and convenient method for exploitation 
in microbial fermentation development programs generally. 
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