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Abstract

Background: Currently, association studies are analysed using statistical mixed models, with marker effects

estimated by a linear transformation of genomic breeding values. The variances of marker effects are needed when

performing the tests of association. However, approaches used to estimate the parameters rely on a prior variance

or on a constant estimate of the additive variance. Alternatively, we propose a standardized test of association

using the variance of each marker effect, which generally differ among each other. Random breeding values from

a mixed model including fixed effects and a genomic covariance matrix are linearly transformed to estimate the

marker effects.

Results: The standardized test was neither conservative nor liberal with respect to type I error rate (false-positives),

compared to a similar test using Predictor Error Variance, a method that was too conservative. Furthermore,

genomic predictions are solved efficiently by the procedure, and the p-values are virtually identical to those

calculated from tests for one marker effect at a time. Moreover, the standardized test reduces computing time

and memory requirements.

The following steps are used to locate genome segments displaying strong association. The marker with the

highest − log(p-value) in each chromosome is selected, and the segment is expanded one Mb upstream and one

Mb downstream of the marker. A genomic matrix is calculated using the information from those markers only,

which is used as the variance-covariance of the segment effects in a model that also includes fixed effects and

random genomic breeding values. The likelihood ratio is then calculated to test for the effect in every chromosome

against a reduced model with fixed effects and genomic breeding values. In a case study with pigs, a significant

segment from chromosome 6 explained 11% of total genetic variance.

Conclusions: The standardized test of marker effects using their own variance helps in detecting specific genomic

regions involved in the additive variance, and in reducing false positives. Moreover, genome scanning of candidate

segments can be used in meta-analyses of genome-wide association studies, as it enables the detection of specific

genome regions that affect an economically relevant trait when using multiple populations.
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Background
The availability of high density genotypes of single nu-

cleotide polymorphism (SNP) markers for plants and

livestock species, in conjunction with phenotypic data

for complex traits, allows the calculation of: 1) estimates

of genomic breeding values (GEBVs) [1,2] for genomic

evaluation [3], and 2) estimates of the effects of genomic

regions associated with the genetic variability in genome

wide association studies (GWAS) [2,4,5].

There is an increasing number of GWAS data sets an-

alyzed by mixed models and multiple testing procedures

[6], after fitting all individual effects of genomic regions

into the model [4]. The model may be difficult to fit

when both, the number of individuals and SNP effects,

are large. We propose to use a linear transformation of

genomic breeding values to estimate the marker effects

from a simpler equivalent mixed model, and then testing

those effects using a standardized test statistic that em-

ploys the variance (rather than prediction error variance)

of the same effects.

The method of genomic selection proposed by Meuwissen

et al. [7] to estimate GEBVs starts by fitting the SNP effects

to a given data set. Next is to estimate GEBV of any indi-

vidual using its genotype (SNP), by adding across the entire

genome those solutions corresponding to the individual's

SNP. The mixed model employed conveys vectors of fixed

effects, and random effects of markers or SNPs ( g ) as-

sumed to be normally distributed with null mean and a co-

variance matrix proportional to the identity matrix times

the variance of SNP effects I σ2g

� �
. Errors are assumed to

be Gaussian, independent and identically distributed with

null mean and covariance matrix I σ2e . An equivalent mixed

model discussed by Garrick [8] and Stranden [9] is fitted

after the linear transformation a =Z g where a is a random

vector of breeding values, and Z an incidence matrix that

relates elements in a to those in g. Each column of Z is

associated with a given SNP and the elements are stan-

dardized by functions of SNP allele frequencies and by

the total number of SNP. It is worth noting that the

same Z is used in our implementation of the model of

Meuwissen et al. [7] to relate the vector of marker ef-

fects in g to the data phenotypes. Moreover, GEBVs in

the equivalent model have variance-covariance matrix

G σ2A ¼ ZZ0 σ2g . The procedure requires that the vari-

ances are equal, i.e. σ2A ¼ σ2g . Once the equivalent

model is fit, SNP effects are calculated by the transform-

ation g = Z'G− 1a, and individual SNP effects in g are di-

vided by the square root of its variance (Var( gj )) to get

the so called SNPej test statistics. We also provide a for-

mula to calculate Var( gj ) without having to fit the

model with SNP effects. The next step is to select gen-

ome segments that may be highly associated with the

genetic variability of the trait for each chromosome. In

doing so, we look for the SNP having the highest value

of minus the logarithm of the p-value throughout the

chromosome. Once the SNP is located, a segment of

one Mb to the left and one to the right is defined, and a

relationship matrix is calculated using only the informa-

tion from those markers. The relationship matrix is

used as the proportional variance-covariance of the seg-

ment effects in a model that also includes fixed effects

and random GEBVs. In a final step, the likelihood ratio

is calculated to test the significance of the largest effect

segment of each chromosome by comparing against a

reduced model with fixed effects and GEBVs. The crit-

ical value (size of the test) is adjusted by the Bonferroni

correction. The algorithm not only delivers genome

wide associations and genomic predictions efficiently,

but it also minimizes computing time and memory re-

quirements. Moreover, the specific variance of the SNP

effects is used in calculating the test, thus taking into

account the amount of information of any given marker.

Instead, other testing approaches rely on a prior vari-

ance or a constant estimate of the additive variance.

Methods
Dataset

The experimental population was raised at the Michigan

State University Swine Teaching and Research Farm, East

Lansing, MI [10]. Parents from the initial generation (F0)

were four Duroc boars mated to 15 Pietrain sows by artifi-

cial insemination. From all resulting F1 animals, 50 fe-

males and 6 males (progeny of 3 F0 sires) were selected as

parents for the F2 generation, by avoiding full or half sib

matings. A total of 1,259 F2 piglets were born alive from

142 litters out of 11 farrowing groups. Phenotypic data for

growth, carcass merit and meat quality traits were col-

lected for approximately 950 F2 pigs (for more details refer

to Edwards et al. [10,11]). Data used for the study were

measures of the growth trait 13 week tenth rib backfat

(mm) (bf10_13wk). The trait was chosen as it displays a

sizable heritability (0.42) and a normal distribution.

Animal protocols were approved by the Michigan State

University All University Committee on Animal Use

and Care (AUF# 09/03-114-00).

Genotyping and data editing

DNA was isolated from white blood cells using standard

procedures as previously described for this population

[10]. Quantity and quality of DNA samples were deter-

mined using a Qubit fluorometer (Invitrogen by Life

Technologies, Carlsbad, CA, USA). The experimental

population was genotyped with two marker SNP panels.

1) 411 animals were genotyped (4 F0 Duroc boars, 15 F0
Pietrain sows, 6 F1 males, 50 F1 females and 336 F2 pigs)

with a commercial panel, the Illumina PorcineSNP60

beadchip (60 K) [12] and 2) 612 F2 animals were geno-

typed with a second panel composed of a 9 K tagSNP
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set referred to as the GeneSeek Genomic Profiler for

Porcine LD (GGP-Porcine, GeneSeek a Neogen Company,

Lincoln, NE) [13] . A set of 5,350 SNP out of M = 62,163,

were eliminated from all analyses as their physical posi-

tions were unknown. Mendelian inconsistencies (≤0.01%)

were taken as missing genotypes, and 21 animals (1 F1
and 20 F2) with more than 10% of SNP missing were not

used for any analysis. By similar considerations, 2,978

SNP were removed from the analyses as they had more

than 10% missing data. Additionally, 9,877 SNP were ex-

cluded as their minor allele frequency (MAF) was below

0.01. This editing procedure followed that of Badke et al.

[14] and Gualdrón et al. [15], and the program PLINKv1.07

[16] was used for the task. F2 animals genotyped with the

9 K panel were imputed to 60 K following procedures dis-

cussed by Gualdrón et. al [15], by means of the software

AlphaImpute [17], resulting in imputation accuracy of

around 0.99 [15]. Genotypes imputed in the F2 had a sec-

ond editing procedure by MAF < 0.01, which excluded 759

virtually monomorphic SNP. The editing policies and geno-

type imputation resulted in a data set with records from

1002 pigs (F0, F1 and F2) having 44,055 SNP per animal.

Estimation of genomic relationship matrix

The genomic relationship matrix was estimated from ob-

served and imputed high density (~44 K) SNP genotypes.

Genotypes were expressed as allelic dosage [13,15], such

that genotypes were entered into a marker matrix M of di-

mension (n ×m), where n is the number of animals and m

the number of SNP, having elements in the interval [0, 2],

i.e. the count of the allele used as reference. In the sequel,

we will use the sub index i to refer to the individual.

Matrix M was standardized to matrix Z that has generic

elements equal to

Zij ¼
Mij−2 pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m 2 pj 1− pj

� �� �r

Elements of Z are then calculated by subtracting twice the

frequency of the reference allele at the jth marker (pj), to

the corresponding element of M [18], and then dividing the

resulting difference by the square root of the expected vari-

ance 2pj(1 − pj) of each element in the column multiplied by

the number of columns (m) in M. The allele frequency pj
was calculated from the F0 generation (19 animals). The

genomic relationship matrix was finally calculated as:

G¼ZZ 0 ð1Þ

Prediction model

Using the genomic relationship matrix from equation (1),

the centered animal model for genomic evaluation can be

written as:

y ¼ X βþ aþ e ð2aÞ

where y is the phenotypic vector containing the data on

13-week tenth rib backfat (mm), X is the incidence matrix

that relates records to the fixed effects of sex in β, vector

a contains the random breeding values such that a∼N

0;G σ2A
� �

, e is the random error vector such that e∼N

0; I σ2e
� �

, and I is the identity matrix. Variance compo-

nents were estimated with REML using the regress version

1.3-10 R package [19].

Following Stranden et al. [9] an equivalent model to

(2a) is

y ¼ X βþ Zg þ e ð2bÞ

Every element in (2b) is defined as before except for

the vector g of SNP effects. To show that (2a) and (2b)

are equivalent models, we employ the fact that a = Z g.

Then, the variances of a and g are related in the follow-

ing manner:

G σ2A ¼ Var að Þ ¼ Var Z gð Þ ¼ Z Var gð Þ Z0

¼ ZZ0 σ2g

Necessary conditions for models (2a) and (2b) to be

equivalent (Henderson, 1984) are that G = Z Z ' and

σ2A ¼ σ2g .

Variance of SNP effects

In this section, we describe the algorithm to calculate the

variance of the estimated SNP effects g i:e: Var ĝð Þð Þ. The
SNP effects were obtained from a linear transformation of

breeding values in â [4,9,20,21], as follows:

BLUP ĝð Þ ¼ ĝ ¼ cov g; a 0ð Þ Var að Þ½ �−1 â

¼ cov g; g 0ð Þ Z 0 G−1 σ2A
� �

−1
â

¼
σ2g

σ2A

 !
Z 0 G−1 â ¼ Z 0 G−1 â

ð3Þ

The last step results from the fact that model equiva-

lence involves σ2A ¼ σ2g . Now, from equation (3) Var ĝð Þ

is obtained as follows:

Var ĝð Þ ¼ Var Z 0G−1 â
� �

¼ Z 0G−1Var âð Þ G−1 Z

ð4Þ

Now, we know that the predictor error variance (PEV)

of â from model (2a) is equal to:

PEV âð Þ ¼ Var a − âð Þ ¼ Caa ¼ Var að Þ−Var âð Þ

So that
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Var âð Þ ¼Var að Þ− Caa ¼ G σ2A− Caa

Matrix Caa results from inverting the coefficient

matrix of the mixed model equations [22] such that:

Caa ¼ σ2e I− X X 0Xð Þ
−1
X 0þ G−1 λ

� �
−1

; λ ¼
σ2e
σ2A

Then, on replacing with the latter expression into Var

âð Þ (displayed in (4)), we have:

Var ĝð Þ ¼ Z0G−1 G σ2A− Caa
� �

G−1 Z

¼ Z0 G−1 Z σ2A − Z0 G−1 Caa G−1 Z

ð5Þ

Expression (5) results in a large matrix of dimension

(m ×m) with m the number of SNP. However, we only

need its diagonal elements. Also notice that the first

term in (5), Z ' G− 1 Z, can be computed and stored to

be reused for the different traits, whereas Caa has to be

computed for each trait.

Standardization of SNP effects (SNPej)

The estimated SNP effects in (3) were standardized by div-

iding with their corresponding Var ĝ j

� �
obtained from (5)

as follows:

SNPe j ¼
ĝ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĝ j

� �r ð6Þ

P-values and genome screening

The p-values were assessed as 1 minus the cumulative

probability density of the absolute value of SNPe j, a

number that was then multiplied by 2 so as to obtain:

p−valuej ¼ 2 1− Φ SNPe j

�� ��� �� �

where Φ(x) is the cumulative density function of the normal

distribution for the random variable x. When analyzing the

trait 13 week tenth rib backfat (mm), the p-values for each

SNP were plotted across the genome as –Log10 (p-value)

using the physical position of the SNP in Mega-bases (Mb).

Standardization of SNP effects using the PEV of the marker

A second standardization of the jth SNP effect (3) was

performed using the PEV ĝð Þ as follows:

SNPep j ¼
ĝ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var g j

� �
−Var ĝ j

� �r ð7Þ

As discussed above, σ2g ¼ σ2A . The p-values and gen-

ome screening for SNPep j were assessed and plotted in

the same fashion as for SNPe j.

Simulation

A plasmode simulation was performed to compare how

the standardized values SNPe j and SNPep j affected the

nominal size of the test for the effect to be equal to zero.

Data on 928 animals with 44,055 SNP each were used

for the study, and the 1018 SNP on chromosome 18

were reshuffled. Two scenarios were considered: 1) De-

pendency: rows of the genotype matrix were permuted

for columns corresponding to SNP on chromosome 18,

thus keeping Linkage Disequilibrium (LD) within chromo-

somes but breaking the relationship between genotypes

and phenotypes for the 1018 SNP on the chromosome. 2)

Independency: the genotype of any animal was permuted

independently by marker (resulting in linkage equilibrium,

or LE between markers) for those SNP on chromosome

18, and the relationship with the phenotype was broken

too. For both scenarios model (2a) was fitted to the

data, and two tests were calculated for each scenario:

test1 = SNPej and test2 = SNPepj. Permutations were re-

peated 200 times per scenario, and in each permutation

the G matrix was calculated while fitting model (2a). As a

result, the heritability of the trait was similar to the ori-

ginal heritability due to relationships in the other 17 chro-

mosomes being kept intact, and p-values for those SNP

(that are now non-associated) on chromosome 18 were

obtained for the different tests. Under the null hypothesis

and assuming independence (i.e., SNP are unlinked to the

polymorphism controlling the trait), an approach that

controls for type I error appropriately [23], the 1018 test

p-values follow a uniform distribution. Consequently, to

estimate the empirical quantiles of the distribution for the

null hypothesis, we used a uniform density U ∼ (0, 1) to

generate 200 replicated sets for the 1018 p-values.

SNP effects and tests obtained by a single marker model

The SNP effects were tested on a one by one basis. The

model approach used for testing purposes is better known

as “efficient mixed-model association” (EMMA) [24]. The

model included fixed effects of sex and one-marker-at-a-

time; random variable was the animal effect with variance-

covariance equal to the genomic relationship matrix using

all markers, which was calculated as described before. The

R package rrBLUP [25] was used for fitting the different

models and for calculating the tests and p-values.

Proportion of variance explained by segments with large

effect

After the genome screen using model 2a, the SNP with

the smallest p-values were selected to form SNP segments.

These segments were defined by taking all SNP within

one Mb upstream and one Mb downstream of the SNP

with smallest p-value on each chromosome. The size of

the segment was chosen using a criterion similar to the

one employed by Hayes et al. [4]. The point of change in
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the rate of decay in linkage disequilibrium in this popula-

tion was about r2 = 0.2 at 1 Mb (data not shown), which

essentially would imply a minimal contribution to the

additive variance from markers located beyond such dis-

tance. Moreover, segment sizes about two Mb have been

reported to be significant in association studies [20,26-28].

The proportion of variance associated with each segment

was estimated by building a genomic relationship matrix

G1 (as described in (1)) using all SNPs that belonged to

the segment, whereas genomic relationship matrix G2 was

built using all remaining SNPs. The model fitted can be

represented as:

y ¼ X β þ a1 þ a2 þ e ð8Þ

where a1 is the vector of additive random effects associ-

ated with those SNP located in the segment, such that

a1∼N 0; G1 σ
2
A1

� �
, and a2 is the vector of additive ran-

dom effects associated with all SNPs except those in-

volved with a1, such that a2∼N 0; G2 σ
2
A2

� �
. Model (8)

assesses the proportion of variance explained by the seg-

ment of interest (local variance) from the genome vari-

ance explained by all SNPs (global variance). The

variances estimated in (8) were compared with those es-

timates from model (2a). Hayes et al. [4] used a similar

model to assess the segment variance. Applying either

model (8), or the approach of Hayes et al. [4] gave simi-

lar estimated variance components. In practice, the ad-

vantage of fitting model (8) is that G2 is computed

by subtracting from G the columns of Z related to

the segment being tested. Let Zs be a matrix having as

columns those related to the segment being tested, then

G2¼G−ZsZ
′

s . On the contrary, in the model of Hayes

et al. [4] Gis different from segment to segment. Add-

itionally, the calculation of G1 and ZsZ
′

s is fast and in-

volves only those SNPs located in the segment.

To adjust the level of significance for multiple compari-

sons, a Bonferroni Correction (BC) was performed. In this

context, if the pig genome is ~2800 Mb long and the aver-

age size of the segment is 2 Mb, there are 1400 segments

along the genome with corresponding multiple tests. Thus,

for α = 0.05, the BC was equal to 0.05/1400 = 3.571429e−05

(adjusted α or critical value). Hence, in order to evaluate

the significance of the segments, a second p-value for the

Likelihood Ratio Test (p − valueLRT) was calculated to

compare against BC. This p − valueLRT was assessed as

1 minus the distribution function of a chi-square (χ2)

random variable with 0.5 degrees of freedom [29,30] as

follows:

p−valueLRT ¼ 1−Ω LRTð Þ

where Ω(x) is the distribution function of a random

variable having the χ2 as density, and LRT is the

Likelihood Ratio Test obtained by contrasting appropri-

ate models.

Results
Genome screening

The p-values of the 44055 SNP were obtained as de-

scribed in the Methods section. First, the p-values for

SNPej, i.e. using Var ĝ j

� �
, were plotted along the genome

(Manhattan plot in Figure 1) to identify genomic positions

that are associated with variation in 13-week tenth rib

backfat (mm). Large peaks (−Log10(p-value) above 5 can

be seen at chromosomes 6 and 3, suggesting noticeable

genetic variation for the trait. On the other hand, p-values

for SNPepj (i.e. standardized with prediction error vari-

ance) were very large, with a maximum − Log10( p-value2)

of 0.20. In essence, the pattern observed in Figure 2 is the

result of dividing the non-standardized SNP effects by a

constant. Specifically, the normalizing value was [Var

(gj) − Var ĝ j

� �
], with Var (gj) = 2.6768. The use of the

square root of the difference between those two values re-

sulted in a practically constant denominator for the test-

statistic that was equal to 2.66. Also, a look at Figure 2

suggests signals at chromosomes 1, 12, 14, and 18, a fact

that is not observed in Figure 1. However, this might be

an artefact of the constant denominator that tends to

overestimate the true variability for some SNP, thus result-

ing in corresponding false positives across the genome.

In order to study the type I error rate of the two pro-

posed tests we performed a plasmode simulation [31]. A

plasmode is a dataset created from real data where some

of the truth is known. In brief, our plasmode is a simu-

lation that uses reshuffling in a portion of the data as

explained in the methods section. We performed a simu-

lation assuming independent SNP, and another one

keeping the dependency between SNP (LD structure) in-

tact. Simulation results were plotted into a Quantil-

quantil plot graph (Figure 3) using the number –Log

(p-value) for each case of standardization. First, the

p-values for test1 (SNPej) obtained in the scenario under

independent SNPs (scenario 2, LE) displayed an identical

distribution of p-values when obtained by the reference

distribution U ∼ (0, 1). In contrast, under dependency

(scenario 1, LD) less extreme p-values were observed, a

fact that was not reflected in a uniform distribution.

This is a well known fact in human genetic epidemi-

ology [32], where the implementation of the Bonferroni

correction of p-values from associated SNP under the

assumption of independence results in tests that are too

conservative. On the other hand, for test 2 (SNPepj) even

p-values obtained for independent SNP (scenario 2, LE)

displayed a distribution that was too conservative. Fur-

thermore, the results from the dependent scenario (LD)
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Figure 1 Manhattan Plot for trait 13-week tenth rib backfat (mm) by standardization SNPej. Genome screening for 44055 SNP using

standardization Var ĝ j

� �
. −log10 ( p-value ) ( y axis ) versus the absolute SNP position in Mb ( x axis ). The red line represents a genome-wide

significance threshold (p < 1.1349 × 10−6). Numbers from 1 to 18 represent the chromosome ID.

Figure 2 Manhattan Plot for trait 13-week tenth rib backfat (mm) by standardization SNPepj. Genome screening for 44055 SNP using

standardization PEV ¼ Var ĝð Þ−Var ĝ j

� �
. −log10 ( p-value ) ( y axis ) versus the absolute SNP position in Mb ( x axis ). Numbers from 1 to 18

represent the chromosome ID.
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were even more conservative than those from the inde-

pendent scenario (results not displayed in the Q-Q plot),

thus indicating that the use of the square root of Var

ĝ j

� �
as the denominator of the test-statistic results in a

more powerful and not too liberal choice when compared

to the use of the square root of PEV = Var g j

� �
−Var ĝ j

� �
.

SNP effects and tests obtained by the marker model

The analyses of one SNP tested at a time using the EMMA

procedure [24] resulted in p-values that were almost identi-

cal (Additional file 1) to those of SNPej (Additional file 2).

The time taken to compute 44055 SNP tests one at a time

was 84 minutes. In comparison, the algorithm used to fit

model (2a) and to perform the tests of standardized effects

took a total time of 29 minutes (CPU and memory: Quad-

core 2.7GHz AMD Opteron 8384, 256 GB). This time

includes the computation of the G matrix, the fit of the

animal model, the back transformation to calculate the

SNP effects, and the calculation of the standard errors that

are needed to compute the test-statistics.

Tests of segment effects

We also compared the results from our proposed method

to those obtained with a segment-based likelihood ratio

test that has been used by animal breeders [4]. Due to

computational demand, we only performed the LRT to

test for segment effects. Thus, the SNP with the smallest

p-values (or highest − Log10(p-values)) on each chromo-

some were chosen, whereas no segments were tested

using LRT for regions with SNPepj resulting in exceedingly

low p-values. The three segments from chromosomes with

the smallest p-values are displayed in Table 1, and the

remaining segments from the 15 other chromosomes are

shown in the additional files (Additional file 3). All seg-

ments measured 2 Mb (1 Mb on each side of the SNP

with the smallest p-value). The estimates of the variance

components and the LogLikelihood obtained from model

equation (8) were compared with those from model equa-

tion (2a). These results are displayed in Table 2.

Results from the LRT indicated that the segment

on chromosome 6 was significant: p − valueLRT ‐ 6 =

1.133459e−09, a number smaller than the critical 0.05

Bonferroni threshold for 1400 segments (Pcritical = 0.05/

1400 = 3.571429e−05). On the contrary, the segments lo-

cated on all other chromosomes were not significant.

The proportion of variance explained by the segment

from chromosome 6 (−Log(p-value) = 8.02) was 11% of

the total variance, a fact that was reflected in a similar

reduction of the estimated additive variance σ2A
� �

in

model (8): 1.952 + 0.698 = 2.650. This latter value is

close to 2.678, i.e. the estimated value of σ2A from model

(2a) (see Table 2). For all other chromosomal segments,

Figure 3 Quantil-quantil plot of the observed and expected –log(p-values) obtained by simulation. Reference distribution was an

independent and uniform distribution U ∼ (0, 1) for 1018 p-values simulated (black dotted line). Test1(scenario1) = under dependent (LD) and

standardization by Var ĝð Þ (blue dotted line). Test1(scenario2) = under independent (LE) and standardization by Var ĝð Þ (green dotted line). Test2

(scenario2) = under independent (LE) and standardization by PEV (orange dotted line). Each scenario has 1018 p-values permuted 200 times.

Bands represent confidence intervals of 95% (blue band = test1(scenario1), green band = test1(scenario2), pink band = test2(scenario2).
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the estimated value of σ2A did not decrease to a signifi-

cant amount.

Discussion
The main goal of this research was to develop a novel

procedure to perform a rapid genome scan, or GWAS

analysis, from a genomic evaluation. Moreover, the suffi-

cient statistics of our methodology are: the Best Linear

Unbiased Prediction (BLUP) of the breeding values from

an animal model, G as the covariance matrix (or H for a

single step evaluation [33]), Z as the standardized

marker effects matrix, variance components, and Caa.

This setting makes the implementation extremely feas-

ible after the genomic evaluation has been performed as

discussed by Legarra et al. [33].

Variance of the SNP effect

First, the SNP effects ĝ j were calculated by a linear trans-

formation of â using expression (3). Then, we calculated

Var ĝ j

� �
using an expression derived from mixed model

theory (see (4–5)). Next, we divided ĝ j by the square root

of Var ĝ j

� �
to standardize the effect, and referred the

statistics as SNPej. The p-values for the tests of specific

genome regions were calculated with a level of signifi-

cance − Log10(p-value) = 5. Additionally, Prediction Error

Variance (PEV ¼ Var g j

� �
−Var ĝ j

� �
) was employed for a

second standardization, and it was called the SNPepj statis-

tic. After the analyses, we obtained higher p-values (max-

imum − Log10(p-value) = 0.20) and detected stronger

signals (higher peaks in the Manhattan plot) for SNPepj
than with SNPej. Furthermore, a simulation was carried

out with the same structure of SNPs markers and animal

data as in the current study, in order to compare the per-

formance of empirical p-values of both standardized tests.

The SNPs markers of chromosome 18 were reshuffled,

and two scenarios were simulated: 1) Dependent geno-

types (LD), and 2) Independent genotypes (LE). Neither

scenario displayed a relationship with the phenotype,

whereas both standardized tests were calculated at each

scenario. The reference distribution for the p-values

considered was the uniform. In the independent sce-

nario (LE), standardization with Var ĝ j

� �
gave an empir-

ical distribution of p-values that resembled the uniform

density, but in the dependent scenario (LD) the SNPej
performed conservatively. Instead, the standardization

with Var g j

� �
−Var ĝ j

� �h i
produced conservative results

in the independent scenario (LE), and very conservative

tests in the dependent scenario (LD). In this context,

standardizing SNP effects with Var ĝ j

� �
resulted in p-

values that were closer to the simulated ones. Moreover,

the performance of SNPej under LD was not too conser-

vative, a scenario that could be extrapolated to the

Table 1 SNP selected by smallest p-value per chromosome

SNP-name Chromosome Position Mb -log10(p-value) |gb |
ALGA0104402 6 136.08 8.02 0.77

H3GA0010564 3 119.34 5.95 0.48

ALGA0032063 5 61.37 3.78 0.42

ALGA0081287 14 125.98 3.28 0.33

DRGA0011971 13 10.47 3.12 0.36

MARC0022304 9 94.99 3.12 0.42

ALGA0106422 16 111.82 2.90 0.28

ASGA0010464 2 62.15 2.79 0.30

ALGA0111088 8 88.01 2.77 0.48

ASGA0078865 18 10.72 2.70 0.49

ALGA0010607 1 302.88 2.69 0.43

MARC0082230 12 6.14 2.59 0.31

ALGA0045724 7 129.47 2.57 0.41

ASGA0092331 4 138.29 2.52 0.27

ASGA0070227 15 111.82 2.48 0.29

ASGA0077393 17 55.27 2.43 0.32

ASGA0045992 10 7.00 2.42 0.30

ALGA0060793 11 10.50 2.38 0.34

SNP name = SNP marker name, Position Mb =Marker physical position in

Mega-Bases, −log10(p-value) = −Logarithm in base 10 of the smallest p-value,

ĝj j = absolute value of the SNP effect estimated for the trait 13 week tenth rib

backfat (mm).

Table 2 Variance components and LogLikelihood for

models with or without the segment

Seg-chromosome 6 3 5

SNP − log10(p-value) 8.02 5.94 3.78

Lk_m1 −1227.938 −1227.938 −1227.938

Lk_m2 −1210.800 −1223.178 −1224.540

LRT 34.28 9.52 6.80

p-valueLRT 1.1 × 10−9 6.5 × 10−4 3.1 × 10−3

VarE_m1 3.70 3.70 3.70

VarA_m1 2.68 2.68 2.68

VarE_m2 3.73 3.67 3.69

VarA_m2 1.95 2.42 2.55

segmVA 0.70 0.63 0.15

%segmVA 0.11 0.09 0.02

Seg-chromosome = Number of chromosome where segment is located,

m1 =model(2a) without the segment: y = Xβ + a + e, m2 =model (8) with the

segment y = X β + a1 + a2 + e, SNP − log10(p-value) = −Logarithm in base 10

of the SNP p-value selected to create a segment, Lk_m1 = −LogLikelihood for

m1, Lk_m2 = −LogLikelihood for m2, LRT = Likelihood Ratio Test for m1 and

m2, p-valueLRT = p-value for LRT, VarE_m1 = Error variance σ2e
� �

of m1,

VarA_m1 = Additive variance σ2A
� �

of m1, VarE_m2 = Error variance σ2e
� �

of

m2, VarA_m2 = Additive variance σ2A
� �

of m2, segmVA = Additive variance

segment σ2A1

� �
of m2, %segmVa = Proportion in% of the total variance

explained by the segment.
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genotypes in the current study. In addition, the p-values

calculated using the EMMA procedure [24] were similar

to those obtained with SNPej. These results suggest that

SNPej behaves reasonably to control type I error rate or

false positives. Also, the computing time for fitting

model (2a) and then calculating (6) using expressions

(3)-(5) was 2.5 to 3 times less than the computing time

for the EMMA model.

In order to identify SNP with important phenotypic

associations [34], the calculation of SNP effects ĝ j from

genomic breeding values â [8,9,34] has been used in sev-

eral studies [5,20,21]. In this context, the variance of

SNP effects has been estimated using different ap-

proaches. Wang et al. [21] employed the classical defin-

ition of the variance of additive effects from quantitative

genetics [35], so that the variance for each jth marker

was obtained as follows: σ2A ; j ¼ ĝ 2
j 2pj 1−pj

� �
. Whereas,

McClure et al. [20] proposed equating the variance of

SNP effects to 2
X

pj qj

� �
−1

σ2A , and then normalizing

the SNP effects with the square root of this estimated

and constant variance. This test performed similar to

SNPep j (7), when the estimated SNP effects ĝ j

� �
was di-

vided by a constant denominator, a value almost equal

to the prior variance 2.67, and resulted in a very conser-

vative test.

In contrast, the advantage of the standardized test

(SNPej) presented here was that each SNP effect was

scaled by its own (and different) standard deviation ra-

ther than the use of a prior variance [20] or by the

square of each specific SNP effect ĝ 2
j [21] as variance.

Furthermore, the computation of SNPej, involves the

same variance for the same SNPs markers and animals,

i.e. σ2g ¼ σ2A, and the use of the standardized incidence

matrix Z, a function of 2pj(1 − pj), takes into account this

latter quantity into SNPej. Additionally, the matrix Z

uses the allele frequencies from the F0 generation calcu-

lated with unrelated individuals, and a proper expected

variance by marker (see Methods section). In addition,

the test statistics SNPej that standardizes SNP effects

produces a p-value, a result that is appealing to many re-

searchers that are more familiar with the method of test-

ing one SNP at the time rather than with the proportion

of additive variance that is explained by a genomic re-

gion. A further advantage of the method is that detec-

tion of many false positives are avoided, and genome

positions with sizeable effects are highlighted.

Candidate segment approach

Later in the research, genome segments that expressed

higher signals were located. To this purpose, SNPs with

the smallest p-values from SNPej (6) were selected, and

for each of these SNP a segment of 2 Mb long (1 Mb at

each side) was created. The next step was to estimate

the variance components and the Log-Likelihood from

the centered animal models (2a) and (8). The latter

model includes the random vector of SNP segments a1.

Lastly, we compare the performance of both models.

Hayes et al. [4] used a similar model to (8), although the

random SNP effect was taken from the breeding value

and fitted as a separate segment effect. We observed

similar results from the use of either approach. The ad-

vantage of fitting model (8) is that matrix G is the same

for all segments, so that it was calculated only once, and

stored in memory for the calculations, whereas in the

model of Hayes et al. [13] a different G has to be calcu-

lated for each segment. This implies an extended com-

puting time and higher requirements of CPU memory to

obtain similar results to those from model (8).

To evaluate the significance of the segments, the ef-

fects of each chromosome segment were tested by the

Likelihood Ratio Test. The size of the test was adjusted

by the Bonferroni correction. As a result, the segment

located on chromosome 6 (physical position 135 Mb-

137 Mb) was significant, and explained 11% of the trait

total variance. Previous studies by Edwards et al. [10]

and Choi et al. [36], using microsatellites and a small

number of SNP, found significant regions (physical posi-

tions between 135 and 139 Mb) on chromosome 6 for

13 week tenth rib backfat in the current population

under study.

Additionally, forty eight markers between the physical

position between 128 Mb and 139 Mb on chromosome

6 (http://www.animalgenome.org/QTLdb/pig.html), have

been reported to be associated with the trait. Further-

more, recent studies showed the importance of chromo-

some 6 [37,38] in the expression of the trait. Therefore,

our results confirm the presence of genetic variability in

the trait from chromosome 6.

Conclusions
Fast genome screening of SNP effects linearly transformed

from genomic breeding values is advantageous, as a by-

product of genomic evaluations for different species of

farm animals. Moreover, the standardized tests of SNP

effects using their own variance Var ĝ j

� �� �
developed in

this study helps in detecting specific genomic regions in-

volved in the additive variation of the trait and reducing

false positive locations using less computing time. Add-

itionally, genome segments of about 2 Mb formed by sur-

rounding the SNP with the smallest p-values on each

chromosome, and tested with a standardized test involv-

ing Var ĝ j

� �
and with the Bonferroni correction, could de-

tect genome regions responsible for sizeable fractions of
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the trait genetic variance. This methodology involving

genome scan and candidate segment approach is a useful

method for meta-analyses of genome-wide association

studies, as it enables the detection of specific genome re-

gions that affect an economically relevant trait when using

multiple populations. Code and data to obtain and repro-

duce the results presented is publicly available at https://

www.msu.edu/~steibelj/JP_files/GBLUP.html.

Additional files

Additional file 1: Highest − Log10(p-values) on each chromosome
for trait 13-week tenth rib backfat (mm) by standardization SNPej
and EMMA. The blue and red circle represents highest − Log10(p-values)

on each chromosome by the standardization SNPej and efficient mixed-

model association (EMMA) using rrBLUP. respectively.

Additional file 2: Dispersion plot of − Log10(p-values) for trait
13-week tenth rib backfat (mm) by EMMA and standardization
SNPej. Dispersion plot for 44055 –log10 (p-values) by efficient mixed-model

association (EMMA) using the rrBLUP R package in the x axis, and by the

standardization SNPej in the y axis. Red straight line is the reference line 0–1.

Additional file 3: Variance components and LogLikehood for models
with or without the segment for all chromosomes. (Results for the 18
chromosomes).
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