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ABSTRACT Objective: Controlling the spread of the COVID-19 pandemic largely depends on scaling

up the testing infrastructure for identifying infected individuals. Consumer-grade wearables may present a

solution to detect the presence of infections in the population, but the current paradigm requires collecting

physiological data continuously and for long periods of time on each individual, which poses limitations

in the context of rapid screening. Technology: Here, we propose a novel paradigm based on recording the

physiological responses elicited by a short (∼2 minutes) sequence of activities (i.e. ‘‘snapshot’’), to detect

symptoms associated with COVID-19. We employed a novel body-conforming soft wearable sensor placed

on the suprasternal notch to capture data on physical activity, cardio-respiratory function, and cough sounds.

Results: We performed a pilot study in a cohort of individuals (n=14) who tested positive for COVID-19 and

detected altered heart rate, respiration rate and heart rate variability, relative to a group of healthy individuals

(n=14) with no known exposure. Logistic regression classifiers were trained on individual and combined

sets of physiological features (heartbeat and respiration dynamics, walking cadence, and cough frequency

spectrum) at discriminating COVID-positive participants from the healthy group. Combining features yielded

an AUC of 0.94 (95% CI=[0.92, 0.96]) using a leave-one-subject-out cross validation scheme. Conclusions

and Clinical Impact: These results, although preliminary, suggest that a sensor-based snapshot paradigm

may be a promising approach for non-invasive and repeatable testing to alert individuals that need further

screening.

INDEX TERMS COVID-19, diagnostics, digital health, soft electronics, wearable sensors.

I. INTRODUCTION

THE COVID-19 pandemic is a global public health cri-

sis, with over 50 million confirmed cases and more

than 1.2 million deaths worldwide as of November 11th 2020.

Testing has continued to be a critical factor to control and

reduce the spread of the disease by timely isolating and/or

treating individuals who are suspected of infection [1]. With

a proportion of asymptomatic infections estimated between

20% to 30% [2], [3], rapid testing for pre-symptomatic or

asymptomatic patients could be key to ending the spread of

COVID-19 [4].

Ongoing efforts are being directed at the development of

novel rapid screening technologies [5], [6], but at present

the primary method to test an individual for the presence

of the virus is based on molecular testing, also known as

RT-PCR (reverse transcription polymerase chain reaction),

which detects the virus geneticmaterial in a biological sample

from the patient respiratory tract or saliva [7]. Although this

is considered the most sensitive type of test, it has several

drawbacks: for many testing facilities, test samples must be

transported to a lab for analysis, creating a delay period into

the diagnostic process that can range from a few hours to a
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few days or over a week. Further, infections that occur imme-

diately prior to or following the test are not detected, and

repeated testing is often not feasible due to limited resources.

As a result, the current testing capacity, as well as delays

in processing and delivering test results, remain a bottleneck

that is limiting the effectiveness of public health containment

measures [8].

In addition to molecular testing approaches, early indica-

tions of COVID-19 could be detected through changes in

vital signs or other physiological characteristics. For exam-

ple, increased resting heart rate and heart rate variability

have been proposed as early predictors of illness [9]–[11].

Though unlikely to achieve the sensitivity or specificity of

molecular testing, physiological monitoring could become

a cost-effective and high-throughput method for first-pass

screening of individuals at risk of COVID-19 infection, such

as hospital staff, residents of long-term care facilities and

essential workers. Repeated, proactive monitoring is crucial

for such groups, and an approach based on easily measured

physiological signals, beyond the common skin tempera-

ture checks currently in use in many public places, could

help fill in the monitoring gaps between ‘‘gold standard’’

molecular tests.

Wearable sensors present an enticing avenue to detect

physiological signals indicative of COVID-19 [12]. Detec-

tion of adverse events such as atrial fibrillation [13], Lyme

Disease [14], stress [15], and even the spread of viral infec-

tions at the population level [10], proved to be possible

through continuous, long-termmonitoring of vital signs using

consumer-grade wearables. Recent studies have adopted this

paradigm for detecting the onset of COVID-19 infections,

by recording changes in heart rate, physical activity, respi-

ration and sleep data [16]–[19] over long periods of time.

However, the logistics of a continuous monitoring approach,

when applied on a broad scale, could become quite chal-

lenging [20]. Continuous monitoring requires one device

per individual, and even when provided with a device, not

all individuals will use it consistently [21]. Furthermore,

the extremely large amount of data per person can create

challenges for proper data management and processing at

scale [22], [23].

Here, we discuss a different paradigm for detecting

alterations in physiology due to COVID-19 using wear-

able sensors, based on recording physiological responses

during a short sequence of activities, using a novel soft

body-conforming wearable sensor that adheres to the throat.

We present preliminary results of a larger trial and describe

a proof of concept of how this paradigm could enable

large-scale deployment of rapid testing to identify individuals

at-risk who need further screening.

II. RESULTS

A. ‘‘SNAPSHOT’’ DETECTION OF COVID-19

To address limitations in continuous physiological monitor-

ing with wearable devices, we propose an alternative solution

to detecting changes in physiology related to COVID-19

infections. Our method relies on two main components: a

sensing platform capable of measuring physiologically rel-

evant parameters, and a standardized sequence of activities

(Fig. 1), which we refer to as a ‘‘snapshot’’, designed to

sensitively elicit responses indicative of a diseased state.

By collecting a range of physiological signals during a snap-

shot, including heart activity, respiration, physical activity,

and cough sounds, we hypothesized that changes due to

COVID-19 could be detected.

The sensing device consists of a safe, soft, and reusable

wearable sensor worn on the suprasternal notch and capable

of recording mechano-acoustic signals through an embedded

high-resolution accelerometer [24]. The device can measure

broad body motions, such as those corresponding to walking,

as well as subtle vibrations induced by sounds produced

by heart beats, coughing, or breathing, thus making it pos-

sible to quantify physical effort and changes or anomalies

in cardiac and respiratory physiology (see Section V for

details). While our paradigm can be extended to other wear-

able platforms, the form factor of this device allows a more

direct access to respiratory variables, including respiration

dynamics.

B. PILOT STUDY TO MEASURE PHYSIOLOGICAL TRENDS

FROM A SNAPSHOT

Three different cohorts of individuals were outfitted with

the soft wearable sensor to monitor physiological signals as

they performed activities: Inpatient COVID-positive (n=10),

Home-quarantining COVID-positive (n=5), and Healthy

Controls (n=14). The Inpatient cohort consisted of indi-

viduals being treated at the Shirley Ryan AbilityLab, who

had tested positive for COVID-19 and required physical

rehabilitation resulting from severe COVID symptoms. The

Home-quarantining cohort consisted of individuals who

had milder symptoms and could recover from the infec-

tion at home. The Healthy Controls had no COVID-like

symptoms or known exposure to the disease and were

enrolled for an in-lab data collection. Demographics for the

finalized set of participants are provided in Table 1 (see

Section V for details). For statistical analyses, the Inpa-

tient and Home-quarantining cohorts were combined into

the COVID-positive group, while the healthy controls were

labeled as COVID-negative.

For each subject, periods of rest, walking, and forced

coughs were recorded using the soft wearable sensor attached

to the suprasternal notch. We processed the accelerometer

time series to derive physiological signals (see Section V)

corresponding to respiration rates and R-R intervals during

the resting phases, as well as walking cadence, for each activ-

ity snapshot (a sequence of rest, walk, rest). We compared

the distributions of respiration rate, mean heart rate and heart

rate variability (HRV, calculated as standard deviation of R-R

intervals) prior to walking, as well as their changes before and

after walking between COVID-positive and Healthy Controls

(Fig. 2A-C). Acoustic features were extracted for the data

collected during forced coughs.
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FIGURE 1. Accelerometer time series data were recorded using a soft wearable sensor [24] adhered to the suprasternal notch, as subjects
performed a short set of predefined activities. Respiration and heartbeat dynamics, physical activity, and cough frequency information were
derived from the recorded data. From these physiological signals, time and frequency domain features were extracted and fed into a symptom
detection classifier trained to predict the presence of COVID-symptoms. The classifier outputs the probability of suspect symptoms based on the
input signal features.

FIGURE 2. Pre-walk and post-walk physiological signals in Healthy Controls and individuals who tested positive to COVID-19, derived from
accelerometer time series data. Participants who tested positive to COVID-19 (home-quarantined and inpatients) displayed altered heart rate (A),
heart rate variability (B), respiration rates (C) and heart rate / walking cadence (beats per minute / steps per minute, (D), compared to healthy
controls.

Mean heart and respiration rates at baseline (pre-walk)

were higher in participants who tested positive (median HR-

HealthyControls: 71.4 beats perminute,COVID-Positive:

98.4 beats per minute U=18.0, p<.001; median Resp

Rate–HealthyControls: 16.6 breaths perminute,COVID-

Positive: 26.8 breaths per minute; U=26.0, p<.001),

while heart rate variability (HRV) was lower (median

HRV Post – Healthy Controls: 0.052 s, COVID-Positive:

0.026 s; U=28.0, p=.0012), relative to the control group.

Therefore, we detected differences in individual physiolog-

ical features between the 2 groups, which may be associated

with a diseased state.
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TABLE 1. Patient demographics. Comorbidity abbreviations: HTN: Hypertension; DM: Diabetes Mellitus (type II); CA: Cancer; HF: Heart Failure; SLE:
Systemic Lupus Erythematosus; HLD: Hypersensitivity lung disease.

To understand the effect of exertion, we compared within-
group changes (Post-walk vs. Pre-walk) of vital signs: the

median heart rate in each group was higher following

walking (HR – Healthy Controls Post: 78.3 beats per

minute, Pre: 71.4 beats per minute; W=5.0, p=0.003;

COVID-Positive Post: 105.7 beats per minute, Pre:98.4

beats per minute; W=7.0, p=0.004); neither Respiration

Rate nor HRV changed significantly within each group as a

result of walking (p>0.12). Pairwise differences (Post-Pre)
in vital signs between groups were comparable, suggesting

that the COVID-positive group did not show larger changes

in any of the vital signs relative to the Healthy Controls

as a result of exertion (HR Post-Pre difference – Healthy

Controls: 6.7 beats perminute,COVID-Positive: 5.7 beats

per minute, U=98.0, p=0.49; Respiration Rate differ-

ence Post-Pre – Healthy Controls: -0.43 bpm, COVID-

Positive: 3.48 beats per minute; U=69.0, p=0.095; HRV

Post-Pre difference – Healthy Controls: 0.0027 s, COVID-

Positive: 0.0037 s, U=95.0, p=0.45;). This could be due to

several factors, including the fact that the inpatient group

could have been already fatigued because of the physical

therapy session.

We also examined the ratio of post-walking heart rate

to walking cadence (Fig. 2D), as a further metric of car-

diac response related to effort. We observed that individu-

als who tested positive had significantly higher values than

controls (Healthy Controls: 0.73 beats per minute/steps

per minute; COVID-Positive: 1.33 beats per minute/steps

per minute; U=9.0, p<.001). Indeed, participants who

tested positive tended to walk at a slower pace while hav-

ing an increased heart rate after walking than the healthy

control group (median Cadence – Healthy: 106.9 steps

per minute, IQR=[102.5, 111.1]; Positive: 81.3 steps per

minute, IQR=[70.4,85.2]).
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C. DETECTING PHYSIOLOGICAL CHANGES DUE TO

COVID-19 FROM SNAPSHOTS

We also wanted to determine whether it is possible to detect

a diseased state associated with COVID-19 from the physio-

logical signals captured in a snapshot. Therefore, we trained

a statistical learning model (Logistic Regression with Elastic

Net regularization) on signal features derived from the R-R

intervals, steps, respiration and frequency spectrum of cough

signals. To evaluate the relative contribution of individual

physiological features, we compared models trained on each

individual physiological feature set (Pre/Post cardiac and

cadence, Pre/Post respiration or cough) against one trained

on the combined feature set (see Section V). The model was

trained to classify the probability of COVID infection based

on the label (COVID-positive vs. Healthy Control) of each

snapshot.

We validated themodel using a leave-one-subject-out cross

validation, so to mimic the use-case of the paradigm [25],

i.e. training on snapshots from a cohort with known diag-

nosis and testing on snapshots of a new participant with

unknown diagnosis. Each COVID-positive participant had

a variable number of data points (see Table 1), as cough

and pre- and post-gait snapshots were recorded over multiple

days of monitoring in the hospital or at home. Given the

unbalanced number of datapoints between COVID-positive

and Healthy participants, we randomly sampled one walk

sequence and one cough sequence, with replacement, n=5

times for each individual to build a dataset for training and

evaluating the model. This sampling was intended to simulate

a brief screening data collection where each sequence was

performed only once. This process was repeated 100 times to

estimate confidence intervals on the model predictions, and

ensured that each participant contributed the same weight to

the model reported accuracy.

While combining different physiological features aided in

separating the COVID-positive and negative groups (mean

AUC All = 0.94, CI=[0.92, 0.96]), the improvement was

marginal relative to a model trained using heart and walk-

ing cadence features only (AUC HR+Cadence = 0.93,

CI=[0.91, 0.95]). Models trained on forced cough signals

alone showed the lowest discriminative performance (AUC

Cough=0.64, CI=[0.53,0.72]), suggesting that these fea-

tures alone did not have sufficient discriminatory power in

our cohorts. Whether this is due to a lack of resolution of

the sensing device at capturing subtle changes in tracheal

sounds, or the fact that these events were forced coughs from

COVID-positive participants, and they were no longer in the

acute phase of the disease, remains to be investigated in a

future study.

Combining multiple physiological features also increased

separability of the cohorts (Fig. 4). The model output prob-

ability, representing the probability of COVID infection for

an individual in the test set, was overall higher for inpatients

than for individuals quarantining at home, therefore suggest-

ing that a model trained on an augmented feature set could

FIGURE 3. ROC curves for symptom detection models trained on different
subsets of physiological features derived from the sensor data.
Augmenting the set of physiological features aided detection of
COVID-positive individuals. Mean ROC curves and AUC values shown are
bootstrapped from for n=100 runs of the model. Shaded areas represent
95% confidence intervals.

help infer the likelihood of severe symptoms from mild ones

(Fig. 4 A-D).

III. DISCUSSION

Skin-integrated sensors hold promise for continuous on-body

sensing [26] which could be valuable for monitoring

COVID-19 symptoms in an unobtrusive manner [27]. Here,

we have shown that this technology could also be used to

gather a snapshot of cardio-respiratory parameters, prior to

and following physical effort, and determine whether an indi-

vidual may need further screening. Using a chest-mounted

soft accelerometer, we measured increased heart and res-

piratory rates and decreased HRV in individuals who had

tested positive to COVID-19, relative to a Healthy Control

group, while they performed a short set of standardized activ-

ities. This approach resembles stress tests that are commonly

used in physical medicine to evaluate cardio-respiratory fit-

ness [28]–[30]. However, we are not aware of any prior

attempt of measuring a mild-stress-induced response to

uncover changes in physiology of COVID-19.

The fact that alterations in physiological parameters were

present in both inpatients with several existing co-morbidities

and individuals quarantining at-home with no known under-

lying comorbidities suggests that the diseased state may have

been the underlying cause of physiologically observed differ-

ences. Decreased time-domain measurements of HRV have

been associated with a variety of conditions reflecting poor

health [31], including inflammation and acute or chronic

illness. Furthermore, we found that physical activity, cardiac,

respiratory, and cough features gathered from a snapshot

could be used to train a statistical learning model at discrim-

inating individuals who tested positive in our sample.
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FIGURE 4. Distributions of model confidence values split by different participant cohorts. Combining features increased the separation of
individuals by symptom severity: the output probability (confidence) for COVD detection was higher for individuals affected by severe
conditions (inpatients) than for individuals quarantining at-home.

Recent studies showed that crowdsourced data from smart-

phones or consumer-grade wearables on either respiratory,

cardiac or cough sounds [17], [32]–[35] could potentially

be used to develop biomarkers to predict the onset or detect

the presence of COVID-19. A targeted snapshot of activities

should exacerbate these physiological signs of Covid-19 to

allow for more sensitive detection through wearable sensors.

Further, fixing activities to a pre-defined sequence allows

defining a precise context and facilitates the comparison of

data across individuals, in contrast to the continuous sensing

paradigm where data is gathered opportunistically.

A sensor-based ‘‘snapshot’’ approach measuring the

physiological response to a physical stressor may provide

additional prognostic information to detect COVID-19. Snap-

shot measures may also facilitate large-scale deployment of

testing and be used to alert individuals that need further

screening. With less data required to produce an evaluation

of disease risk, early detection models could be more eas-

ily adapted and fine-tuned to specific populations, based on

relatively small amounts of data and with reduced risk of

statistical bias [36]. In addition to facilitating deployment,

this paradigm may allow rapid collection of targeted data on

diverse populations and provide insights into the manifesta-

tion of symptoms in these population, so to build a digital

biomarker that fit different subsets of individuals.

While these results are encouraging, we need to acknowl-

edge a number of limitations in our pilot study. First, our

sample of Healthy Controls and COVID-positive groups is

limited and not fully representative of the target popula-

tion required to assess an early-screening methodology [37].

Therefore, the model presented is at risk of overfitting, and

thus we are not yet able to quantify the actual sensitivity

of this approach for detecting COVID-positive individuals.

We also cannot ascertain whether the separation observed

between the COVID-positive and the Healthy Controls group

was uniquely caused by physiological changes induced by

COVID-19 infections, or was attributed to other potential

confounders, including co-morbidities existing in the inpa-

tient cohort and age differences. At the time of the study,

we were not able to enroll healthy age-matched individuals

because of the significant risks posed by the pandemic in

senior individuals, and thus were only able to run the trial

on healthy individuals who were willing to participate and

had a low risk of contracting the disease. As such, these

factors could have inflated the accuracy of the model. Finally,

the activities we selected here might not constitute the opti-

mal set to uncover physiological changes of an ongoing

COVID-19 infection. These factors limit the generalizability

of our findings until a larger dataset more representative of the

COVID-positive population is assembled. However, the main
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purpose of this study was not to create a generalizable statis-

tical model, but rather to investigate whether physiological

changes induced by COVID-19 could be detected from a

snapshot activity sequence using our sensing device.

A key weakness of a snapshot paradigm is the lack of

repeated measurements to assess changes in baseline phys-

iological measures. However, the method can be extended

to capture multiple snapshots over time, in order to monitor

changes across days in a participant. Such an approach could

eventually be used to measure the progression or regres-

sion of the respiratory infection. Similarly, in cases with

a pre-specified target population (e.g. hospital employees

or nursing home residents), this paradigm could easily be

adapted to incorporate measurements taken at regular inter-

vals in comparable circumstances, such as every other day at

the end of the shift or after breakfast.

We are currently deploying a next-generation version of

the sensing platform at multiple COVID-19 testing facilities,

with the aim of collecting snapshots from a large cohort com-

prising thousands of individuals whomay be in the early stage

of the disease to obtain a reliable estimate of the sensitivity

of this approach against RT-PCR. The new chest-mounted

devices include an electrocardiogram (ECG), a temperature

sensor, and an additional SpO2 finger sensor; these additional

data will be used in conjunction with demographics and

medical history to understand which activities and physi-

ological features provide the highest diagnostic value in a

snapshot approach. A more comprehensive set of snapshot

activities is also being explored, which includes multiple

periods of resting, walking, deep breathing, coughing, and

breath-holding, to evaluate an optimal sequence of activities

for eventual clinical use. The results of the ongoing multi-site

trial will allow understanding the limits and potential use of

this method for large-scale monitoring.

IV. CONCLUSION

In conclusion, we showed that soft body-conforming

wearable sensors could be used to capture an array of

cardio-respiratory parameters during a short sequence of

activities, which may help uncover physiological changes

induced by respiratory diseases, such as COVID-19. While

the results presented here are based on the specific sensor

and activities we experimented with, the general approach

presented is applicable to any type of wearable sensor capable

of measuring relevant physiological signals. We hope that

other researchers may benefit from exploring similar methods

using different devices and activities, and help identify a

more optimal approach to this ‘‘Snapshot’’ monitoring for

COVID-19 symptoms.

V. METHODS AND PROCEDURES

All the participants provided written/verbal consent prior

to their participation in this research study. Study pro-

cedures were approved by the Northwestern University

Institutional Review Board (NU-IRB), Chicago, IL, USA

(STU#00212522) on April 20, 2020. All study related

procedures were carried in accordance with the standards

listed in the Declaration of Helsinki, 1964.

A. PATIENT CHARACTERISTICS

During the first months of the pandemic, our hospital (the

Shirley RyanAbilityLab) received a limited number of partic-

ipants who tested positive for COVID-19 and required physi-

cal rehabilitation as they recovered. Some of these individuals

(n=14) provided informed consent to participate in our study

and wear the sensor throughout the day, including during

physical therapy sessions. In addition, we enrolled a group

of 5 individuals who were recovering from the infection by

quarantining at home. Both groups were asked to period-

ically perform specific activities: 5 deep breaths, 5 forced

coughs, and 30 seconds of walking. Because of the severity of

fatigue, inpatients with COVID-19 omitted the walking por-

tion. These sequences were marked in the data via three taps

on the sensor at the beginning and end and were intended as a

reference set of activities while exploring the rest of the data.

In the course of our analysis of the data, we became inter-

ested in whether participants experiencing COVID-19 symp-

toms showed differences in vital signs, and whether these

would be exacerbated by exertion. If so, it might be feasible

to distinguish those with COVID from those without, based

on small amounts of data. Because we were interested in

resting vital signs both before and after exertion, segments of

walking with accompanying pre- and post-walking rest were

selected from the time series data for all participants. Isolation

precautions for COVID positive participants allowed only

trained nursing staff to interact with the individuals for sensor

application. Thus, sensors were applied by nursing staff in

the morning hours and were worn throughout the day (con-

tinuously) to ensure collection of gait during a given number

of physical therapy sessions. As a reference for non-COVID

physiological signals, several individuals (Healthy Controls,

n=14) with no COVID-like symptoms or known exposure

performed a sequence of activities that included 30 seconds of

rest, 30 seconds of walking and 30 seconds of rest, in addition

to the structured activities (cough, deep breathing) performed

by COVID-positive participants. Participant demographics

are provided in Table 1. Of the 19 individuals who tested

positive, only n=14 had usable data, while the remaining

ones were discarded due to data quality issues in the unmon-

itored data collection environment, such as loss of sensor

skin contact or motion artifacts from talking. Although not

logistically feasible for all of the COVID-positive subjects

in this initial collection of data, directing each subject to

perform the controlled sequence of activities without talking

or unintended movements, as was done with the Healthy

Control cohort in this study, would help reducing motion

artifacts in future work.

B. SENSING DEVICE

The soft wearable wireless sensor used in this study was

developed by the Rogers Research Group at Northwestern

University. The device, worn on the suprasternal notch, was
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utilized to record the physiological signals of interest. In pre-

vious work, this device has been shown to be capable of

measuring broad body motions, such as those corresponding

to walking, as well as subtle vibrations induced by sounds

produced by heart beats, coughing or breathing [24]. The

device consisted of a high resolution 3-axis accelerome-

ter embedded within a soft silicone package (Fig 1). The

accelerometer x-axis (superior-inferior) and y-axis (lateral-

medial) of the device sampled at 200 Hz. The accelerometer

z-axis (anterior-posterior) sampled at 1600 Hz. The range of

each accelerometer axis was ±2g. The sensing device also

had a temperature sensor for continuous skin temperature

recording, although this sensing modality was not used in this

study, as a reliable reading of body temperature cannot be

obtained through a skin-mounted sensor in the short context

of our snapshot sequence due to environmental effects. The

silicone sensor package adhered to the suprasternal notch of

each subject using a disposable adhesive.

C. ESTIMATION OF RESPIRATION RATES

For each subject, the respiration rate during the pre-walk

and post-walk resting periods were calculated using the

accelerometer time series data. To compute the respiration

rate, we used an approach based on reconstructing the angu-

lar motion induced by breathing by tracking the rotation of

the gravity vector in the accelerometer signals [38]. This

approach is briefly summarized here. The z-axis accelerome-

ter signal was downsampled to 200 Hz to match the sampling

frequency of the x-axis and y-axis. Each axis signal was

filtered using a 2nd order Butterworth low-pass filter with

a cutoff frequency of 1 Hz. The signal was normalized at

each time point. The axis of rotation between two consecutive

measurements of acceleration is calculated as follows:

rt = at × at−1

To reduce noise, each axis of rotation estimate was

weighted by the angle change associated with each mea-

surement, and the mean axis of rotation over a 5 second

window length was computed using a Hamming window

function. The current rotation angle, phi, was then computed

as follows:

φt = sin−1 ((āt × r̄t ) · at )

To calculate the angular rate, φt was filtered with an 8th

order Butterworth band-pass filter with cutoff frequencies

of 0.1 and 0.8 Hz, and then numerically differentiated with

respect to time. The power spectral density of the angular

rate was estimated using Welch’s method, and the respi-

ration rate (breaths per minute) was taken to be the fre-

quency at which the signal power is maximized (dominant

frequency) (Fig. 5).

To quantify the regularity of the respiration rate, we also

computed the number of peaks in the power spectrum, where

a peak was identified as any spectral value equal or greater

than 50% of the dominant frequency peak. These set of

4 features (Respiration Rate Pre- and Post-walk, number of

FIGURE 5. Example respiration signal taken from a Healthy Control patient.
The peak corresponding to the respiration rate is highlighted in red.

FFT peaks Pre- and Post-walk) were input to the symptom

detection model.

D. COUGH SIGNAL FEATURES

Cough sequences performed and identified as five consecu-

tive, voluntary coughs, were manually clipped and extracted

from the sequence of activities captured in a snapshot. For

each sequence, x- and y- axes (200 Hz) were up-sampled to

the frequency of the z-axis sampling rate (1600 Hz). A fifth-

order, high-pass Butterworth filter (40 Hz) was applied to

each axis and the vector magnitude of the acceleration

signal was calculated. Cough sequences exceeding high-

noise thresholds, based on percentage of zero-crossings with

respect to the sequence duration, were discarded. Accepted

sequence data was then input into a frequency-based slid-

ing window cough detection function (window size of

0.2s, overlap of 50%). A wavelet denoising filter (5-level

wavelet decomposition, sym5, universal thresholding rule,

soft thresholding) was applied during this detection to elimi-

nate high frequency noise prior to extracting power from the

frequency domain of each sliding window. Those window

regions identified with a power greater than a sequence-based

threshold (25% of the sequencemean power) were designated

as presence of cough (Fig. 6). Binary presence of cough

was used to determine cough boundaries and clip data per

individual cough. Finally, the following set of time and fre-

quency domain features (21 total) were computed on each

individual cough signal and averaged across the 5 coughs.

These features were used as input to the symptom detection

model; some of these features were derived from previous

studies investigating classification of cough types from audio

signals [39]:

Time domain signal: 1st-4th Statistical Moments, Root

Mean Square, Crest Factor, Duration, Maximum, Absolute

difference, inter-quartile range, Sample Entropy, Lempel-Ziv

complexity.

Frequency domain (Power Spectrum): 1st-4th Statistical

Moments, Dominant frequency, Spectral Entropy, Spectral

Centroid, Spectral Spread.
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FIGURE 6. Signal processing of cough signals from an example Healthy Control subject.

FIGURE 7. Hyperparameter optimization using nested cross validation. A leave-one-subject-out cross validation
outer loop is utilized to report model performance (Area Under the Curve or AUC), where a single subject i is used as
the test set, and the remaining subjects as the training set. For each subject i in the outer loop, an inner loop is run
on the corresponding training data to find an optimal value of the regularization parameter. This optimal parameter
is then used to re-run the outer loop and the process repeated until each subject has an optimal parameter value.

E. ESTIMATION OF R-R INTERVALS

TheR-R interval was extracted from sitting data that preceded

and proceeded the walk bout. In order to extract the R-R inter-

val from sensor data, a multi-tier signal filtering approach

was adopted. First, the raw sensor data was de-trended and

band pass filtered (2nd order Butterworth filter with cutoff

frequency 0.3 Hz to 600 Hz) to remove any experimental

noise and process noise. Following this, a Discrete Wavelet

Transform (DWT) approach [40], at different characteristics

scales, was used to filter the signal a second time. The charac-

teristic scales were chosen such that the filtered output signal

enhanced the energy of the signal and/or the peak of the signal

for reliable identification of the peak R-R occurrences on

the time series [41]. Following this, a threshold-based peak

detection algorithm was used to extract the R-R intervals

from the time series. Finally, the mean heart rate and heart

rate variability (standard deviation of R-R intervals) were

computed from the time series of R-R intervals.

F. ESTIMATION OF WALKING CADENCE

To estimate the walking cadence, the walking portion of the

sensor recording was manually extracted. Then the L2-norm

of the acceleration was computed, and the stepping fre-

quency (cadence) was computed as the dominant frequency

of the FFT of this signal.

G. CLASSIFICATION MODEL AND STATISTICAL ANALYSIS

Statistical comparisons of physiological trends were per-

formed with non-parametric statistical tests (Wilcoxon

Signed-Rank Test and Mann-Whitney U Test) to account

for the non-normality of distributions and the small sam-

ple size. P-values were corrected for multiple comparisons
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using Bonferroni correction. We used a correction factor of

9 (3 x 3 comparisons) which yielded a corrected p-value of

0.0056.

We trained a regularized logistic regression (elastic

net [42]) model to detect the presence of COVID-like symp-

toms based on the physiological signal features. The model

was implemented using the Scikit-learn library 0.23.2 in

Python 3.7.6. The total number of data points (available

walking and cough snapshots) across all participants was

288. In each of the n=100 bootstrap runs, we sampled with

replacement n=5 snapshots from each participant, for a total

of 135 samples. The full model combining all the features

used a total of 30 input features. We performed a grid search

to optimize the regularization hyperparameter C for each set

of features independently. To limit overfitting, we employed

a nested cross validation (i.e. nested loop within the leave-

one-subject-out cross validation used to report model per-

formance), as shown in Figure 7. The ratio of L1 to L2

regularization was set to 0.5. The feature selection processes

resulting from the elastic net regularization, indicated that

heart rate, HRV, respiration features and walking cadence all

had similar importance (i.e. coefficients) in the final model.

Amongst cough features, spectral spread and IQR had the

highest coefficients in the trained model, while the remaining

cough features had relatively low contribution.
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