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Figure 1. In this paper, we show how to reconstruct the shape of a scene, such as the two hands shown on the left, given a single

photograph of the scene under colorstriped illumination shown at center. A novel dynamic programming method leads to the

geometric reconstruction on the right, shown as a shaded rendering from a new viewpoint.

Abstract

This paper presents a color structured light technique for

recovering object shape from one or more images. The tech-

nique works by projecting a pattern of stripes of alternating

colors and matching the projected color transitions with ob-

served edges in the image. The correspondence problem is

solved using a novel, multi-pass dynamic programming al-

gorithm that eliminates global smoothness assumptions and

strict ordering constraints present in previous formulations.

The resulting approach is suitable for generating both high-

speed scans of moving objects when projecting a single stripe

pattern and high-resolution scans of static scenes using a

short sequence of time-shifted stripe patterns. In the latter

case, spacetime analysis is used at each sensor pixel to ob-

tain inter-frame depth localization. Results are demonstrated

for a variety of complex scenes.

1 Introduction

Reconstructing accurate shape from images is a long-

standing and challenging problem in computer vision. Struc-

tured light techniques methods simplify the problem with the

help of controlled illumination and can yield excellent results

in practice. Recently, researchers have focused on speeding

up the acquisition process by designing techniques that re-

quire only a small number of input images, in some cases

even a single image. Indeed, being able to capture accurate

shape from a single image opens up the possibility of scan-

ning moving scenes by repeating the process at video rates.

Custom hardware solutions have been developed to solve

the problem of rapid shape capture, but enabling the

construction of rangefinders from more commonly avail-

able components makes them more accessible to other re-

searchers. To this end, we focus on optical triangulation

methods which can be developed with a video projector (in

some cases, a slide projector) and a camera.

In designing optical triangulation systems, researchers

seeking to minimize the number of images required for shape

capture typically face a set of trade-offs. For instance, a gray

ramp and a solid white pattern projected onto a surface can be

used to encode position; after taking the ratio of the two im-

ages, the brightness at each pixel determines the correspond-

ing point on the ramp. The drawback of such an approach is

sensitivity to noise, as errors in brightness measurement can

translate into substantial triangulation errors. Rather than a

smooth pattern, we could instead project a high frequency

pattern such as a square wave. While the imaged edges can

be quite precisely localized and triangulated, an ambiguity

problem arises: the correspondence between observed edges

and projected image is not directly measurable.

In this paper, we seek to develop an accurate triangula-

tion system, and thus follow the approach of projecting high

frequency patterns. To simplify the correspondence problem,

we project color patterns, which essentially encode more bits

of information at each edge, at the expense of some limi-

tations on surface reflectance (e.g., the surface must reflect



light in all channels). Nonetheless, due to the finite number

of distinct edge transitions available in three color channels,

ambiguity remains. Indeed, the edges themselves may be

noisy and have non-zero likelihood of being associated with

more than one different color transition. Our goal then is to

find a surface that is the most likely among all possible hy-

pothesized correspondences.

We address this multiple hypothesis correspondence prob-

lem with dynamic programming. Dynamic programming has

long been used in stereo vision, but has a number of limita-

tions that have made it less desirable than other methods of

stereo reconstruction. In the context of color structured light

rangefinding, however, we show that it can be quite power-

ful. We describe a dynamic programming method that con-

structs piecewise-continuous surfaces. One limitation of dy-

namic programming in this setting is the requirement that the

surface be monotonic with respect to the projector and cam-

era. To overcome this limitation, we develop a multi-pass

version of dynamic programming that recovers surfaces that

violate monotonicity. A second problem with dynamic pro-

gramming as applied to traditional stereo correspondence is

that incorporating inter-scanline constraints is problematic,

resulting in abrupt disparity discontinuities between adjacent

scanlines. With the aid of color structured light, however, we

have observed that the correspondence is sufficiently robust

that inter-scanline constraints are simply not necessary. This

conclusion has been borne out in many experiments over a

wide range of scanned objects.

Based on this dynamic programming technique, we

demonstrate a system capable of reconstructing accurate

shape from a single image. When more than one image

can be obtained, notably for the case of a static scene, we

show that the additional images can be incorporated to yield

denser and more accurate reconstructions. In particular, us-

ing a small number of images acquired while the projector

pattern shifts across the object, we can match against the

time evolution of the reflected pattern observed at each pixel.

This temporal matching is shown to have greater immunity

to shape and shading variations.

The rest of the paper is structured as follows. Section 2

overviews some of the structured light scanning literature

and proposes the architecture of our scanner. In Section 3

we formulate the edge correspondence problem as a multi-

hypothesis code matching problem and present a multi-pass

dynamic programming solution. Next, in Section 4, we de-

scribe the design of a color-coded projection pattern and its

use in reconstructing shape from a single image. For static

scenes, we then develop a spacetime method that can be used

to attain high resolution results (Section 5). In Section 6,

we describe our implementation and show results for both

the single image and multiple image approaches. Finally, in

Section 7, we summarize the work and suggest avenues for

future research.

2 Related work

Optical triangulation has been an active area of research for

decades. The techniques that have been developed range

from those that require many images to reconstruct a surface

to those that require only a single image. Here we discuss

several, but by no means all, papers along that continuum.

Among the scanners that acquire many images, the swept

stripe scanner is among the most common (e.g., [13, 21]):

a plane of light sweeps across a surface while a CCD ar-

ray images the stripe reflection and triangulates to the light

plane, scanline by scanline. Rioux et al. [27] employ a fly-

ing spot and linear sensor array. Kanade et al. [23] sweep a

light plane but record the time at which a peak is observed

at each sensor pixel. This time is then used to triangulate the

sensor line of sight back to the position of the stripe at that

time. Curless and Levoy [12] generalize this temporal analy-

sis (calling it “spacetime analysis”) to other scanner config-

urations and observe that it substantially increases immunity

to shape and reflectance variations which affect purely spa-

tial analyses. While the Kanade scanner (developed as a low

resolution prototype) and a version of the Rioux scanner [3]

can achieve high frame rates, both require highly customized

hardware.

In the direction of using fewer images, Sato and

Inokuchi [29] describe a set of hierarchical stripe patterns to

give range images with log N images, where N is the num-

ber of resolvable stripes. In particular, the images contain

Gray codes, each camera pixel observes a bit code over time,

and, at the finest resolution, each pixel is associated with the

interior of a thin stripe. Caspi et al. [8] reduce the num-

ber of images further by using a color generalization of Gray

codes. Finally, Hattori and Sato [19] refine the original hier-

archical stripe technique by introducing sub-pixel offsets to

the final stripe pattern to get finer resolution. Their approach

is similar to spacetime analysis and uses log N stripes plus

m shifted versions of the finest stripes.

Still fewer images are used by Carrihill and Hummel [7]

who triangulate using two images: a ramp and a constant

brightness projected image. As noted in Section 1, this tech-

nique is highly susceptible to sensor noise. Chazan and Kiry-

ati [9] combine this method with hierarchical stripes to re-

duce noise susceptibility, and later Horn and Kiryati [20] de-

veloped novel piecewise linear patterns that required only a

few more images than the Carrihill and Hummel approach.

The last set of triangulation techniques we describe are

those suitable for capturing moving scenes, each under some

kind of constraint. Hall-Holt and Rusinkiewicz [18] de-

scribe a method that consists of projected stripe patterns

that vary over time. By finding nearest stripe patterns over

time, a unique code can be determined for any stripe at any

time. The constraint in this case is that the object move

slowly to avoid erroneous temporal correlations. Proes-

mans et al. [26, 25] demonstrate a scanner which projects
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a grid pattern onto the scene and matches the observed grid

to the projected pattern by a global 2D grid optimization al-

gorithm. In this case, the constraint is that the visible portion

of the object consist of a single connected component. Boyer

and Kak [6] project a color stripe pattern in which each win-

dow of spatially adjacent stripes has a unique color intensity

configuration. Davies and Nixon [14] propose a color dot

pattern with a similar spatial neighborhood property. In both

cases, local neighborhoods must exhibit enough spatial co-

herence to preserve the windows. Finally, Chen et al. [10]

describe a stereo vision method that also uses projected color

stripes, but solves correspondences between edges in the two

cameras through dynamic programming, thus obtaining a

global optimum. The constraint in this case is surface mono-

tonicity between the cameras. Each of the color pattern meth-

ods above has the additional constraint that the surface does

not change the reflected color too much, e.g., doesn’t cause a

color channel to drop out completely.

In this paper, we describe a technique that admits to both

a single image and a multi-image analysis. The projected

color stripe pattern does impose the reflectance restriction

noted above, however, we have found that many objects and

subjects of interest (e.g., human skin) work well. The single

image method resolves correspondences with dynamic pro-

gramming, as does the method of Chen et al. [10], but we de-

velop a multi-pass technique to overcome the the monotonic-

ity constraint, and our method requires only a single camera.

Further, we demonstrate a method that combines spacetime

analysis and dynamic programming to derive accurate shape

using a small number of images.

3 Multi-hypothesis code matching

The basic principle of optical triangulation is illustrated in

Figure 2(a): an illumination pattern is projected onto an ob-

ject and the reflected light is captured by a camera. The

relative distance between a point in the illumination pattern

and its position in the captured image is inversely related

to depth, allowing the 3D position of the point to be recon-

structed, assuming the camera and projector parameters are

known.

The primary challenge in optical triangulation is obtaining

correspondence between points in the projected pattern and

pixels in the image. This correspondence problem is miti-

gated by two observations. First, as shown in Figure 2(a),

the 2D correspondence problem reduces to determining cor-

respondences between each row of the projected pattern and

a row of the rectified camera image [15]. Second, we can

choose whatever pattern we wish to project; therefore, we

should choose a pattern that simplifies the correspondence.

Laser triangulation scanners take this strategy to the extreme

by projecting a narrow beam or plane of light that is eas-

ily identified in the image as a point or contour on the sur-

face. Since very little information is available in each im-

age, reconstruction from laser scanners typically requires a

very large number of images. Multi-stripe techniques, on the

other hand, often use a detailed pattern to obtain as much in-

formation about the scene as possible from a small number

of images. In this paper, we treat the problem of obtaining

correspondence using multi-stripe techniques, in particular

from color stripe patterns of the form shown in Figure 2(b)

that yield camera images like the one shown in Figure 2(c).

While the concepts from this paper are applicable to a

wide range of patterns, we begin by considering specifi-

cally the case of patterns consisting of equal-width color

stripes to be used for capturing shape with a single im-

age. We can enumerate these stripes by a string of colors

P = (p0, p1, . . . , pN ). The information we will use for tri-

angulation is encoded in the transitions between colors. This

sequence, call it Q = (q0, q1, . . ., qN−1), is comprised of el-

ements qj = (qr
j , q

g
j , qb

j) where each color channel takes on

a value of -1, 0, or 1 corresponding to a falling, constant, or

rising transition, respectively. For example, (0,−1, 1) indi-

cates no change in the red channel, a fall from 1 to 0 in the

green channel, and a rise from 0 to 1 in the blue channel. For

convenience, we adopt a notation in which, qj refers to the

j-th projector edge, q refers to any (generic) projector edge,

and qc refers to the transition in color channel c ∈ {r, g, b}
of projector edge q.

The reflection of the projected pattern from the scene is

detected in the image as a sequence of color edges, E =
(e0, e1, . . ., eM−1) for each rectified sensor scanline, where

(using the simplified notation mentioned above) a color edge

e = (er, eg, eb) is described by its 1D intensity gradients in

each of the three color channels. Our objective is to solve the

correspondence between the transition sequence Q and the

edge sequence E.

Correctly identifying the correspondence between pro-

jected and imaged stripes, shown in Figure 2(b) and (c) re-

spectively, brings out two key difficulties:

• Mislabeling: In addition to the projected pattern, the

color of image pixels depends on factors such as sur-

face reflectance and shading, viewing direction, color

cross-talk between projector spectra and sensor filters,

and sensor noise. Consequently, obtaining reliable es-

timates of color directly from pixel values is not at all

straightforward, and misclassifications can result.

• Occlusions: Real scenes often have occlusions, shad-

ows, and surface discontinuities. It is therefore not real-

istic to assume that every projected transition is visible

in the image.

We address the mislabeling problem by introducing a

technique that allows for multiple hypotheses. Rather than

assigning a unique label to every stripe in the image, every

label assignment is represented, along with its probability of

matching. A final labeling is then obtained by applying a
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Figure 2. Summary of the oneshot method. (a) In optical triangulation, an illumination pattern is projected onto an object and the

reflected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and

image. If the image planes are rectified as shown, the displacement is purely horizontal (onedimensional). (b) An example of

the projected stripe pattern and (c) an image captured by the camera. (d) The grid used for multihypothesis code matching. The

horizontal axis represents the projected color transition sequence and the vertical axis represents the detected edge sequence,

both taken for one projector and rectified camera scanline pair. A match represents a path from left to right in the grid. Each

vertex (j, i) has a score, measuring the consistency of the correspondence between ei, the color gradient vectors shown by the

vertical axis, and qj , the color transition vectors shown below the horizontal axis. The score for the entire match is the summation

of scores along its path. We use dynamic programming to find the optimal path. In the illustration, the camera edge in bold italics

corresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

global optimization technique that accounts for occlusions,

shadows, and discontinuities.

Specifically, a global match hypothesis φ between the pro-

jected transition sequence Q and observed edge sequence E

is defined as a sequence of integer pairs

φ =

{(
j1
i1

)

,

(
j2
i2

)

, . . . ,

(
jΦ
iΦ

)}

(1)

where Φ is the number of integer pairs of φ, j1 < j2 < . . . <

jΦ, and i1, i2, . . . , iΦ are distinct from each other. Each in-

teger pair (jk, ik)T indicates that edge eik
corresponds to the

transition qjk
.

The match φ is equivalent to a path in a 2D grid, as il-

lustrated in Figure 2(d). The horizontal axis represents the

projected transition sequence Q and the vertical axis repre-

sents the observed edge sequence E. The match φ represents

a path from left to right in the grid, intersecting each row and

each column no more than once.

The quality of a match is computed by assigning each ver-

tex (j, i) a score, score(qj , ei), measuring the consistency

of the correspondence between edge ei and transition qj . The

specific definition of score(qj , ei) is described in Section 4.

The score of the entire match φ is the summation of scores

of all the vertices in φ, defined as

σ(φ) =

Φ∑

k=1

score(qjk
, eik

) (2)

The optimal match is therefore defined as

φ∗ = arg max
φ

{σ(φ)} (3)

In general, the possible paths represented by the φ’s may go

up and down and have disconnected components due to oc-

clusion, texture edges, etc. Therefore, the space of all possi-

ble matches is enormous, of size O(MN ). A common tech-

nique for making this optimization problem tractable is to in-

troduce an assumption of depth-ordering, or monotonicity [1]

i1 < i2 < . . . < iΦ. (4)

With this assumption, Eq. (3) may be solved efficiently us-

ing dynamic programming [1, 24, 17, 11, 2, 10, 22, 4]. The

monotonicity assumption should be used with care, however,

since it is violated in the presence of occlusions, and can
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produce artifacts. In practice, we have observed that viola-

tions of the monotonicity assumption result in dropouts, i.e.,

portions of the scene that are not reconstructed. We show

how this problem can be addressed by use of a multi-pass

dynamic programming technique. First, however, we review

the basics of dynamic programming in the following subsec-

tion.

3.1 Correspondence by dynamic programming

We adopt a notation similar to that of Cox et al. [11]. Let Gj,i

be the sub-grid defined by [0, j] × [0, i], and φ∗
j,i be the opti-

mal path in Gj,i. Three possible configurations of φ∗
j,i exist:

(1) it consists of vertex (j, i) and the optimal path φ∗
j−1,i−1

in Gj−1,i−1, (2) it is entirely in the sub-grid Gj−1,i, or (3) it

is entirely in Gj,i−1. In the latter two cases, φ∗
j,i = φ∗

j−1,i

or φ∗
j,i = φ∗

j,i−1, respectively. Consequently, σ(φ∗
j,i) may be

recursively computed as

σ(φ∗
j,i) =







0, if j = 0 or i = 0;

max







σ(φ∗
j−1,i−1) + score(qj , ei),

σ(φ∗
j−1,i),

σ(φ∗
j,i−1)






,

otherwise

(5)

The cost of the optimal solution φ∗ to Eq. (3) is given by

σ(φ∗
N,M ), and evaluating every σ(φ∗

j,i) takes O(MN) space

and time. φ∗
N,M is computed by tracing back through the cost

matrix [11], which takes O(M + N) time. A common tech-

nique to reduce the complexity is to restrict the depth range

to a user-defined value (e.g., 10% of the maximum possible

depth range).

3.2 Multi-pass dynamic programming

A fundamental limitation of matching algorithms based on

dynamic programming (DP, for short) is the assumption of

monotonicity, which is violated in the presence of occlu-

sions. An example of such a violation is shown in Fig-

ure 3(a). In the figure, a thin foreground element lies in front

of a background plane. Due to the occlusion, the order of

projected transitions and detected edges is not the same, re-

sulting in a non-monotonic path in the grid, shown in Fig-

ure 3(b).

The DP algorithm therefore fails to find the optimal

path; instead, it will identify the optimal monotonic solu-

tion. While this solution could potentially be quite different

than the optimal path, in practice we have seen that it cor-

responds to a monotonic component of the optimal solution.

In the case of Figure 3(b), DP identifies the sub-path con-

sisting of (A,B,C,D,E). The rest of the optimal solution,

sub-path (F,G), is itself monotonic and can be identified by

applying DP on the sub-grid obtained by removing columns

(1, 2, 4, 5, 6, 9), and rows (1, 2, 5, 6, 7, 8) from the original

grid. The same procedure may be repeated until all rows

and columns are exhausted. This procedure, which we call

MultiPassDP, is summarized as follows

procedure MultiPassDP(grid)
set path to be empty;
while(path1 := DP(grid) is not empty)

path := path
⋃

path1;
remove columns and rows in path1 from grid;

return path;
end MultiPassDP

MultiPassDP computes the monotonic components of

the optimal path in multiple passes, enabling solution of cor-

respondence problems with occlusions that are not possible

with traditional DP. Instead of exhausting the positive mono-

tonic components, path1, in the grid, the number DP passes

can also be specified by a user, based on prior knowledge of

how many “layers” of structure the scene contains.

4 One-shot patterns and scoring functions

The previous section describes the machinery needed to com-

pute an optimal surface given a projected pattern and ob-

served image. Capturing the shape of a scene from a sin-

gle image is sometimes called “one-shot” scanning. In this

section, we discuss design decisions in choosing a pattern to

project and a scoring function to be used in computing the

optimal one-shot surface.

4.1 De Bruijn illumination patterns

Choosing a good pattern to project is of critical importance

for achieving accurate correspondence with optical triangu-

lation techniques, particularly one-shot methods. Assuming

the patterns and images are rectified, the pattern may be de-

signed for a single scanline and replicated to produce a 2D

vertical pattern. One design choice is whether to project

a smooth or a piecewise-constant pattern. For a one shot

method, encoding information in smooth intensity variations

is difficult to do, because surface shading can affect these

variations substantially. Thus, we choose to encode informa-

tion on edges and resort to a piecewise-constant illumination

pattern.

In addition, a good pattern has the property that corre-

spondence between projected edges and observed edges is

easy to determine. As noted earlier, each edge element of

Q is comprised of three color edge transition labels that can

each take values -1, 0, or 1. This value assignment implies

an “edge alphabet” of 27 unique edges; however, since the

edge (0, 0, 0) is really no edge at all, 26 edges are actually

available to us.

Projecting exactly 26 edges would lead to well-

determined correspondence, since each edge is unique, but

this would yield very sparse reconstructions. Alternatively,
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Figure 3. Violation of the monotonicity assumption. (a) 9 transitions, q1, q2, . . . , q9, are projected onto a scene comprised of a

thin foreground surface against a background surface, and 8 edges, e1, e2, . . . , e8, are detected. Projected edge q3 is occluded

by the foreground element and not detected. (b) The resulting match grid shows that camera edge indices do not increase

monotonically with corresponding projector edge indices. A multipass DP algorithm can recover the (A,B,C,D,E) path in the first

pass, and the (F,G) path in the second pass.

we could lay out the same sequence of edges and repeat them

as many times as needed to fill out the desired total number

of projected edges. Consider, though, the case of an object

that is 26 projected stripes in width. The dynamic program-

ming algorithm will prefer to find a sequence of matches that

corresponds to a single connected surface (rather than a set

of scattered matches), but due to the repetition in the pattern,

a set of equivalent answers will arise. In fact, such a repetive

pattern can result in ambiguity for even larger objects. To

minimize such ambiguity, we instead we seek to find a se-

quence that has a good windowed uniqueness property, i.e.,

a sequence that has the desired number of transitions with a

small window size n such that each sub-sequence of n con-

secutive stripes is unique within the entire sequence.

Our goal now is to devise a color sequence P that yields

an edge sequence Q with a good windowed uniqueness prop-

erty. First, we consider the fact that given a color pj , the

next color pj+1 must be different in at least one channel for

an edge transition to occur. If we think of these colors as

being mapped to base-2 numbers {000, 001, . . . , 111} (i.e.,

black, blue, ..., white), then a legal edge is produced by per-

forming a bitwise XOR (exclusive or) of a given color with a

number in the range {001, . . . , 111}. For example, the color

index corresponding to green, 010, could change to 110 (yel-

low) by flipping the red channel, i.e., by XOR’ing with 100.

We could then attain local and global non-periodicity if we

could choose a sequence of XOR patterns (of which we have

7 to choose from) that are unique when taken in groups of n

at a time.

De Bruijn sequences [16] are ideally suited to this prob-

R

G

B

Figure 4. Using a de Bruijn sequence, we can generate binary

R, G, and B patterns that combine to make a sequence for

which each three consecutive color transitions are unique.

This example is a complete sequence for k = 5, n = 3, which

is used to generate the results in this paper.

lem. In particular, a k-ary de Bruijn sequence of order n is

a circular sequence d0, d1, . . . , dkn−1, where each element

dj is taken from a set of k values and for which any sub-

sequence of length n appears exactly once. In our case,

we can construct up to a 7-ary sequence with each element

dl ∈ {001, . . . , 111}. Then, we can generate a color in-

dex sequence (p0, p1, . . . p7n) by choosing an initial color

p0 ∈ {000, . . . , 111} and following the iteration:

pj+1 = pj XOR dj (6)

In practice, we only needed 125 stripes and thus worked

with k = 5, n = 3. We eliminated 110 and 111 from the

de Bruijn sequence, as we found that simultaneous red and

green transitions suffered the most from residual crosstalk

errors after approximate decoupling (see Section 4.2). Fig-

ure 4 shows a complete color stripe pattern generated in this

manner. Note that while de Bruijn sequences are not straight-

forward to derive, they have been previously tabulated by

researchers in combinatorics. We use generators available

online [28] to obtain de Bruijn cycles.
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4.2 Color edge detection

After the illumination pattern from the previous section is

projected onto an object, a camera records an image of the

reflected light. In an ideal world, the light from each projec-

tor color channel reaches only its correspondingly colored

sensor pixel (e.g., red light is seen only by red pixels). In

practice, however, each projector color channel has some in-

fluence on all three sensor channels, a phenomenon known

as color crosstalk. This coupling is complicated by the inter-

vention of a surface that may modify the projector spectrum

in unknown ways before it is observed at the sensor. One

solution would be to assume that the surface is spectrally

uniform, so that we need only measure a projector-camera

color crosstalk matrix that indicates how much each projec-

tor channel influences each camera channel. Caspi et al. [8],

however, demonstrate that a less severe restriction can work

fairly well. In particular, they relate observed camera color s

to projector color p as:

(
sr

sg

sb

)

︸ ︷︷ ︸

s

=
[

χ11 χ12 χ13
χ21 χ22 χ23
χ31 χ32 χ33

]

︸ ︷︷ ︸

X

[
ρr 0 0

0 ρg 0

0 0 ρb

]

︸ ︷︷ ︸

F

(
pr

pg

pb

)

︸ ︷︷ ︸

p

+
(

or

og

ob

)

︸ ︷︷ ︸

o

(7)

where X is the projector-camera color channel crosstalk ma-

trix, F is the scene albedo matrix at a point on the surface,

and o is the ambient light observed by the camera for the

same surface point. By pre-multiplying each camera color

by X−1, we obtain new camera colors:

s̃ = X−1s =
(

ρrpr + õr

ρgpg + õg

ρbpb + õb

)

(8)

where õ = X−1o. Using this model, crosstalk has largely

been factored out so that each color channel can be analyzed

independently and correlated more closely to projected col-

ors.

Given a color-corrected camera scanline, we can now lo-

calize color edges by looking for local extrema in gradients

(1D derivatives) in each of the color channels. In practice,

however, this will lead to distinct localizations in each color

channel. Instead, we compute a combined gradient function

along a scanline that is comprised of the sum of the squares

of the gradients in each of the color channels. The edges

are then determined to be local maxima of this function, and

their strengths are the color gradient values at the localized

edges.

4.3 Edge-based scoring functions

We now consider the problem of evaluating a match between

a projected color transition q and an observed edge e in an

image by defining a score function score(q, e). Let e =
(er, eg, eb), where ec ∈ [−1, 1] is the 1D intensity gradient

of e in channel c, and let transition q = (qr, qg, qb), with qc ∈
{−1, 0, 1}. e and q are consistent only if they match in all

βα

Consistency(1, ec)

ec

1

−β −α ec

Consistency(-1, ec)

−1βα

Consistency(0, ec)

ec

(a) (b) (c)

−β −α 1

−1

1

−1 1

−1

1

−1 1

−1

Figure 5. Consistency measure consistency(qc, ec) between

projector transition qc and ec. (a) qc = 1, (b) qc = 0, and (c)

qc = −1.

three channels. Accordingly, we use the following definition

of score:

score(q, e) = min
c∈{r,g,b}

{consistency(qc, ec)} (9)

where consistency(qc, ec) ∈ [−1, 1] measures the agree-

ment between corresponding color channels of q and e. For

example, when qc = 1, consistency(1, ec) should be 1 if

ec is sufficiently large, 0 if |ec| is sufficient small, and neg-

ative if ec is negative. More formally, consistency(qc, ec)
is defined by the following equation, Eq. 10(a), and illus-

trated in Figure 5(a). For the cases of qc = 0 and −1,

consistency(0, ec) and consistency(−1, ec) are simi-

larly defined in Eq. 10(b,c) and illustrated in Figure 5(b,c)

respectively.

consistency(1, ec) = CLAMP( ec−α
β−α

;−1, 1) (a)

consistency(0, ec) = CLAMP(1 − |ec|−α

β−α
;−1, 1) (b)

consistency(−1, ec) = consistency(1,−ec) (c)
(10)

where

CLAMP(x;x0, x1) =







x0 if x < x0;
x if x0 < x≤x1;
x1 if x1 < x.

and 0≤α < β≤1 are soft thresholds that are chosen based on

the uncertainty of edge measurement. In particular, gradients

in the range of [α, β] can be classified with fractional values

that reflect their uncertainty, whereas gradients with abso-

lute values that are sufficiently large or small are assigned

either -1, 0, or 1. The decision on how to label each edge

is deferred to the global optimization stage. In the degener-

ated case when α = β, the gradients are classified with hard

thresholds, as in [6]. The larger the value of β − α, the more

uncertain consistency. Less certain consistency measures

are useful when there are significant differences in the inten-

sity of projected and reflected patterns, due for instance to

noise, shading, or surface texture.

Note that edge pair (q, e) will get matched by DP only

if score(q, e) is positive and it will not get matched if any

7



of its channel consistency measures is negative. As a result,

clamping of negative consistency values is not necessary in

theory, but in practice avoids possible numerical problems of

large negative numbers when α and β and nearly equal.

5 Color-coded spacetime analysis

One-shot patterns are particularly useful in cases where all

measurements must be captured at the same time, for in-

stance in the case of reconstructing the instantaneous shape

of a moving object. Static scenes, on the other hand, provide

the opportunity to capture multiple measurements. Instead

of projecting a single pattern, it is possible to project several

patterns to improve accuracy or completeness of the resulting

reconstruction.

One approach to increasing the resolution is to take a set

of images in which the one-shot projector pattern is shifted

a pixel to the right between photographs, followed by com-

bining the one-shot result for each image into a single range

map. This approach, while feasible, does not make the most

of the opportunity to take multiple shots. One-shot scanning

techniques are sensitive to errors as a result of surface dis-

continuities and texture, both of which can bias the calcu-

lated location of edges or introduce false edges. Curless and

Levoy [12] describe this phenomenon in detail (for the case

of determining the center of a Gaussian, rather than loca-

tion of an edge) and demonstrate how these problems are ad-

dressed through the use of spacetime analysis. In their case,

a laser stripe is projected onto an object and is swept slowly

over its surface. The reflected light is captured by a camera

to produce a sequence of images during the sweep. Track-

ing the intensities recorded for a single line of sight from the

sensor gives a temporal profile of light reflected from a single

point on the surface. The peak of this profile corresponds to

the time at which the stripe passes over that pixel and can be

estimated to sub-pixel accuracy. The advantage of the space-

time approach is that it is far less sensitive to discontinuities

and texture, and has been shown to produce superior recon-

structions [12].

A disadvantage of previous applications of spacetime

analysis is that a very large number of images are required

to ensure that the stripe passes over every pixel in the image.

We show that spacetime analysis may be adapted and incor-

porated into our multi-hypothesis code matching framework

to generate high-quality range data using a much smaller

number of images with the use of a projector instead of a

laser scanner. As in the one-shot case, we first need to choose

both the illumination patterns and the scoring function.

5.1 Smoothed, shifted de Bruijn patterns

Figure 6(a) illustrates how the spacetime method works in

the context of shifting color stripe patterns. The shift in the

pattern over time defines a temporal profile for each pro-

jected ray and each pixel in the image. Thus, by matching

sensor profiles to projector profiles, we can reconstruct the

surface. In general, each sensor profile will triangulate to a

projector line of sight that is between projector pixels. To

do sub-pixel interpolated matching, we require that the pro-

jection patterns be smooth relative to the rate of shifting the

pixels. In addition, we seek to project as few images as possi-

ble while allowing reliable correspondence to be determined

between projector and sensor profiles. For these reasons, we

employ a smoothed de Bruijn color pattern; i.e., we take the

one-shot color pattern, smooth it with a Gaussian filter, and

project shifted copies over time.

Each camera pixel profile has a number of color transi-

tions, depending on the number of patterns projected and

the rate v at which the pattern shifts. If the profile is long

enough to contain at least n transitions, where n is the or-

der of the de Bruijn sequence, the correspondence between

image and pattern may be uniquely determined in principle,

based on the windowed uniqueness property of de Bruijn se-

quences. However, we can use fewer frames and allow DP

to resolve the ambiguity. In fact, by defining a score func-

tion for spacetime patterns, we can again employ the multi-

hypothesis code matching technique to derive an optimal

match, that better accounts for noise and other sources of

measurement error, as shown in Figure 6(b).

5.2 Spacetime scoring function

In spacetime analysis, instead of comparing projected edges

to observed edges, we compare the temporal pattern at each

projector pixel to the temporal pattern recorded at each cam-

era pixel. We can still describe the matching problem in

terms of a scoring function score(q, e), but now the ele-

ments qc and ec (c ∈ {r, g, b}) are each vectors in a T -

dimensional space, where T is the number of frames in the

sequence. In principle, after color calibration, we should be

able to measure how close the projector and camera patterns

are by computing the difference between ec and the estimated

reflection ρc · qc + õc (see Eq. 8). Since ρc and õc are un-

known, we can estimate the best values that minimize differ-

ences between measurement and prediction. A shortcoming

of this approach arises when ec is on an oblique surface, for

example, close to the target’s contour tangent to the camera’s

viewing direction, where ec is usually very small compared

to the pixel colors on a frontal parallel suface. In this case,

the difference between qc and ec is no larger than ‖ec‖2 by

setting ρc = 0 and õc = 0. The result is that bad matches are

not penalized signficantly for low intensity ec’s. To counter

this problem, we have designed a simple symmetric per chan-

nel cost (“inconsistency”) function:

costc(qc, ec) = min
a,b

‖ a · qc + b ·~1 − ec ‖2

+ min
a,b

‖ a · ec + b ·~1 − qc ‖2
(11)
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Figure 6. Colorcoded spacetime analysis. (a) The curves represent projected and reflected intensity profiles in the red channel.

(The green and blue channel profiles are not shown to simplify the figure.) As the illumination pattern shifts to the right in time,

we can track a single line of sight from the projector to a point on the surface. The light reflects from that surface point to the

camera along a sensor line of sight. We can see that, in the continuous case, the projection pattern will be reproduced over time

at the sensor. In the discrete case, the sensor records discrete samples at times t1, . . . , tT , which can later be matched to the

projection pattern. (b) The temporal profiles, instead of spatial edges, are matched using dynamic programming. The horizontal

axis shows the projected r, g, b channels separately and as a combined color pattern. The vertical axis shows the recorded color

patterns. The grayscale image illustrates a score grid through which DP finds a globally optimal path. (The score is in proportion

to the darkness.) In this example, we apply the depth range constraint, which implies that grid vertices outside of a prescribed

diagonal band are ruled out by assigning their scores to be 0.

where a, b are scalar coefficients independently optimized in

each of the addends, and ~1 is a T -dimensional vector of 1’s.

The total cost, cost(q, e) is then the sum over all three chan-

nels. Note that the smaller cost(q, e) is, the more consistent

q and e are. Since the matching problem, Eq. 3, is formulated

as a maximization over positive numbers, the score(q, e) is

defined as

score(q, e) = C0 − cost(q, e) (12)

where C0 is global constant between s = min
q,e

{score(q, e)}

and s̄ = max
q,e

{score(q, e)}. Recall that DP will not match

(q, e) pairs with negative scores. If C0 < s, score(q, e) is

negative for every (q, e) pair and the optimal match between

projected and observed edge sequences is simply empty. If

C0 > s̄, score(q, e) is positive for every (q, e) pair and DP

will try to match every possible edge pair without violating

monotonicity constriant. In short, too small C0 will result in

false dropouts and too large C0 may introduce false matches.

In practice, we choose C0 = s + 0.2(s̄ − s), which works

well for our experiment setup.

5.3 Sub-pixel matching

The dynamic programming technique only gives cam-

era and projector correspondence up to pixel resolution.

Sub-pixel correspondence can be obtained using a post-

processing step so that each camera pixel can be matched

between projector pixels. Specifically, for each corre-

sponding pair of camera pixel ei and projector pixel qj

generated by DP, if score(qj , ei) is larger than both

score(qj−1, ei) and score(qj+1, ei), a parabola is fit to

the three points (j − 1, score(qj−1, ei)), (j, score(qj , ei)),
and (j + 1, score(qj+1, ei)) and the optimal matching po-

sition is obtained by computing the peak of the parabola.

If score(qj , ei) is not larger than its neighbors, both

score(qj−1, ei) and score(qj+1, ei) are checked to see

whether they are local maxima. If again no peak is found,

the procedure repeats once more, expanding in both direc-

tions. If still no peak is found, the integer solution generated

by DP is retained.

6 Results

We have developed an experimental system for testing our

one-shot and spacetime shape capture methods. The hard-

ware consists of a Kodak DCS520 digital still camera and a
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(a) (b) (c) (d)

Figure 7. Comparison between DP and CFG [6]. (a) Photo of original Einstein bust. (b) Stripe image used for oneshot

reconstruction. The bust was photographed on its side, but the image shown here is rotated by 90 degrees for convenient

visualization. (c) Shaded rendering of the CFG reconstruction. (d) Shaded rendering of the DP reconstruction. In areas of high

curvature, false edges are more prevalent, and result in dropouts in the CFG reconstruction, whereas DP is free to ignore such

edges in pursuit of a global optimum.

Compaq MP1800 digital projector. To simulate resolutions

more comparable to a video camera (the sensor type we ul-

timately plan to use for realtime capture), we downsampled

the Kodak images by a factor of 2X in each dimension, yield-

ing 864x576 images. The projector operates at 1024x768

resolution. For geometric calibration, we image a checker-

board textured plane in a variety of poses. For each pose, we

also project a distinct checkerboard pattern onto the plane

and take an additional image. The images taken without the

projected pattern are used to estimate the camera intrinsics

and plane poses (see Bouguet [5]). For the remaining im-

ages, we can compute the 3D coordinates of the the projected

pattern features (corresponding to projector rays) and thus

calibrate the projector. We employ a linear projective model

for both the camera and projector. In addition, to improve

color channel alignment in the digital camera, we image the

checkerboard textured plane an additional time and compute

separate 2D homographies for the red and blue channels rel-

ative to the green.

The X matrix in Eq. 7 is approximated by projecting solid

red, green, and blue patterns to a fronto-parallel white board

and capturing three images accordingly. The mean colors of

the three captured images constitute the three columns of X .

We must note that, while we have taken some measures to

reduce color misalignments and account for color crosstalk,

we still observe some residual misalignments and non-linear

crosstalk behaviors that have not been accounted for. As a

result, some of the rendered reconstructions shown in this

section exhibit coherent ridges at color transition boundaries.

We are currently developing techniques for calibrating away

these residual artifacts.

6.1 One-shot Scanning

We have tested the one-shot capture method on a variety

of scenes. In each case, the projected pattern consists of

de Bruijn generated sequences with 7 pixel wide stripes

(roughly 150 stripes total).

First, we compare the dynamic programming approach to

the Crystal Fitting and Growing (CFG) algorithm developed

by Boyer and Kak [6], for which results are shown in Fig-

ure 7. CFG first labels each edge transition code by comput-

ing the signs of intensity transitions in the three channels, fol-

lowed by matching the labeled edge sequence by iteratively

finding the longest matching sub-sequences. In practice, we

have found this technique to be fragile in the presence of er-

roneous edge labels, resulting in outlier points and holes in

the reconstruction as shown in the figure. One-pass DP, on

the other hand, is able to cope with these mis-labelings by

searching for a globally optimal, monotonic solution. The

result is fewer holes in the reconstruction.

The Einstein bust in the previous example is fairly

“white,” similar to the color crosstalk calibration target. To

test sensitivity to fairly non-white surfaces, we took one-shot

images of human hands (Figure 1) and of a painted porce-

lain cat (Figure 8). In both cases, the reconstructions are

fairly accurate and complete, including, for instance, regions

around the cat’s red noise and over its orange body. Partic-

ularly dark areas result in holes in the reconstructions, since

edges in these areas are not detected by the sensor.

10



(a) (b) (c)

Figure 8. Sensitivity to surface reflectance. (a) Photo of original porcelain cat model. (b) Stripe image used for oneshot

reconstruction. (c) Shaded rendering of the DP reconstruction. Although this model is not “colorless” the reconstruction behaves

reasonably well. Completely black regions, of course, lead to range dropouts.

Note that one noticeable artifact in Figure 1 is the occur-

rence of false edge extensions at the boundary of the object.

This artifact arises, because DP is free to add points onto the

boundary while still increasing the score. Thresholding out

low intensity gradients minimizes the effect. Further, these

points can be downweighted when used, e.g., to reconstruct

surfaces [30]

Finally, to demonstrate the multi-pass DP method, we

show a simple example that violates the monotonicity con-

straint: a finger in front a piece of cloth (Figure 9). Using

a single DP pass, the finger is lost in favor of reconstructing

the cloth background. The second pass, however, recovers

much of the lost finger. Note that this example, together with

Figure 1, also demonstrates that our scanning method is ap-

plicable to scenes with disconnected components, which can

not be reconstructed by methods that rely on traversing edge

graphs spatially within a single connected component (as in

the case of, e.g., Proesmans et al. [26, 25]).

In the above experiments, each range map takes less than

1 minute to compute offline using a 900 MHz Pentium III

PC. The exact time generally depends on the number of

edges detected and the depth range of the scene. Reconstruc-

tions typically contain tens of thousands of range points, with

dense vertical sampling along stripe edges and comparatively

sparse sampling horizontally. For a triangulation angle of ap-

proximately 17 degrees, and an x-y field of view of about

40cm x 25cm, we have found plane-fit accuracy to have a

standard deviation of 0.18mm.

6.2 Spacetime Analysis

To show the improvement possible using spacetime analy-

sis for static scenes, we have done a more detailed study of

the Einstein bust, as shown in Figure 10. In this case, we

project a shifted sequence of 7 patterns onto the bust. For

comparison with a non-spacetime method, we first choose

the same pattern as in the one-shot method, shift the pattern

by one pixel 7 times, and independently estimate a range

map for each image. We then combine these range maps

into a single high resolution range map as shown. For the

spacetime method, we blur the same pattern with a Gaus-

sian filter (σ = 1.5 pixels), shift it by two pixels at a time,

and perform the reconstruction described in Section 5. As

the figure shows, the spacetime method does a substantially

better job of resolving fine detail. In particular, the edge de-

tection method used in the one-shot technique is susceptible

to the rapid shading changes in high curvature areas, whereas

the spacetime technique is much less so. Further, while the

plane-fit accuracy of the multiple one-shot method does not

improve with more images, the spacetime method exhibits

significantly improved accuracy, down to a standard devia-

tion of 0.048mm, almost four times less noisy.

7 Conclusion and Future Work

This paper presents a general multi-pass dynamic program-

ming algorithm to solve the multiple hypothesis code match-

ing problem in structured light scanning. The algorithm is

applied to two specific scanning methods: a one-shot scan-

ning method suitable for measuring range data for mov-

ing objects, and a spacetime method which generates high-

resolution range data for static scenes.

This work has potential for improvement and future re-

search in several directions. In the short term, we hope to

mitigate the effects of the occasional ridges induced by color

edges, as noted in the previous section. We believe that a

self-calibration in which the projected color patterns are first

observed by the camera and characterized directly in cam-
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era space could be employed. We also hope to implement

a realtime capture (possibly offline processing) system using

synchronized video and projection. In addition, we hope to

experiment with using spacetime analysis to reduce the num-

ber of images required to reconstruct shapes. Finally, we

hope to explore the reconstruction of 3D shape, reflectance,

and motion models using the system described in this paper

as a starting point.
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(a) (b) (c) (d)

Figure 9. Comparison between onepass DP and twopass DP. (a) Photo of original scene of a hand and finger in front of a cloth

background. (b) Stripe image used for oneshot reconstruction. (c) Shaded rendering of a onepass DP reconstruction. (d)

Shaded rendering of a twopass DP reconstruction. The second pass recovers most of the finger that violated monotonicity and

was not recoverable in a single pass. The “doublefinger” hole in the background corresponds to projector and sensor visibility

shadows.

(a) (b) (c)

(d) (e) (f) (g)

Figure 10. Comparison between multiple oneshots and spacetime analysis. (a) Stack of 7 stripe images taken of the Einstein

bust for use with spacetime analysis. (b) Shaded rendering of reconstruction produced by combining 7 oneshot results (using

shifted oneshot patterns). (c) Shaded rendering of reconstruction produced by spacetime analysis (using the patterns in (a)). (d)

and (e) Renderings of the left eye (on right side of the (b) and (c) images) using multiple oneshots and spacetime, respectively.

Notice the improved resolution in the wrinkles under spacetime. (f) and (g) Renderings of the letters “mc” on the base of the bust

using multiple oneshots and spacetime, respectively. Notice the crisper, less noisy reconstruction under spacetime.
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