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Overview & Motivation

e Qverview

— Presentation of computational and experimental
results from a recently developed rectangular wing
aeroservoelastic modeling tool

* Motivation
— Compare tool to independently published work?

— To support rapid investigation of aeroservoelastic
phenomena in a medium-fidelity tool
* Also novel sensors such as fiber optics

— Provide a rapid aeroservoelastic design platform
which can serve students of aeroservoelasticity

2SConyers, H. J., Dowell, E. H., and Hall, K. C., Aeroservoelastic Studies of a Rectangular Wing with a Hole:
Correlation of Theory and Experiment,” 2010 Aerospace Systems Conference



Background

* |n previous work?, tool used to model a clamped
wing structure with two control surfaces and fiber
optic sensor feedback used for flutter suppression
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Aeroservoelastic Tool Overview

Tool allows the user
to quickly move from
inputs like aspect
ratio, control surface
count, and half span
to a linear time
invariant state space
model which can be
used for control

— A few seconds of real
time computation

— Most important
structural and
aerodynamic properties
are parametric

Tool for Rectangular Wing Aeroservoelastic Design in MATLAB
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Graphical Path of Verification and ”A
Validation of Tool
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Beam Model Verification

Beams used to model wing structure

— FEM with 30 elements compared to theory
show good matches in bending and torsion
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2SConyers, H. J., Dowell, E. H., and Hall, K. C., Aeroservoelastic Studies of a Rectangular Wing with a Hole:
Correlation of Theory and Experiment,” 2010 Aerospace Systems Conference

Plate FEM Validation

GVT on Article (with a hole
for a different test)

Computational Model

[ = 304.8mm

 Ground Vibration Test (GVT) on a
article used for validation of plate

v

FEM Q; 16x16 elements ﬁ
* Plate FEM Discretized with 16x16 S/ o

12 DOF isotropic plate elements g7 th=1588m &
 Experiment shows good Q; E

correlation with ANSYS and tool

Experimental Data?

ANSYS Tool FEM
Frequencies, Hz Frequencies, Hz Conyers et al. GVT, Hz
Mode # 1 3.99 3.99 4.13
Mode # 2 16.96 16.97 17.24
Mode # 3 24 .86 24 .89 24 38
Mode # 4 55.33 55.40 54.25
Mode # 5 69.84 69.92 69.00
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Graphical Path of Verification and ”A
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e Generalized

RFA Verification

aerodynamic forces
(GAF) computed for

plate
* Roger’s rational

function approximation
(RFA) used to fit GAF

coefficients
— 4 |ag states

* Least squares error for

bending and twist
coefficients

12/17/2014
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V-g Analysis using RFA

* The test plate article flutter speed was predicted to be 19.9
m/s
— traditional bending/torsion flutter mode

V-g Analysis on Computational Plate Article
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* The test plate article flutter frequency was predicted to

V-f Analysis using RFA

be 10.9 rad/s

— Torsional mode shifts closer to bending mode
— Characteristic of a one side clamped plate flutter mode
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Flutter Validation Experimental Stud

* A wind tunnel investigation was  ifterent artee shown shan fiat plte)
completed at Duke University in
previous work
— Tool flutter speed shows good

correlation with Conyers et al.’s flutter
code 8

* Differences may be due to use of more
aero panels in the tool

— Wind tunnel results were comparably

close
Experimental Data?
g?ﬁfeirzztd% Tool Flutter Code C%ﬁzﬁt{z;}ﬁ?d
Flutter speed . m/s 20.8 199 20.05
Flutter frequency, Hz 10.3 10.9 11.50
12/17/2014 AIAA Modeling and Simulation -

Technologies Conference, Jan 5-9, 2015
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State Space Model Verification

* We verify that the state space models
correlate with what was predicted from the V-
g and V-f analyses

Compare to each other

Gust Time
Response history

AIAA Modeling and Simulation

12/17/2014
/17/20 Technologies Conference, Jan 5-9, 2015
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State Space Model Architecture

 Components of state space models

— FEM mass, stiffness, damping and modal matrices
— Rational function approximation coefficients

— Actuator dynamic models
— Flight condition
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Analytical Model with Control SurfaceS

e Verification of state space models is completed for a wing
model with

— internal aluminum beam spar and rib structure
— aluminum skin
— a control surface and a leading edge accelerometer

Analytical Model with One Control Surface and a Leading Edge Accelerometer

: Built-in wing root
X boundary condition

Leading edge

Acceleration measurement
location used for verification

Trailing edge

Control surface Wing tip

0.8
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Actuator Dynamics

e Actuators are modeled as 3" order transfer functions

— 1t order command lag
— 2" order actuator dynamics

Actuator Model with and without command lag
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Analytical Wing Mode Shapes

 Mass normalized mode shapes are computed with high
torsional spring stiffness in connected control surfaces

* Control modes are computed with low torsional spring
stiffness and a prescribed 1 deg. rotation boundary condition

Analytical Wing Modal Analysis

a) First bending, frequency = 16 rad/s b) First torsion, frequency = 43.4 rad/s
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State Space Model Verification

* We verify that the state space models
correlate with what was predicted from the V-
g and V-f analyses

Compare to each othe

Gust Time
Response history

AIAA Modeling and Simulation
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V-g Analysis with RFA

e V-g analysis of wing shows a traditional
bending/torsion flutter mode appearing at 76.5

m/s
V-g Analysis of Analytical Wing Model
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Wing Model Pole Migration

The bending mode becomes more stable
* The torsion mode becomes neutrally stable at 76.5 m/s
Flutter speed is the same as predicted in the V-g analysis

Pole Migration of State Space Model from 20 — 78 m/s
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State Space Model Verification

* We verify that the state space models
correlate with what was predicted from the V-

g and V-f analyses
Compare to each other
o

Gust Time
Response history

AIAA Modeling and Simulation
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V-t Analysis

* Frequency analysis shows the flutter
frequency at 28 rad/s
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12/17

Bode Plot of State Space Model

At speed below flutter speed, amplitudes of two distinct modes visible
At flutter speed only flutter mode is visible
Frequency is the same as predicted from the V-f analysis
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State Space Model Verification

* We verify that the state space models
correlate with what was predicted from the V-

g and V-f analyses
[~

Compare to each ot

Gust Time
Response history

AIAA Modeling and Simulation
Technologies Conference, Jan 5-9, 2015
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Impulse to State Space Model

* Flutter is apparent in model designed past flutter speed
— Divergent oscillatory

 Model at lower speed is damped after impulse

2'5 1 | | |
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20 1L V=40 m/fs
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Acceleration, mf92

12/17/2014
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State Space Model Verification

* We verify that the state space models
correlate with what was predicted from the V-

g and V-f analyses
[~

Compare to each ot

Gust ‘ Time
Response history

AIAA Modeling and Simulation
Technologies Conference, Jan 5-9, 2015
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Velocity, m/s

1-cos Gust Model

e Gust inputs to structure are designed with gust
modes and 1-cos gust input structure

Gust mode approximation

1-cos Gust Input Model
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Gust Input to State Space Model ¥

* The response of wing to 1-cos gust is expected

— Low frequency gust response and high frequency
oscillations from flutter are seen to be superimposed

Bode Plot of Surface to Leading Edge Accelerometer
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Conclusions

e Several first step verification and validation
studies were presented for a new
aeroservoelastic tool

* More verification and validation is needed to
assess the state space models including

— An experimental flutter test and active flutter
suppression

* This work further supports independent flutter
analysis conducted by Dr. Conyers in his
dissertation




Future Work

* Improvements will be made to include rigid
oody modes in the tool

* |[nput structure will be made more user
friendly

* Would like to look into transitioning to use as
an open tool for students
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