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Abstract

Background: Despite prolonged treatment with highly active antiretroviral therapy (HAART), the infectious HIV-1 continues
to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral
persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or
integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively
long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes
during the intervals in early treatment.

Methodology/Principal Findings: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early
phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-
week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not
correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal
analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS) levels did not reveal any significant changes in the same
treatment period.

Conclusions/Significance: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of
patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-
LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study
did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its
potential role as a biomarker for the diseases and for the treatment efficacy of HAART.
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Introduction

Highly active antiretroviral therapy (HAART) can effectively

reduce the human immunodeficiency virus (HIV)-1 to undetect-

able levels (,50 copies/ml) in the plasma. Early theoretical studies

have suggested that both the virions and the productively infected

cells have very short lives and hence can be completely eliminated

in 2–3 years with HAART [1–4]. However, some later reports

revealed the presence of provirus that is integrated quiescently

within the resting memory CD4 T cells [5–9] as well as the

persistence of provirus even with prolonged treatment [6,7,10–12].

Moreover, low levels of continued and residual viral replication

have also been reported, despite the complete suppression of

plasma viremia with HAART [11–16]. It is therefore not

surprising that HIV-1 could promptly rebound after the cessation

of antiretroviral therapy [17–22].

The viral persistence of HIV-1 is usually carried out by its DNA.

The HIV-1 DNA has three major forms that reflect the different

stages and fates of development during viral replication: 1) the

linear nonintegrated form, 2) the circular nonintegrated form, and

3) the integrated provirus. The circular nonintegrated form can be

further classified as 1-LTR and 2-LTR based on the number of

LTR in HIV-1 DNA. No clear conclusion has been reached for

the half-life of the nonintegrated form, as it might be either very

short [14,23–25] or very long [11,26–29]. In chronic patients

without HARRT, 2-LTR was reported to be stable while 2-LTR

was lower in those responded well to treatment [28]. The

integrated form, however, has a clearly long half-life [11,24,30]

and is thus the fundamental constituent of latent reservoir

[5,6,24,31,32].

All the three forms of HIV-1 DNA can be measured by the

standard real-time PCR (RT-PCR) or Southern hybridization,
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which has helped us gain substantial insights into the dynamics

and the relative contributions of these forms to HIV-1 replication

and latency during the disease progression and the HAART

treatment. It has been proposed to use one or the combination of

these forms of HIV-1 DNA as biomarkers to monitor the viral

replication as well as to evaluate the efficacy of various

antiretroviral regimens in infected individuals. However, most

previous reports have been focusing on the dynamics of HIV-1

DNA with samples collected with relative long time intervals

during the disease progression and treatments [28,30,33–36].

These studies may have missed the intricate changes in the

dynamics of HIV-1 DNA during the early treatment, although

they have significantly advanced our understanding of the dy-

namics over a relatively long time period [24,35,37]. Furthermore,

better quantification and controls are needed to strength the

conclusions from these reports.

In this study, we investigated the dynamics of integrated, 2-LTR

circular, and total HIV-1 DNA in patients during early phase of

HARRT treatment. Using optimized RT-PCR to measure both

the target HIV-1 DNA and the input number of cells, we observed

Figure 1. Sequential changes in various HIV-1 DNA in all patients. The total (A), 2-LTR (B) and integrated (C) HIV-1 DNA in 20 patients at week
0, 2, 4, 8, to 12 after treatment were analyzed. The horizontal lines for each time point indicate the median values. Significant differences in median
values between different time points were highlighted by asterisk when p-value was less than 0.01.
doi:10.1371/journal.pone.0021081.g001

Table 1. The patients’ HIV-1 RNA loads, CD4 cell counts, and ART.

HIV-1 RNA loads (copies/ml)a CD4 cell count (cells/ml)

Patient Age Gender 0 W 4 W 12 W 0 W 2 W 4 W 8 W 12 W HARRT Duration of Infection

1 29 M 40,327 1,053 163 288 288 1,126 317 285 AZT+3TC+NVP na

2 28 M 18,662 176 ,40 238 238 334 331 312 D4T+3TC+NVP 3 y

3 37 M 90,589 920 ,40 90 90 55 107 108 D4T+3TC+NVP 11 y

4 63 M 27,846 661 74 89 192 139 176 190 D4T+3TC+NVP na

5 23 M 22,291 902 106 278 278 235 366 357 AZT+3TC+NVP 1 y

6 37 M 462,400 1,768 117 154 154 102 257 289 D4T+3TC+NVP 9 y

7 45 M 56,488 960 258 320 320 411 452 370 AZT+3TC+NVP 5 y

8 39 M 17,838 387 49 237 237 300 282 307 AZT+3TC+NVP 1 y

9 29 M 9,264 ,40 57 335 293 225 198 215 AZT+3TC+NVP 2 y

10 42 M 315,132 4,371 304 297 214 170 321 356 D4T+3TC+NVP 2 y

11 35 F 5,144 305 ,40 102 116 240 255 206 D4T+3TC+NVP 6 y

12 36 M 1,157,417 6,275 258 329 300 256 265 320 D4T+3TC+NVP 2 y

13 26 M 28,118 335 59 172 203 212 282 184 D4T+3TC+NVP 5 y

14 29 M 33,721 618 ,40 229 229 246 248 413 D4T+3TC+NVP 3 y

15 25 M 22,968 142 ,40 266 155 276 319 369 D4T+3TC+NVP na

16 38 M 71,559 681 64 256 340 477 303 320 D4T+3TC+NVP 12 y

17 23 M 1,294 ,40 ,40 293 293 483 451 536 D4T+3TC+NVP 2 y

18 58 M 14,742 645 ,40 239 251 505 317 363 D4T+3TC+NVP 5 y

19 64 M 151,973 4,679 550 218 218 587 447 469 D4T+3TC+NVP 0.5 y

20 34 M 47,952 4,881 199 349 589 605 659 715 D4T+3TC+NVP na

Median
Value

36 - 30,920 792 106 248 238 266 310 320 - 3 y

aViral load was measured by the Amplicor HIV-1 monitor ultrasensitive Method (Roche), with a detection limit of 40 copies/ml of plasma.
doi:10.1371/journal.pone.0021081.t001
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significant changes in 2-LTR but not in other forms of HIV-1

DNA during the early stage of treatment. We further measured the

doubling time and the half-life of 2-LTR, whose potential

correlations with the baseline and the rate of changes in plasma

viral load and various CD4+ T-cell populations were also

evaluated. Sequencing analysis of 2-LTR was conducted for

selected samples to monitor their longitudinal changes over time.

Our findings help us clearly understand the replication and latency

of HIV-1 during early stages of treatments.

Results

Rapid changes in 2-LTR concentration during early
treatment

To quantify the HIV-1 DNA and the cellular CCR5 targets in

the patients’ peripheral blood mononuclear cells (PBMCs) using

RT-PCR, we applied an accurate, stable and cost-effective standard

based on bacteriophage M13, as being described previously by us

[38]. This M13 phage-based standard can be performed without

DNA extraction, as the single-stranded circular form of DNA is

automatically released into the RT-PCR mixture once it is heated to

95uC prior to PCR amplification [38]. In this study, we generated

specific M13 phage standards for the total, 2-LTR, and integrated

forms of HIV-1 DNA as well as the cellular gene CCR5, as

described previously [39–42]. These standards were as sensitive,

accurate and stable as our previous reports [38].

Following these standards, we measured the total, 2-LTR, and

integrated HIV-1 DNA in PBMC collected from 20 patients at week

0, 2, 4, 8, and 12 after ARV treatment by RT-PCR. As shown in

Figure 1, the 2-LTR underwent rapid changes during the first 12

weeks of treatment. In detail, a rapid rise in 2-LTR was observed up

to week 4 of treatment followed by a significant decline during the

following weeks. The peak concentration was reached 4 weeks after

treatment (Figure 1 B). In contrast, the total and integrated forms of

HIV-1 DNA remained stable (Figure 1 A, C). At the same time, all

patients demonstrated rapid declines in HIV-1 RNA levels, which

Figure 2. Individual sequential changes in various HIV-1 DNA. The total, 2-LTR and integrated HIV-1 DNA in each of the 20 patients during
the first 12 weeks of treatment were quantified by real-time PCR. The patients are divided into two groups, Group A with significant increases in 2-LTR
and Group B without.
doi:10.1371/journal.pone.0021081.g002
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even became undetectable in some patients (,40 copies/ml).

The integrase inhibitor raltegravir was not included in this

study (Table 1).

Dynamics of the 2-LTR, total and integrated HIV-1 DNA
during early treatment

We analyzed the dynamic changes in 2-LTR in each patient

using a simple mathematical model [2,28,37]. We found that the

rapid changes in 2-LTR was largely contributed by 12 (Group A)

out of the total 20 patients, while the other 8 patients (Group B)

had relatively stable or gradually reduced 2-LTR (Figure 2). The

average doubling time was 0.480 week or 3.360 days (Table 2),

which is about 10% of that of the total CD4+ T cells in HIV-1

infected patients but only about 2% of that in healthy individuals

[43]. It suggests that rapid increase in 2-LTR on treatment is not

associated with the rapid proliferation of cells containing 2-LTR

that should only decrease the concentration as cells divide. Rather,

the rapid increases may be caused by the quick redistribution of

2-LTR-containing cells during early treatment. Furthermore, the

half-life of 2-LTR was estimated, based on the rates of decreases,

to be an average of 1.174 week or 8.218 days (Table 2), which is

similar to that in a recent report with both acutely and chronically

infected patients [44] but is clearly longer than those in the reports

with the in vitro cultured T cell lines [14,45]. Nevertheless, the

rapid changes in 2-LTR during the early treatment did suggest the

continued existence of 2-LTR-bearing cells in peripheral blood. It

is currently unknown whether these cells were newly infected

during the treatment or they were just redistributed from the

lymphoid organs where they had been infected and trapped before

the treatment. As our study did not include the integrase inhibitor

raltegravir, the rapid changes in 2-LTR are not expected to be

caused by the blocked integration [44,46].

We then analyzed the dynamics of total and integrated forms of

HIV-1 DNA for each patient. The majority of patients in both

Group A and B showed significant declines in total and integrated

HIV-1 DNA during the first 12 weeks of HAART (Figures 3 and

4). The average half-life of total HIV DNA for Group A patients is

about 3.9 weeks, compared with Group B’s about 7.9 weeks

(Figure 3). Similar to the total HIV DNA, the integrated HIV

DNA’s decay half-life was an average of 7.2 weeks for the patients

in Group A and 7.1 weeks for the patients in Group B (Figure 4).

These results are similar to those of studies with early treatment

[3,37,47], but significantly shorter than those of studies with

extended periods of treatment [12,27–29]. Our results suggest that

the total form and the integrated form of HIV-1 DNA decay with

similar kinetics during early treatment, and that some of the

HIV-1 DNA becomes persistent during late treatment without

significant decay within the latently infected cells [6,7,10–12,24].

The rapid changes in 2-LTR are not associated with the
baseline and the rate of changes in plasma viral load and
various CD4+ T-cell populations

To study the potential biological implications of rapid changes

in 2-LTR during early treatment, we conducted correlation

analyses with baseline characteristics and the rates of changes in

plasma viral load, total CD4, memory CD4 (mCD4) and naı̈ve

CD4 (nCD4) T-cell populations for all patients in Group A, using

Spearman’s correlation coefficient. As shown in the left panel of

Figure 5, no significant association was identified between the rate

of changes in 2-LTR and the baseline plasma viral load and

various CD4+ T-cell populations. Furthermore, the rate of

changes in 2-LTR was not significantly associated with the rate

of changes in plasma viral load and various CD4+ T-cell

populations (Figure 5, right panel). These results indicate that

the rapid changes in 2-LTR are not dependent on the suppression

of plasma viral RNA or the increases in peripheral CD4 T-cells

during the first 12 weeks of treatment.

Rapid changes in 2-LTR concentration did not affect the
junction and flanking regions of 2-LTR

To identify the source of rapidly increased 2-LTR in peripheral

blood, we amplified the junction region of 2-LTR directly from the

PBMC and analyzed its sequences in the samples of when 2-LTR

was at the baseline and when 2-LTR was at peak after HAART

treatment. No significant differences were observed for the

junction and flanking regions of 2-LTR between the two time

points for all patients, except for the patient 16 in Group B

(Figure 6). This patient had varied lengths of 2-LTR sequences

with a dominant form of one single Guanine nucleotides (G) at the

junction (5/8) when 2-LTR was at the baseline level. Four weeks

later, this dominant sequence had completely replaced others (9/9)

(Figure 6). These results suggest that the rapid changes in 2-LTR

concentration in peripheral blood are not correlated with the

changes in 2-LTR sequence during early treatment, which makes

it extremely hard to predict the source of the 2-LTR-bearing cells

in the peripheral blood during early HAART treatment.

Rapid changes in 2-LTR concentration are not associated
with the plasma lipopolysaccharide (LPS) levels in early
HAART treatment

It has been reported that patients with chronic HIV infection

had significantly higher levels of plasma LPS than the acutely

infected patients and normal individuals, which led to generalized

immune activation [48,49] and likely the trapping of many

2-LTR-containing cells in the lymphoid tissues. Based on this

notion, we sought to measure the levels of plasma LPS during the

first 12 weeks of HAART treatment. As shown in Figure 7, no

significant changes in plasma LPS levels were observed for both

Group A and Group B, nor were any significant differences in

plasma LPS levels between these two groups. LPS levels in these

two groups were higher than those in health controls, however, the

Table 2. Estimated doubling time or half-life of 2-LTR HIV
DNA (weeks).

Patient Doubling time Half lifea

1 0.217 (0.624)

2 0.265 (2.634)

3 0.293 (0.586)

4 1.571 (1.312)

5 0.351 (1.406)

6 0.462 (3.177)

7 0.237 (1.494)

8 0.245 (0.490)

9 0.327 (1.350)

10 0.313 (0.534)

11 0.340 (0.254)

12 0.275 (0.226)

Mean 6 Standard deviation 0.48060.037 (1.174)60.935

aThe slope of the increase rate of was negative, and the number inside the
parentheses indicates the half-life.

doi:10.1371/journal.pone.0021081.t002
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differences were not statistically significant. It suggests that 12

weeks of HAART treatment does not affect the LPS levels and the

rapid changes in 2-LTR during this treatment period is caused by

other factors.

Discussion

In this study, we investigated the dynamics of 2-LTR, integrated

and total HIV-1 DNA in patients during the first 12-week

HAART treatment using an optimized RT-PCR method with

novel M13 phage-based standards. Significant changes in 2-LTR

concentration were observed in 60% of the patients. Kinetic

analysis revealed that the doubling time and the half-life of 2-LTR

were significantly different than those of CD4+ T cells [43,50–52]

but not correlated with the baseline and rate of changes in plasma

viral load and various CD4+ T-cell populations. Future studies

would be needed to evaluate the changes of 2-LTR concentration

in various T cell populations and its relationship with dynamics of

these cells. Lastly, no significant changes in 2-LTR sequences or

plasma LPS levels were observed during the same treatment

period.

To our knowledge, this study is the first to demonstrate that

2-LTR undergoes rapid changes in the peripheral blood during

early treatment of HAART. In pursuing the source of 2-LTR-

bearing cells in the peripheral blood, we first excluded the

involvement of 2-LTR accumulation in the infected cells since the

integrase inhibitor raltegravir was not included in this study. The

elevated levels of 2-LTR might be caused by the continued HIV-1

infection of target cells in the peripheral blood despite of

substantial drop in plasma viral RNA. However, this hypothesis

can not explain the subsequent decline in 2-LTR, as continued

infection would lead to persistent burst of 2-LTR. It is also possible

that the 2-LTR-bearing cells were part of the cells that had been

trapped in the lymphoid tissues by the generalized immune

Figure 3. Linear regression analysis on the decay rate of the total HIV DNA. During the first 12 weeks of treatment, each patient in Group A
(A) and Group B (B) was analyzed, as well as the averages for the two groups (C). Three patients (p5, p7 and p9) in Group A and two (p17 and p18) in
Group B did not have applicable decay rates (t1/2 na) and were therefore not included in the calculation of average shown in panel C.
doi:10.1371/journal.pone.0021081.g003
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activation with HIV-1 infection. This re-distribution hypothesis is

consistent with the observation of rapid and transient increases in

memory CD4+ T-cells during early HAART treatment [50–52].

However, future investigation is required to figure out the exact

source of rapid changes in 2-LTR in the peripheral after early

treatment.

In summary, our study revealed the rapid changes in 2-LTR

concentration in a relatively large number of patients during early

HAART treatment, while the total and integrated forms of HIV-1

DNA remained stable. These rapid changes might be associated

with the rapid redistribution of memory CD4+ T cells that had

been previously trapped in various lymphoid tissues. If this

hypothesis were to be confirmed by future studies, the 2-LTR

concentration in peripheral blood could serve as an important

biomarker for HIV-1 infection and treatments in addition to the

plasma viral load and CD4 count since 2-LTR has already been

used to indicate the actively viral replication or the potency of

antiretroviral drug such as the integrase inhibitor raltegravir

[44,46]. Furthermore, our longitudinal analysis of 2-LTR,

integrated and total forms of HIV-1 DNA also provided

substantial insights into the dynamics of HIV-1 over the course

of infection, which may help us better understand the pathogenesis

of the diseases and develop more effective treatment strategies.

Materials and Methods

Ethics statement and study subjects
This study was approved by the Ethical Committee at Beijing

You’an Hospital and written informed consent was obtained from

all participants. A total of 20 HIV-1 positive individuals who had

not received any antiretroviral therapy prior to this study were

enrolled. The demographic, virologic and immunologic charac-

teristics of these subjects are listed in Table 1. All individuals

except one were male with ages from 23 to 64. At baseline, they

Figure 4. Linear regression analysis on the decay rate of the integrated HIV DNA. During the first 12 weeks of treatment, each patient in
Group A (A) and Group B (B) was analyzed, as well as the averages for the two groups (C). Three patients (p3, p5 and p9) in Group A and one (p20) in
Group B did not have applicable decay rates (t1/2 na) and were therefore not included in the calculation of average shown in panel C.
doi:10.1371/journal.pone.0021081.g004
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had a median CD4 lymphocyte count of 248 cells/ml and a

median plasma viral load of 30,920 copies/ml. All individuals

were treated with antiretroviral regimens containing two nucleo-

side reverse-transcriptase inhibitors plus a non-nucleoside reverse-

transcriptase inhibitor, nevirapine. No integrase inhibitors such as

raltegravir were used. Blood samples were collected at baseline, at

week 2, 4, 8 and 12 after treatment. Twelve weeks after the

treatment, all individuals had rapid declines in viral load and a

majority of them showed undetectable levels of HIV-1 RNA (,40

copies/ml) in the plasma. Concomitant rise in CD4 T cell count

was observed in most of the subjects (Table 1).

Primers, probes and M13 bacteriophage-containing
target sequences as standards for RT-PCR

The primer and probe sequences for RT-PCR assays were

optimized based on previous reports [39,40] and the published

sequences of geographical variants in the Los Alamos HIV

databases (http://www.hiv.lanl.gov/). The primer and probe

sequences as well as their targets of detection are listed in

Table 3. As the standard for RT-PCR, we used M13

bacteriophage as a vector to express appropriate HIV-1 DNA

and cellular sequences. We chose the chemokines receptor CCR5

as a surrogate to estimate the input number of cells, because each

cell contains only one single copy of CCR5 [13,53]. The absolute

number of target sequences could be easily calculated based on the

number of plaque forming unit (PFU) of M13 phage, because one

phage contains one copy of the genome [38]. To generate

standard for the various forms of HIV-1 DNA and the cellular

CCR5, the corresponding gene fragments were inserted into the

M13 genome. The recombinant M13 phages were propagated in

Escherichia coli JM109 at 37uC overnight and harvested by

centrifugation. The titer of recombinant phage in the superna-

tant was estimated by serial dilution, followed by the counting of

PFU [38].

Quantification of HIV-1 DNA and cellular CCR5 with
RT-PCR

The total DNA from patients’ PBMCs was extracted using

QIAamp DNA blood mini kit (Qiagen), eluted in DNase-free

water, and stored at 280uC until use. RT-PCR was performed in

25-ml solution containing 2.5 ml of DNA target, 12.5 ml of Gene

Expression Master Mix (Applied Biosystems 4369016), 1 mM of

primers and 0.2 mM of probe under the following conditions: 95uC
for 10 min, followed by 40 cycles of 95uC for 15 s and 60uC for

1 min in ABI 7500 PCR machine (Applied Biosystems). For the

integrated HIV-1 DNA, the first round of PCR was conducted

Figure 5. Correlation analysis for the change rates of 2-LTR. Relationships between baseline parameters and the later 2-LTR change rates
were shown in the left panel, and the correlations between later change rates were shown in the right panel. Inside each panel, the correlations
between the rate of changes in 2-LTR and the baseline or the change rate in plasma viral load, the total CD4+, memory (RO+) (mCD4) and naı̈ve (RA+)
CD4+ (nCD4) T cell count for the 12 patients in Group A were shown. Rate of 2-LTR increase or decrease was indicated as below.
doi:10.1371/journal.pone.0021081.g005
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with the following conditions: 95uC for 8 min, and then 12 cycles

of amplification at 95uC for 10 s, 60uC for 10 s, and 72uC for

170 s. One-tenth of product from the first round PCR was

transferred to a new tube for the following RT-PCR quantification

analysis. The PCR signal from the first round without the Alu

primers was subtracted from the total signals prior to the estimate

of copy numbers. For the total and 2-LTR HIV-1 DNA as well as

the CCR5 gene, only one round of RT-PCR was performed. A

standard curve was created for each run in a 7-log-unit range by

1:10 serial dilutions.

Figure 6. Sequence analysis of 2-LTR circle junction from selected patients in Group A and B. The circle junction, 39U5 and 59U3 were
aligned and numbered against HXB2. PCR products amplified from samples at week 0 and 4 were cloned and sequenced. Sequences for patients
from group A are above the line while those from group B are under the line.
doi:10.1371/journal.pone.0021081.g006

Figure 7. Changes in plasma LPS. Plasma LPS concentrations were determined during the first 12 weeks of treatment for Groups A and B,
compared with those from healthy controls. Box plots indicate the median, the 25th and the 75th percentiles concentrations for the samples at week
0, 2, 4, 8 and 12. Outliers with exceptionally high concentration are indicated by dots. HC, health control, n = 10.
doi:10.1371/journal.pone.0021081.g007
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Immunologic analysis of T cell populations in the blood
The CD3, CD4, CD45RA and CD45RO subpopulations in

peripheral blood samples from HIV-1 infected individuals were

quantified with four-color flow cytometry using the following mono-

clonal antibodies (mAbs): CD3-PerCP, CD4-FITC (BD Bioscience,

CA, USA), CD45RA-APC and CD45RO-PE (eBioscience, CA,

USA). Naive cells were defined as CD4+CD45RA+, whereas

memory cells were defined as CD4+CD45RO+. The analyses were

performed using FACSCalibur and CELLQuest software (Becton

Dickinson, San Jose, CA).

Sequencing analysis of 2-LTR PCR products
The extracted DNA samples from PBMC at week 0 and 4 were

amplified by PCR before being cloned into the pMD18-T vector

(Takara, Japan). Ten clones of each sample were sequenced and

those with sequences available at two time points were analyzed

using the software Clustal X version 1.83 [54].

Measurement of bacterial lipopolysaccharide (LPS) levels
in the plasma

The plasma was heat-inactivated at 70uC for 10 min before being

diluted at 1:5 in endotoxin-free water. The plasma concentration of

LPS was measured and calculated using the LPS ELISA Kit

(R&D Systems).

Statistical Analysis
All data were analyzed using the software of SPSS version

16.0. The correlation between two parameters was determined

using the Spearman’s correlation coefficient. It was considered as

statistically significant when P,0.05. The Wilcoxon paired test

was used to compare the longitudinal changes and the Mann-

Whitney U test was used to compare the medians between

different groups. The doubling time (log102/slope) or half-life

(2log102/slope) of HIV-1 DNA was calculated following

previously described methods [2,28,37].
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