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Rapid Vanishing Point Estimation for General Road Detection

Ondrej Miksik

Abstract— This paper deals with fast vanishing point estima-
tion for autonomous robot navigation. Preceding approaches
showed suitable results and vanishing point estimation was
used in many robotics tasks, especially in the detection of ill-
structured roads. The main drawback of such approaches is
the computational complexity – the possibilities of hardware
accelerations are mentioned in many papers, however, we
believe, that the biggest benefit of a vanishing point estimation
algorithm is for primarily tele-operated robots in the case of
signal loss, etc., that cannot use specialized hardware just for
this feature. In this paper, we investigate possibilities of an
efficient implementation by the expansion of Gabor wavelets
into a linear combination of Haar-like box functions to perform
fast filtering via integral image trick and discuss the utilization
of superpixels in the voting scheme to provide a significant
speed-up (more than 40 times), while we loose only 3-5% in
precision.

I. INTRODUCTION

During the past few decades, the robotics community has

made great efforts in developing autonomous robots. One

of the biggest challenges are definitively reliable percep-

tion. Many papers have been published about vision-based

navigation. By contrast with other sensors like laser range

finders [1], [2] or radars [3], vision-based navigation is cheap,

does not require any additional sensor, since many robots

are already equipped with a camera (for telepresence), and

suitable for long-term sensing, which is usually necessary

for high-speed driving.

Early systems usually deal with structured roads. The

well-known and mature projects were developed in Carnegie

Mellon University (CMU)’s Navlab [4], [5], that use a

number of Gaussian color models to represent road and non-

road surfaces (UNSCARF, SCARF) and deal with both, inter-

sections and shadows, however it require some overlapping

between the frames. Another projects like ARGO from the

Università di Parma [6], [7] or a more recent system proposed

by Dong-Si et al. [2] use stereo vision. Approaches, that use

optical flow estimation [8], [9] do not work well on chaotic

roads, when the camera is unstable and the optical flow

estimation is not robust enough. One of the most powerful

systems was developed by Stanford AI Lab – vehicle Stanley

uses self-supervised learning based on a combination of laser

range finders and camera [1], however this combination is

not useful for robots of a smaller size.

Another branch of research is represented by approaches

that estimate the so-called Vanishing Point (VP) of the road.
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Original paper by Rasmussen [10] investigates grouping

of dominant orientations of a texture flow, that is suitable

for unstructured, or ill-structured roads with no significant

borders. The algorithm consists of two stages: (1) estimation

of dominant orientations by a bank of Gabor wavelets, and

(2) a voting scheme, which is used to determine the most

likely coordinates of the road’s vanishing point.

The Rasmussen’s approach works well in an outdoor

environment with ill-structured roads which are barely visible

even for humans. The above mentioned algorithm does not

require any a priori knowledge about the road surface,

difficult classifier training, etc. It provides information about

the correct course for robot navigation, however the main

drawback is, the lack of information about the free space

ahead of robot. The later refinement employs laser range

finders to deal with obstacles [11].

Another paper by Kong et al. [12], [13] proposed the idea

of a locally adaptive soft voting scheme to prevent tending

to favour points that are high in the image, which sometimes

leads to large errors in the estimation of the vanishing point.

The second important part of these papers discuss road

segmentation by an Orientation Consistency Ratio and the

two most dominant edges.

More recently, Miksik et al. [14] proposed a fusion of

the frequency based estimation of a vanishing point and

probabilistically based texture segmentation. The texture

segmentation utilizes the continuously re-learned Gaussian

Mixture Model, which is used to determine the free road

ahead of the robot. The main advantage of this approach

is, that the road can be detected even if the vanishing point

estimation fails and does not require lidars.

And finally, an approach published by Qi et al. [15] is

similar - an example-based global image matching method

is used to get an approximate idea of clear path candidate

regions, and a Gaussian Mixture Model, models local image

patches to further improve the clear path detection.

It is obvious, that there are a bunch of papers and promis-

ing work, that utilizes reliable Vanishing Point estimation. On

the other hand, none of the above mentioned papers discuss

the crucial issue for mobile robotics: “How to estimate the

VP in real-time?”, because the original algorithm is quite

close to real-time, but not close enough1. It is possible to

use massive computational power of specialized DSP, FPGA

or GPGPU, however, we strongly believe, that the main

domains of such a guide-path following algorithms are for

e.g. primarily teleoperated robots that are able to return in

the case of signal loss, a swarm of cheap robots with assisted

1Rasmussen uses Nvidia GeForce 6800 to accelerates voting.



autonomy, . . . In these cases, it is usually inconvenient (price)

or even impossible (weight) to use additional hardware. To

our best knowledge, we are the first in this paper, who aim

at computational efficiency, instead of just a precision of the

VP estimation algorithm. In this paper, we propose a method,

which achieves results comparable to the above mentioned,

however our method is significantly faster without any de-

pendency on a specific hardware platform.

The remainder of this paper is organized as follows. The

texture flow estimation process is discussed in section II,

section III describes the refined voting scheme, section IV

provides performance evaluation and the paper is concluded

in section V.

II. TEXTURE FLOW ESTIMATION

The first step of a vanishing point estimation algorithm is

the estimation of a texture flow. The dominant orientation

θ(p) of an image at pixel p(x,y) describes the strongest

local parallel structure or texture flow. There exist various

techniques, which can be used for estimation of dominant

orientation, involving usage of Gaussian pyramids with prin-

ciple component analysis, steerable filters, etc. We follow

the line of research that investigates grouping of dominant

orientations, that are estimated by a bank of 2D Gabor

wavelet filters, since they are known to be accurate [10],

[16], [17]. The kernels of Gabor wavelet filters are quite

similar to the 2D receptive field profiles of the mammalian

cortical simple cells and show suitable characteristics of

spatial locality and orientation selectivity [18].

Gabor wavelets consist of a product of an elliptical

Gaussian and a complex plane wave, which determines the

frequency and the phase content of the local parts of a signal

as it changes over time. All kernels are constructed from one

mother wavelet by its dilation and/or rotation, which means,

that the wavelets are self-similar.

The set of k×k Gabor kernels for an orientation θ , radial

frequency in radians per unit length ω and odd or even phase

are defined by

ψ(x,y,θ ,ω) =
ω√
2πc

e
− ω

8c2 (4a2+b2)
(

eiaω − e
c2

2

)
, (1)

where x= y= 0 is the kernel center. Next, a and b are defined

by

a = xcos(θ)+ ysin(θ),

b =−xsin(θ)+ ycos(θ), (2)

and c = 2.2, ω = ω0 × 2s, ω0 = 2.1 and s = {0,1,2,3,4}.

More details about 2D Gabor wavelets are given in [17].

Although it is often mentioned, that the response of the

bank of filters might be efficiently computed by FFT, it was

observed, that such computations are not fast enough due to

the large number of filters in the bank (consider commonly

used 36 orientations and 5 scales) [19]. Thus, we need to

optimize this computational routine by a widely used trick

with integral images, which is well-known especially in the

face recognition domain [20].

Integral images represent convenient data structure widely

used in computer vision, since computational complexity

of Haar-like box filters with integral images is independent

on the size of the kernel. Integral image can be computed

efficiently with a recursive implementation in a single pass

over the image as

I(x,y) = i(x,y)+A+ I(x,y−1) (3)

where I is the integral image, i is the input image and A is

the accumulate of pixels in the current row. Once the integral

image is precomputed, the sum of a rectangular area of any

possible size can be computed in a constant time by only

three additions

right

∑
x′=(le f t−1)

bottom

∑
y′=(top−1)

i(x′,y′) = ID + IA − IB − IC, (4)

where A is top-left, B is top-right, C is bottom-left and D is

the bottom-right corner.

It is necessary to decompose the Gabor filters into a linear

combination of Haar-like box filters to perform filtration in

an integral image domain. First, we define the dictionary

D = {b1,b2, . . . ,bN} of Haar-like box filters, where each bi

is a column vector formed by reshaping the rectangular box

function (defined below). The dictionary consists of single

Haar-like box filters which can be formally written as binary

functions

hsingle(u,v) =





1 u0 ≤ u ≤ u0 +w′−1

v0 ≤ v ≤ v0 +h′−1

0 otherwise

(5)

where [u0,v0] are the coordinates of the top left corner and

w′ and h′ are the size of the white box. Gabor wavelets are

(anti)symmetric, therefore we also use a vertically symmetric

box function

hsymmetric(u,v) =





1 u0 ≤ u ≤ u0 +w′−1

v0 ≤ v ≤ v0 +h′−1

1 w−u0 −w′+1 ≤ u ≤ w−u0

h− v0 −h′+1 ≤ v ≤ h− v0

0 otherwise
(6)

and horizontally symmetric box function are defined in

a similar manner. It is obvious, that dictionary D of the

basis functions (atoms) is over-complete, redundant and

non-orthogonal. Next, we need to approximate the Gabor

wavelets ψ as a linear combination of atoms b from dictio-

nary D.

ψ ≈ ψ̂ = ∑
i∈Λ

cibi (7)

It is known, that the problem of finding a global optimum

of the approximation is considered as NP-hard, since the

dictionary consists of H(H + 1)W (W + 1)/4 single and

2H(H +1)W (W
2
−1)/8 symmetric atoms for a W ×H large

kernels.

The authors of [21], [22] proposed the use of a greedy

algorithm called Optimized Orthogonal matching Pursuit



(OOMP)2 [23], [24] that finds a sub-optimal solution and best

approximates the original function. OOMP efficiently selects

the most representative atoms from an arbitrary redundant

nonorthogonal base vector dictionary in a Hilbert space. The

OOMP iteratively selects the given number of base vectors

BΛ = {bl1 ,bl1 , . . . ,bl|Λ|} from a dictionary according to the

following procedure: suppose that after iteration κ − 1, the

already selected κ − 1 atoms are defined by the index set

Λκ−1 = (li)
κ−1
i=1 . At iteration κ , the OOMP selects the index

lκ = i, that minimizes the new residual, which is equivalent

to maximizing

|< γi,εκ−1 > |
∥γi∥

, ∥γi∥ ̸= 0, i ∈ Λκ , (8)

where εκ−1 = x − ξBΛκ−1
(x) is the reconstruction residual

using BΛκ−1
, γi = bi−ξBΛκ−1

(bi) is the component of bi that

is orthogonal to the subspace spanned by BΛ. ξBΛκ−1
(x) =

BΛ(B
T
ΛBΛ)

−1BT
Λx is the reconstruction of the signal x using

the nonorthogonal bases indexed by Λκ−1. Λκ−1 are the

indices, that are not selected in the previous κ −1 iterations.

To satisfy one of the design constraints for filters measur-

ing phase disparities and to ensure optimal phase behavior

of all filters contained in the bank, it is necessary to remove

the DC component of the filter. This is quite straightforward,

if we can easily remove the mean from the filter. The

problem is, that the decomposition of the filter into the linear

combination consists of coefficients and associated basis

functions (Haar-like box filters), that can not be changed

(binary functions). Hence, the constraint is obvious: it is

necessary to remove the DC component just by tuning the

coefficients associated with selected atoms. Let χEi
be the

characteristic function and m(Ei) is the measure (e.g. square

of L2) of the box bi. Then, the approximated Gabor wavelets

with the removed DC component are computed as

ψ̂DC = ∑
i∈Λ

(
ci −

δ

m

)
bi, (9)

where δ = ∑i cim(Ei) and m = ∑i m(Ei). The final kernels

ψ̂L2 are obtained by normalization, so that < ψ̂L2 , ψ̂L2 >= 1,

i.e. normalized by L2 norm.

Consequently, the standard convolution can be approxi-

mated with N Haar-like box filters selected by OOMP as

ςθ ,ω = ψL2 ∗ΩΩΩ ≈ ψ̂L2 ∗ΩΩΩ =
N

∑
i=1

αi(biΩΩΩ), (10)

where ∗ denotes the convolution operator, ΩΩΩ is the image

patch and αi are the DC corrected and L2 normalized

coefficients.

The advantage of computing with an integral image trick

is, that the filtering of Gabor wavelets approximated by Haar-

like binary box functions with an image patch significantly

reduces the number of floating point multiplications and

additions. Computing of an integral image (only once per

2Terminological remark: Orthogonal is related with the full backward
orthogonality of the residual in each iteration and the fact, that the recon-
struction using OOMP-selected base vectors is orthogonal to the residual.

Fig. 1. Decomposition of a Gabor wavelet into a linear combination of
Haar-like box functions.

image) requires only width × height × 2 integer additions

with recursive implementation. Each of the N selected atoms

consist of one or two boxes. Let nsin be the number of single

and nsym be the number of selected symmetric Haar-like box

functions (naturally, N = nsin+nsym). Then, the approximated

convolution needs only 3nsin and 7nsym integer additions, N

floating point multiplications and additions3. It is obvious,

that the most important parameter, that influence filtering

speed is the number of selected atoms N.

Gabor wavelets have two parts: a real and an imaginary

component. Thus, an average over the scales of a square

norm of the so-called Gabor energy (complex response) is

computed to get the best characteristics of a local texture jet

Eθ (x,y) = Avgω

[
ℜ(ςθ ,ω(x,y))

2 +ℑ(ςθ ,ω(x,y))
2
]

(11)

Rasmussen [10] defines the dominant orientation of a

texture flow at pixel p(x,y) as the filter orientation which

elicits the maximum complex response at that location,

however, it was observed [21], [22], that the estimated

dominant orientation is not reliable at all pixels, especially

at those, that are not related with road. Kong et al. [12],

[13] propose to use a confidence score, which measures how

peaky the function θ 7→ Eθ ,ω(x,y) is near the optimum angle

θ(x,y), however their confidence score does not take into

account, how many maxima the function have. Thus, we

slightly refined the confidence score evaluation, since the

peaky function near the optimum angle is not enough - to get

the reliable dominant orientation estimation, all point with

multiple maxima must be rejected as well.

Instead of using of an ordered set of the complex

responses, that do not take into account the angle θ
for which the response is measured, we rather pick

just the strongest response emax(x,y) from Eθ ,ω(x,y) =
{e1(x,y),e2(x,y), . . . ,eA(x,y)} and measure the confidence

score as

Conf = 1− Avg ϑ

emax(x,y)
, (12)

ϑ = {emax−b(x,y), . . . ,emax(x,y), . . . ,emax+b(x,y)}, (13)

where A is the number of orientations and b is the coefficient,

that determines how much weaker the other responses are

expected to be (we use b = A
4
− 1). In addition to that,

all other responses from ϑ (complement of the set ϑ ) are

compared with Avg ϑ and if any of them is higher than

Avg ϑ , the confidence score is set to zero to reject the

pixel with multiple maxima. Next, the confidence score is

normalized to the range < 0,1 > and threshold, so that

3It is expected, that subtraction has the same computational complexity
as addition, throughout this paper.



all pixels with a confidence level lower than T = 0.3 are

discarded.

III. VOTING SCHEME

The second stage of the vanishing point estimation algo-

rithm is voting. The idea behind the voting scheme assumes,

that the set of parallel lines in the 3D space do not look like a

parallel under the perspective projection caused by a pinhole

camera, however these lines converge to some point on the

image plane, the so-called vanishing point. The vanishing

point is important in many computer vision applications, e.g.

structure from motion [25], robotics, . . . One can argue, that

a single vanishing point have only straight roads and there

might be multiple vanishing points in the case of a curved

road. This is not a constraint, since we simply estimate

the strongest response. The original voting scheme proposed

by Rasmussen [10] is the tightest bottleneck of the whole

algorithm. Kong et al. [12], [13] proposed a locally adapted

soft-voting scheme, that slightly reduces the computational

complexity of the original algorithm, however it is still far

away from real-time.

Hence, the first step of our algorithm is a reduction of

vanishing point candidates (the number of voting pixels

were reduced by the confidence score). The idea is that

the vanishing point should lie close to the points with

significant dominant orientation, since the locally adapted

voting strategy allows voting only to the points, that are in

a close supporting subregion (discussed below). Thus, we

take into account only those points, that are not rejected

in the previous stage (confidence score based thresholding)

and perform simple morphological dilation to include pixels,

that are close to the huge support region, however they do

not have significant dominant orientation themselves. The

set of these points C are the vanishing point candidates. It is

possible to use more sophisticated algorithms, however we

use only such a simple preprocessing filter due to the very

low computational complexity.

Next, we introduce superpixels into the voting scheme:

a histogram of orientations is computed for each f × f

subregion in the image and if the population of the histogram

maxima is higher than some threshold τ = 0.5( f × f ), the

angle which corresponds with the maxima is associated with

the current superpixel and the next l−1 strongest orientations

in histogram are compared with another threshold, equal

to some fraction (0.5) of the histogram maxima frequency.

If the frequencies of these additional l − 1 orientations are

higher than this threshold, they are associated with the

current superpixel as well. To preserve the character of the

superpixel, we not only store orientations, but also their

histogram frequencies.

Once we have the set of possible vanishing point candi-

dates C, one can make to vote the pixels with an estimated

dominant orientation to obtain the vanishing point. Formally,

let the angle of the line joining an image pixel p and a

vanishing point candidate v is α(p,v), then p votes for v

if the difference between α(p,v) and θmax(p) is within the

dominant orientation estimator’s angular resolution, which

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Vanishing point estimation: a) input image, b) output, c) dominant
orientations, d) superpixels (4 levels), e) rough estimation and an area with
highest score (green), f) refinement

has a finite value of π
n

. This hard-voting strategy proposed

by Rasmussen [10] has one drawback – voting pixels are

all pixels below the vanishing point candidate and voting

pixels are not weighted by the distance to the vanishing point

candidate. This caused, that the vanishing point candidates

higher in the image to have more potential voting pixels and

it may lead to false detection. To overcome this limitation,

Kong et al. [12], [13] introduced locally adaptive soft-voting,

that reduce the region of voting pixels R to an intersection

of the Gabor response image with a half-disk below the

vanishing point candidate v centered at v. A radius of the

half-disk is r = 0.35Γ, where Γ is the length of the image

diagonal. Each pixel with significant dominant orientation

from R can vote for vanishing point candidate v if the

following condition is satisfied

vote(p,v) =

{
1

1+[γ d(p,v)]2
if γ ≤ 5

1+2d(p,v) ,

0 otherwise,
(14)

where γ = |α(p,v)−θmax(p)|.
Next, the definition of an objective function for each

vanishing point candidate v is straightforward

votes(v) = ∑
p∈R(v)

vote(p,v). (15)

Here we discuss how we reduce the computational com-

plexity of voting. Our voting consists of two stages. First,



we vote for all possible vanishing point candidates from C,

however only sparse superpixel representation is used for

voting. Thus, we get a rough estimation where the vanishing

point approximately lies. Next, we find the maxima of the

objective function and establish a subregion (rectangle of a

size j) around this point. Then, we check, if there are some

points with a higher score than some fraction (0.8) of the

global maxima. If such points exist, we establish another

subregion around this point and iteratively re-scan all other

pixels again, until there are no more pixels with a score

higher than the fraction of the global maxima. Finally, the

union of such regions (usually, there are only 1−3) is used

in the second stage of voting – the score of these pixels

is cleared and voting is performed again, however, original

dominant orientations are used instead of superpixels. Hence,

we are able to estimate the vanishing point with the same

precision and a huge reduction in computational complexity.

The differences in a computational complexity of various

voting schemes are significant. Both, Rasmussen [10] and

Kong et al. [12], [13] as well, consider all image points

as vanishing point candidates. The latter approach is faster,

since not all points below the vanishing point candidate can

vote - the voting region is reduced to a half-disk with radius

r, however, all pixels of w×h image are still considered as

vanishing point candidates. In contrast to preceding voting

schemes, our approach reduces the number of vanishing

point candidates, since we consider only points with a high

confidence score. Moreover, by utilization of integral image

filtering, we do not need to estimate the dominant orientation

at all pixels as in the case of FFT, however, we can easily

discard all pixels with low variance. This variance filter can

also be efficiently computed in an integral image domain.

Based on our observations, usually approximately 50% of

pixels are rejected. In the second step, the size of the voting

region is reduced by factor f , since we use superpixels. Thus,

we get a rough estimation of vanishing point coordinates in a

very cheap way and only the union of subregions with score

close to the maxima are re-voted. Usually, there are only

1− 3 subregions used for refinement, which have the same

computational complexity as Kong et al. [12], [13], however

only a few pixels are considered as candidates (consider 1−3

subregions of size 8×8 against the full region with size of

128×128).

IV. PERFORMANCE EVALUATION

Our algorithm is tested on the same data set, used by Kong

et al. [12], [13]. The data set consists of 1003 images, among

them, about 430 images are from photographs taken on a

scouting trip along a possible Grand Challenge route in the

Southern California desert and the other part is downloaded

from internet by Google Image. All images are normalized

to the same height and width of 128, as is suggested in [14].

The ground truth data were obtained by manual labeling:

5 persons marked the vanishing point location, a median

of these results is used as the initial ground-truth position.

The two farthest manually marked locations to the initial

ground-truth position are removed as outliers. Finally, the

ground-truth location is computed as the mean of the other

three locations. It should be noted, that we compare our

results against Kong et al. [12], [13] method, without road

segmentation, since several methods [14], [15] exist that

employs vanishing point in a different way.

First of all, we evaluate, how many atoms are needed to

sufficiently approximate Gabor wavelets. Clearly, the lower

the number of approximating atoms is, the higher the speed

of filtering, however the worse approximation. We run the

OOMP and set desired number of basis (varied from 1 to

60) and measure the sum of absolute differences between

Gabor wavelet and the reconstructed approximation. Fig 3

shows this error in each scale separately. It is obvious, that

the precision varies over the scales. Hence, we do not choose

the number of atoms, however set the precision and OOMP

simply stops, if the precision of approximation is below this

threshold (t = 0.351+0.1s). This is useful, since the number

of selected atoms is not varied just over the scales, however

even over the angles – it is clear, that filters with some

orientations need more basis than others.
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Fig. 3. The dependency of a number of selected basis and precision.

Figure 3 shows how the approximation error
∥ψ−ψ̂∥
∥ψ∥ is

dependent on a number of selected atoms. It is clear, that

each scale is approximated with different error (c.f. Fig. 3 a)

and each orientation of a filter require a different number of

selected basis to ensure the required precision (c.f. Fig. 3 b).

Fig. 3 c) compares precision (percentage of images with an

estimated vanishing point within a region of 15 pixels around

the ground-truth) of a various number of selected atoms. We

use Kong et al. [12], [13] voting scheme for this evaluation

to be independent on the quality of our voting method. It is

obvious, that only 8 atoms are enough for reliable estimation

of a vanishing point.

Next, we evaluate the precision and a speed of our voting

scheme against Kong et al. [12], [13]. The speed of our



voting scheme is dependent on the size of superpixels and

the subregions used for refinement. Figure 4 shows, that the

best trade-off between precision and speed-up is obtained for

f = 8 and the size of subregions j = 1/2 f . Important is, that

our voting scheme is 41.7 times faster than Kong et al. [12],

[13] while we loose only 3% in precision.
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Fig. 4. The dependency of a precision, size of superpixels and refinement
regions (a) and a speed-up of a voting scheme against Kong et al. [12], [13]
(b).

V. CONCLUSION

We have optimized computational complexity of a vanish-

ing point estimation algorithm, which is widely used in the

domain of a visual navigation. In the first part of the paper,

we have employed binary approximation of Gabor wavelets,

which enables faster computation via integral image trick.

The tightest bottleneck of a vanishing point estimation was

voting. We have proposed a cascaded voting scheme, which

consists of two steps: 1) rough estimation of a vanishing

point and 2) refinement. Such optimization makes the voting

scheme more than 40× faster than Kong et al. [12], [13] and

50× faster than Rasmussen [10], while the precision is only

3−5% worse than Kong et al. approach. Important is, that

the proposed method is not hardware dependent and might

be significantly faster with parallel processing.
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