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Abstract: 13 

Background: Human-targeted drugs may exert off-target effects on the gut microbiota. 14 

However, our understanding of such effects is limited due to a lack of rapid and scalable assay to 15 

comprehensively assess microbiome responses to drugs. Drugs can drastically change the overall 16 

microbiome abundance, microbial composition and functions of a gut microbiome. Although we 17 

could comprehensively observe these microbiome responses using a series of tests, for the 18 

purpose of a drug screening, it is important to decrease the number of analytical tools used. 19 

Results: Here, we developed an approach to screen compounds against individual microbiomes 20 

in vitro using metaproteomics adapted for both absolute bacterial abundances and functional 21 

profiling of the microbiome. Our approach was evaluated by testing 43 compounds (including 22 

four antibiotics) against five individual microbiomes. The method generated technically highly 23 

reproducible readouts, including changes of overall microbiome abundance, microbiome 24 

composition and functional pathways. Results show that besides the antibiotics, compounds 25 

berberine and ibuprofen inhibited the accumulation of biomass during in vitro growth of the 26 

microbiome. By comparing genus and species level-biomass contributions, selective 27 

antibacterial-like activities were found with 36 of the 39 non-antibiotic compounds. Seven of our 28 

compounds led to a global alteration of the metaproteome, with apparent compound-specific 29 

patterns of functional responses. The taxonomic distributions of responded proteins varied 30 

among drugs, i.e. different drugs affect functions of different members of the microbiome. We 31 

also showed that bacterial function can shift in response to drugs without a change in the 32 

abundance of the bacteria. 33 
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Conclusions: Current drug-microbiome interaction studies largely focus on relative microbiome 34 

composition and microbial drug metabolism. In contrast, our workflow enables multiple insights 35 

into microbiome absolute abundance and functional responses to drugs using metaproteomics as 36 

the one-stop screening tool. The workflow is robust, reproducible and quantitative, and is 37 

scalable for personalized high-throughput drug screening applications. 38 

Keywords: Gut microbiome, drug response, in vitro culturing, metaproteomics, absolute 39 

abundance, functional profile 40 

 41 

Background 42 

Human-targeted drugs are primarily developed for their effects on the host, and little is known on 43 

their effects on the microbiome. Microbiome response to drugs could contribute to off-target 44 

drug effect [1]. In addition, the gut microbiome has been linked to gastroenterological, 45 

neurologic, respiratory, metabolic, hepatic, and cardiovascular diseases [2]. Therefore, targeting 46 

the microbiome could lead to novel therapies [3]. Although the effects of some drugs and 47 

compounds on the microbiome have been reported [4], many drug-microbiome interactions are 48 

unknown. This is due in part to the extremely high numbers of marketed drugs [5] and 49 

compounds in development [6] together with the lack of assays that can rapidly and 50 

comprehensively assess the effects of compounds on individual microbiomes. 51 

Different in vitro approaches have been employed to study drug-microbiome interactions. One 52 

strategy involves long term stabilization of the microbiome, as shown in various intestinal 53 

microbiome simulators based on continuous flow [7-9]. This approach typically requires a long 54 

culture period to stabilize the microbiome (15-20 days), and notable shifts in taxonomic 55 

compositions compared with the inoculum have been shown [7, 10]. Moreover, the size and 56 

complexity of these culturing systems limit the number of individual microbiomes and drugs that 57 

can be examined [9], and thus may not be suitable for high-throughput drug screening purpose. 58 

Another strategy is to culture individual bacteria strains isolated from microbiomes. A recent 59 

study examined the effects of approved drugs on the biomass of forty individually-cultured 60 

bacterial strains in a high-throughput manner [11]. This approach highlighted the importance of 61 

biomass in identifying antibacterial-like effects. However, it did not take into account the 62 

complexity of a microbial community that could lead to different microbial responses. 63 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 7, 2019. ; https://doi.org/10.1101/543256doi: bioRxiv preprint 

https://doi.org/10.1101/543256


Approaches such as optical density measurement [11], flow cytometry [12] and quantitative real-64 

time PCR [13] can be used to compare microbiome biomass. However, these approaches lack 65 

insights into drug impact on microbial composition and functions, which are highly related to 66 

healthy and disease states. Although we could comprehensively observe microbiome responses 67 

by combining multiple tools, for the purpose of initial drug screening, it is important to minimize 68 

the number of analytical tools used. There has been no report of an in vitro gut microbiome-69 

based drug screening approach that could assess both biomass responses and functional 70 

alterations in one test. 71 

The development of meta-omics approaches has allowed rapid and deep measurement of 72 

microbiome compositions and functional activities. Genetic approaches such as 16S rDNA and 73 

shotgun metagenomics have been regarded as the “gold standard” in microbiome analysis, 74 

providing relative quantifications of microbiome membership composition and functional 75 

capabilities [14, 15]. However, different microbial members can differ by several orders of 76 

magnitude in biomass [16]. Moreover, there is little insight on which microbial traits actually 77 

contribute to the functional activities of the microbiome, as functions predicted from 16S rDNA 78 

or metagenomics analyses are not necessarily expressed. Studies have shown that gene copy 79 

numbers are not representative of protein levels [17]. In addition, RNA expression have limited 80 

correlation to the actual protein abundance [18]. In contrast, mass spectrometry (MS)-based 81 

metaproteomics technology allows for deep insight into proteome-level information of the 82 

microbiome [19, 20], providing quantified protein abundances that estimate the functional 83 

activities of the microbiome. Proteins not only provide the biological activities to the 84 

microbiome, but also build up a large amount of biomass in microbial cells. Hence, the 85 

metaproteomic readouts can also be used to assess the microbiome biomass and analyze 86 

community structure [21]. It has been validated that metaproteomics is a good estimator of 87 

biomass contributions of microbiome members [22]. Despite its coverage could not compare to 88 

that of the genomic sequencing-based technologies, metaproteomics could confidently quantify 89 

proteins of the bacterial species that constitute>90% of the total biomass [23], making it 90 

sufficient for a fast-pass drug screening application. 91 

Here we report an approach named Rapid Assay of an Individual’s Microbiome (RapidAIM) 92 

facing gut microbiome-targeted drug screening, and evaluated the applicability of 93 
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metaproteomics for insights of microbiome responses to drugs. Briefly, in RapidAIM, individual 94 

microbiomes are cultured in a previously optimized culture system for 24 hours, and the samples 95 

are then analyzed using a metaproteomics-based analytical approach. A high-throughput equal-96 

volume based protein extraction and digestion workflow was applied to enable absolute biomass 97 

assessment along with the functional profiling. To demonstrate the feasibility and performance 98 

of the RapidAIM assay, we carried out a proof-of-concept study involving 43 compounds and 99 

five individual gut microbiomes. Microbiome responses including changes in biomass, taxon-100 

specific biomass contributions, taxon-specific functional activities, and detailed responses of 101 

interested enzymatic pathways can be obtained following the assay. 102 

Results  103 

Development and evaluation of RapidAIM 104 

RapidAIM consists of an optimized microbiome culturing method, an equal-volume based 105 

protein extraction and digestion workflow and a metaproteomic analysis pipeline (Figure 1a). 106 

Briefly, fresh human stool samples are inoculated in 96-well deep-well plates and cultured with 107 

drugs for 24 hours. We have previously optimized the culture model and validated that it 108 

maintains the composition and taxon-specific functional activities of individual gut microbiomes 109 

in 96-well plates [24]. After 24 hours, the cultured microbiomes are prepared for metaproteomic 110 

analysis using a microplate-based metaproteomic sample processing workflow (Supplementary 111 

Figure S1) adapted from our single-tube protocol [25]. The microplate-based workflow consists 112 

of bacterial cell purification, cell lysis under ultra-sonication in 8M urea buffer, in-solution 113 

tryptic digestion, and desalting. We validated each step of this workflow and found no significant 114 

differences in identification efficiency between 96-well plate processing and single-tube 115 

processing (Supplementary Figure S1). To compare total biomass, taxon-specific biomass and 116 

pathway contributions between samples in a high-throughput assay format, we applied an equal 117 

sample volume strategy to our recently developed metaproteomics techniques [20, 26, 27]. To 118 

validate the absolute quantification of microbiome abundance by comparing total peptide 119 

intensity, an equal volume of samples from a microbiome dilution series (simulating different 120 

levels of drug effects) was taken for tryptic digestion and LC-MS/MS analysis. Summed peptide 121 

intensity in each sample showed good linearity (R2 = 0.991, Figure 1b) with a standard 122 

colorimetric protein assay, showing that the total peptide intensity is a good indicator for 123 
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microbiome biomass levels. Since drugs could cause drastically change in microbiome 124 

abundance, we then evaluated whether biomass differences between wells could cause bias in 125 

identified functional and taxonomic compositions. We confirmed that the level of total biomass 126 

didn’t bias the composition of functional profiles (Figure 1c), protein groups (Supplementary 127 

Figure S2a), and taxonomic abundances (Supplementary Figure S2b). 128 

RapidAIM: Proof-of-concept study 129 

We conducted a proof-of-concept (POC) study on the use of RapidAIM to characterize drug-130 

microbiome interactions. We selected 43 compounds that have been previously suggested to 131 

impact, interact with, or be metabolized by the gut microbiome (Supplementary Table S1). 132 

Thirty-seven of these compounds are FDA-approved drugs; four are antibiotics, and the others 133 

include nonsteroidal anti-inflammatory drugs (NSAIDs), anti-diabetic drugs, aminosalicylate, 134 

and statins, etc. Each compound, at a dose corresponding to the assumed maximal fecal 135 

concentration of its daily dose, was added to five wells of 96-well plates containing 1 ml culture 136 

medium in each well. The drug solvent, dimethyl sulfoxide (DMSO), was used as the negative 137 

control. Then, each of the five wells for each compound was inoculated with a different fecal 138 

microbiome from healthy human volunteers. Following 24 hours of culturing, the samples were 139 

processed through the microplate-based workflow (Figure S1) and were subjected to a 90 min 140 

gradient-based rapid LC-MS/MS analysis. Using our automated metaproteomic data analysis 141 

software MetaLab [27], 101,995 peptide sequences corresponding to 24,631 protein groups were 142 

quantified across all samples with a false discovery rate (FDR) threshold of 1% (Figure 1e). The 143 

average MS/MS identification rate was 32.4 ± 8.8% (mean ± SD); an average of 15,017 ± 3,654 144 

unique peptides and 6,684 ± 998 protein groups were identified per sample. To provide a global 145 

overview of the microbiome responses, a PCA was performed based on label-free quantification 146 

(LFQ) intensities of protein groups (Figure 1f). As expected, the samples clustered based on the 147 

original microbiome source and not based on drug treatment. Within each individual microbiome 148 

group, a number of drug-treated samples clustered closely to their control while several drug-149 

treated samples clearly separated from the non-treated control. 150 

We next evaluated the robustness and reproducibility of the method by culturing one microbiome 151 

with drugs in technical triplicates. Cultured triplicates yielded high Pearson’s r for LFQ protein 152 

group intensities (Figure 1d). Hierarchical clustering based on Pearson’s r of LFQ protein group 153 

intensities between samples showed that with the exception of several compounds which 154 
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clustered closely with DMSO, cultured triplicates were clustered together (Supplementary 155 

Figure S3a). Moreover, total biomass, functional enzymes, and species biomass contributions 156 

were highly reproducible between triplicates as shown in Supplementary Figure S3b-d. 157 

 158 

 159 
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Figure 1. Rapid Assay of Individual Microbiome (RapidAIM) workflow and performance. (a) 160 

Experimental, analytical, and bioinformatics components of the RapidAIM workflow. Each individual’s 161 

gut microbiome samples are cultured with the test compounds in a 96-well deep-well plate at 37ºC in strict 162 

anaerobic conditions for 24 hours followed by high-throughput sample preparation and rapid LC-MS/MS 163 

analysis. Peptide and protein identification and quantification, taxonomic profiling, and functional 164 

annotation were performed using the automated MetaLab software [27]. (b) A series of six dilutions 165 

(dilution gradients: GRD1~6) of a same microbiome sample was tested in triplicate through the equal-166 

volume digestion and equal-volume MS loading protocol; the summed peptide intensity was compared to a 167 

set of protein concentration standards provided with DC protein concentration assay and showed good 168 

linearity (center points and error bars represent mean ± SD). (c) Stacked bars of clusters of orthologous 169 

groups (COG) category levels across the six concentrations showing no bias at the functional 170 

quantifications. (d) Analysis of three technical replicates in RapidAIM showing high Pearson’s correlation. 171 

(e) Numbers of MS/MS submitted, peptide sequence and protein group identifications in the POC dataset. 172 

(f) PCA based on LFQ intensities of protein groups for all POC samples.  173 

 174 

Effects of compounds on microbiome abundance and composition 175 

We examined the effect of the 43 compounds on the overall abundance (biomass) of each 176 

individual microbiome by comparing the total peptide intensity (Figure 2a). As expected, the 177 

antibiotics greatly reduced total microbial biomass in most individual microbiomes (with one 178 

exception of increased microbiome abundance in response to rifaximin, further examination is 179 

shown in Supplementary Figure S4). Closely clustered with these antibiotics, berberine and 180 

ibuprofen also inhibited the biomass of all individual microbiomes. 181 

We next explored the effects of drugs on the microbiome composition based on bacterial 182 

biomass contributions. To evaluate the overall shift of the microbiome, Bray-Curtis distance [28, 183 

29] between drug-treated and DMSO control microbiome indicated that fructooligosaccharide 184 

(FOS), rifaximin, berberine, diclofenac, ciprofloxacin, metronidazole and isoniazid significantly 185 

shifted the microbiome (pairwise Wilcoxon test, FDR-adjusted p < 0.05; Figure 2c). 186 

Our metaproteomic dataset allowed us to further examine the response of bacterial absolute 187 

abundance by comparing summed peptide intensities of each taxon (Figure 2b). As expected, 188 

the broad-spectrum antibiotics rifaximin, ciprofloxacin and metronidazole significantly inhibited 189 

the absolute abundance of a high number of bacterial genera (Wilcoxon test, p <0.05). Non-190 

antibiotic compounds, such as berberine, FOS, pravastatin, ibuprofen, diclofencac, flucycosine, 191 
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and indomethacin also showed significant decrease in the abundances of over ten genera. In 192 

addition, selective antibacterial activities were found with 35 out of the other 39 compounds at 193 

the genus level. Interestingly, it is clear in Figure 2b that while several genera were inhibited, 194 

the absolute intensity of Bifidobacterium was significantly increased by fructose-195 

oligosaccharides (FOS). Compared to the absolute abundance, the relative abundance provided a 196 

different insight into microbiome composition changes (Supplementary Figure S5). For 197 

example, as opposed to the finding that ciprofloxacin and metronidazole inhibited the biomass of 198 

most genera (Figure 2b), they significantly increased the relative abundance of genera 199 

Bifidobacterium, Ruminococcus, Butyrivibrio, Paenibacillus, etc. Several genera including 200 

Bifidobacterium, Collinsella, Fusobacterium, Butyrivibrio and Leuconostoc were significantly 201 

increased in their relative abundances by FOS. Interestingly, members of the Actinobacteria 202 

phyla, including Eggerthella, Gordonibacter, Slackia, and Adlercreutzia were more susceptible 203 

to drugs compared to most other genera. Moreover, at the species level, we found that 36 of the 204 

43 compounds significantly affected the biomass of at least one bacterial species (one-sided 205 

Wilcoxon rank sum test, FDR-adjusted p < 0.05; Supplementary Table S2). To this end, 206 

RapidAIM allowed for the assessment of changes in both absolute and relative abundances of 207 

microbes in response to the compounds. 208 
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 209 

Figure 2. Response of microbiome abundance and composition to compounds. (a) Biomass responses 210 

of individuals’ microbiomes to compounds relative to DMSO control. Ratio of peptide intensity between 211 

compound and DMSO control samples was calculated for each individual microbiome. (b) Log2 fold-212 

change of absolute abundance at the genus level in response to each drug compared with the DMSO 213 

control. Genera that existed in ≥80% of the volunteers are shown. Star (*) indicate significantly changed 214 

bacterial abundance by Wilcoxon test, p <0.05. (c) Bray-Curtis distance of genus-level composition 215 

between drug-treated microbiomes and the corresponding DMSO control samples. Heatmap colors are 216 

generated with average of log2-fold changes among the five individual samples. Statistical significance was 217 
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calculated by pairwise Wilcoxon test (FDR-adjusted p < 0.05). Box spans interquartile range (25th to 75th 218 

percentile) and line within box denotes median. For full compound names, see abbreviation list in 219 

Supplementary Table S1. 220 

Gut microbiome functions in response to compounds 221 

The Bray-Curtis distance of protein group profiles showed that all the four antibiotics, as well as 222 

FOS, berberine and diclofenac significantly altered the microbiome functions (Figure 3a). These 223 

functional alterations likely stemmed from changes in taxonomic composition as revealed by the 224 

genus-level Bray-Curtis distance analysis (Figure 2c). We next analyzed the protein group 225 

intensities by partial least square discriminant analysis (PLS-DA) to determine whether 226 

metaproteomic profiles could be used to discriminate between the DMSO-control and each of the 227 

drug-treated microbiomes. In agreement with the Bray-Curtis analysis results, PLS-DA 228 

interpretation identified drug-specific metaproteomic patterns associated with seven of our 229 

compounds, including the four antibiotics, FOS, berberine and diclofenac (Supplementary 230 

Figure S6). Hence, hereafter we named these seven compounds as class I compounds, whereas 231 

others were named class II compounds. To gain a better understanding of the global effects of 232 

class I compounds on the gut microbiome, we applied an unsupervised non-linear dimensionality 233 

reduction algorithm, t-distributed stochastic neighbor embedding [30], to visualize this subgroup 234 

of metaproteomic data based on protein group abundances (Figure 3b). Class I compounds led 235 

to a global alteration of the metaproteome, with apparent compound-specific patterns.  236 

We next examined the drug impacts on the abundance of functional proteins according to 237 

clusters of orthologous groups (COG) of proteins. We identified 535 COGs significantly 238 

decreased by at least one drug treatment; 15 of these COGs were decreased by ≥ 10 compounds 239 

(Supplementary Figure S7). Diclofenac and FOS were the only two compounds that 240 

significantly increased COGs (55 and 81 COGs, respectively). Enrichment analysis based on 241 

these significantly altered COGs shows that COG categories found to be enriched were 242 

responsive to 13 of our compounds (Figure 3c), six of those were class I compounds. 243 

Interestingly, the non-antibiotic NSAID diclofenac increased the abundance of several COG 244 

categories (Figure 3c). By mapping these significantly increased proteins from these COG 245 

categories against the string database, we found that these altered proteins are functionally 246 

interconnected (Supplementary Figure S8). Interestingly, one of the proteins that were highly 247 

connected in the string network, COG0176 – transaldolase (1.76 ± 0.21 fold-change), is involved 248 
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in the biosynthesis of ansamycins, bacterial secondary metabolites that have antibiotic activities 249 

[31]. 250 

 251 

Figure 3. Effect of compounds on metaproteomic profiles of the microbiome. (a) Bray-Curtis 252 

distance of protein groups between drug-treated microbiomes and the corresponding DMSO 253 

control samples. Statistical significance was calculated by pairwise Wilcoxon test (FDR-adjusted 254 

p < 0.05). (b) Unsupervised dimensionality reduction analysis suggesting three different classes of 255 

compound effects. (c) Enrichment analysis of all significantly different COGs in the POC dataset. 256 

Significantly altered COGs with a p-value cutoff of 0.05 are shown. 257 

 258 

Taxon-specific functional responses to class I compounds 259 

We next performed a taxonomic analysis of the functional responses to diclofenac, FOS, 260 

ciprofloxacin, and berberine, which represent four different types of compounds (NSAID, 261 

oligosaccharide, antibiotics, anti-diabetes) in the class I. Protein groups with VIP scores >1 262 

(thereafter defined as differential proteins) were extracted from each model, and were annotated 263 

with their taxonomic and COG information. The taxonomic distributions of the differential 264 
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proteins varied among drugs (Figure 4a). Moreover, mapping of the differential proteins to 265 

phyla-specific pathways revealed phyla-specific responses, as shown for berberine in 266 

Supplementary Figure S9. In agreement with Figure 4a, a higher proportion of down-regulated 267 

than up-regulated pathways were identified in Firmicutes and Actinobacteria, while the opposite 268 

pattern was observed in Bacteroidetes, Proteobacteria and Verrucomicrobia. In some cases, the 269 

phylum-specific responses included up-regulation and down-regulation of different proteins 270 

within the same pathway (black lines, Supplementary Figure S9). For example, we observed 271 

this pattern in fatty acid, carbohydrate, and nucleotide metabolism pathways in Firmicutes.  272 

Genus-level analysis revealed genus-specific responses to berberine (Figure 4b). In most genera, 273 

the genus-specific responses correlated with the overall abundance of the corresponding genus 274 

(Figure 4b, right panel). Nevertheless, some genera showed functional shifts in response to 275 

berberine without changes in overall abundance. For example, Bifidobacteria, Roseburia, 276 

Eubacterium, Clostridium, Ruminococcus, Blautia, and Subdoligranulum exhibited down-277 

regulation of proteins in various COG categories but no changes in biomass were observed. 278 

 279 
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 280 

Figure 4. Global functional effects of berberine, ciprofloxacin, FOS and diclofenac (a) 281 

Taxon-function distribution of protein groups responding to berberine, FOS, ciprofloxacin and 282 

diclofenac. Responding protein groups were selected by PLS-DA based on ComBat-corrected 283 

data. The semicircle diameter represents the number of PLS-DA VIP>1 protein groups 284 

corresponding to each phyla-COG category pair. (b) Genus-level shifts in functional activities in 285 

response to berberine and the alterations in biomass of the corresponding genera. Functional shifts 286 

(differential protein groups) were identified by PLS-DA. For each genus, the percentages of the 287 
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total numbers of up- and down-regulated protein groups corresponding to each COG category are 288 

shown. Shifts in bacterial biomass in the five microbiomes are shown in box plots with the boxes 289 

spanning interquartile range (25th to 75th percentile), and the vertical lines denoting the median 290 

for each genus.  291 

 292 

Enzymatic pathways in response to class I compounds 293 

Next we examined the ability of RapidAIM in observing detailed enzymatic pathways of interest. 294 

As examples, we show the effects of FOS and ciprofloxacin at the enzymatic pathway level. 295 

Protein groups to were annotated to KEGG (Kyoto Encyclopedia of Genes and Genomes) 296 

enzymes and were mapped against the KEGG pathway database. Figure 5a shows that FOS 297 

increased enzymes responsible for fructan and sucrose uptake, as well as enzymes for conversion 298 

of D-fructose into D-fructose-1-phosphate, D-mannose-6-phosephate and β-D-fructose-6-299 

phosphate. FOS also affected enzymes involved in the interconversion between glutamine, 300 

glutamate and GABA (molecules involved in gut-brain communication). In addition, enzymes 301 

involved in sulphide accumulation were affected, including decrease of dissimilatory sulfite 302 

reductase (EC 1.8.99.5) and increase of cysteine synthase (EC 2.5.1.47).  303 

Ciprofloxacin significantly altered the levels of enzymes involved in glycolysis/glycogenesis and 304 

pentose phosphate pathways (Figure 5b). The majority of enzymes involved in glycolysis were 305 

significantly increased by ciprofloxacin. Ciprofloxacin down-regulated enzymes (ECs 306 

1.1.1.49/1.1.1.363, 3.1.1.31, 1.1.1.44/1.1.1.343) involved in synthesis of ribulose-5-phosphate, 307 

which can be isomerized to ribose 5-phosphate for nucleotide biosynthesis [32]. Moreover, the 308 

levels of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were increased, 309 

suggesting that ciprofloxacin induces oxidative stress in gut bacteria.  310 
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 311 
Figure 5. Response of enzymatic pathways to drug treatment. (a) Effect of FOS treatment on 312 

enzymes involved in fructose and mannose metabolism, GABA production and sulfide 313 

metabolism pathways. (b) effect of ciprofloxacin treatment on enzymes involved in the 314 

glycolysis/gluconeogenesis and pentose phosphate pathway. The five blocks of each enzyme 315 

represent the five individual microbiomes. Colors in the blocks represent differences between 316 

normalized KEGG enzyme intensities with drug treatment versus DMSO (log2-transformation of 317 

the original intensity followed by a quotient normalization (x/mean)). 318 

 319 

Gut microbiome functions altered by class II compounds 320 

Class II compounds, in contrast to class I compounds, did not cause a global shift in the five 321 

individual microbiomes (an example is given by indomethacin, Figure 6a). However, Figure 6a 322 

as well as the Bray-Curtis analyses (Figure 2c and 3a) suggest that there were could be 323 

individual variabilities in the extent of drug response. We show that if analyzed on an individual 324 

sample basis, significant individualized functional effects could be revealed (Figure 6b and c), 325 

suggesting high sensitivity of the RapidAIM assay in its application to personalized drug 326 

screenings. For example, we identified 303 significantly altered protein groups in cultured 327 

replicates of a single indomethacin-treated microbiome (V1). Taxon-function coupled 328 

enrichment analysis showed that down-regulated functions were highly enriched in the genus 329 

Bacteroides, while up-regulated functions were mostly enriched in the order Enterobacterales 330 

(Figure 6d and e). The up-regulated functions of Enterobacterales included COG0459 331 

chaperonin GroEL (HSP60 family) and COG0234 co-chaperonin GroES (HSP10) (Figure 6e). 332 
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 333 
Figure 6. Individual functional responses to indomethacin. (a) When visualizing several 334 

individual microbiome responses with PCA (based on LFQ intensities of protein groups), inter-335 

individual variability can be greater than drug-induced functional shifts. (b) PCA clearly 336 

differentiated the response of microbiome V1 treated in triplicates using RapidAIM. (c) 303 337 

significant protein group responders were found by t-test (FDR-adjusted p<0.05). (d) Taxon 338 

enrichment analysis based on the differential protein groups, (p-adjusted=0.05). (e) Taxon-339 

function coupled enrichment analysis of up-regulated protein groups. 340 

 341 

Discussion  342 

In the present study, we developed an approach named Rapid Assay of Individual Microbiome 343 

(RapidAIM) to evaluate the effects of xenobiotics on individual microbiomes. The range of 344 

xenobiotics that reach the intestine and may interact with the gut microbiome is massive and 345 

expanding. These xenobiotics include antibiotics and other pharmaceuticals, phytochemicals, 346 

polysaccharides, food additives and many other compounds. With the exception of antibiotics, 347 
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we remain surprisingly ignorant on the extent to which these compounds affect the functions of 348 

the gut microbiome. This understanding was limited by lacking an efficient and scalable 349 

approach that could maximally obtain insights into microbiome responses while minimizing the 350 

number of analytical tools being used. 351 

Here we describe an approach which enables the exploration of drug-microbiome interactions 352 

using an optimized in vitro culturing model and a metaproteomic approach. We have achieved 353 

the maintenance of the representativeness of the initial individual microbiome [24]. Besides, for 354 

an in vitro culturing simulating the in vivo microbiome, it is important to note that the population 355 

of gut bacteria in the human body is highly dynamic. It has been estimated that there are 356 

~0.9·1011 bacteria/g wet stool and a total of ~3.8·1013 bacteria in the colon. Approximately 200 g 357 

wet daily stool would be excreted [33], leading to a dramatic decrease of the bacterial number in 358 

the gut; on the other hand, new bacterial biomass starts growing on nutrients passing through the 359 

gut. Current technologies examining the effect of xenobiotic stimulation are usually based on 360 

microbiome stabilized after over two weeks of culturing. However, at the stable phase of 361 

microbiome growth, the ecosystem has reached its carrying capacity (stable population size), 362 

limiting possible observations such as drug effect on the biomass. In our studies, we have 363 

previously validated that our composition of gut microbiome is well-maintained along the 364 

growth curve [24], so we were able to observe drug responses of growing gut microbiomes by 365 

adding the compounds at the initial inoculation stage. Subsequently, combined with our 366 

quantitative metaproteomics approach based on equal-sample volume digestion, we were able to 367 

observe the drug responses of overall microbiome abundance and taxon-specific biomass 368 

contributions. 369 

Here we address the importance of absolute quantification of microbiome biomass contributions. 370 

Knowing the change of total microbiome biomass would be helpful to assess the antibiotic-like 371 

activity of a compound. As our results clearly showed that the tested antibiotics inhibited the 372 

accumulation of microbiome biomass, we found that non-antibiotic compounds ibuprofen and 373 

berberine also showed inhibitory effects. Ibuprofen has been frequently used as a safe 374 

medication. A study based on relative abundance discussed that ibuprofen had less aggressive 375 

effects on the gut microbiome compared to some other NSAIDs [34]. However, in our study, 376 

ibuprofen significantly inhibited the overall microbiome biomass through suppressing common 377 

gut commensals such as Bacteroides, Clostridium, Dorea, Eggerthella, Akkermansia, etc. In 378 
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terms of berberine, previous studies suggested that berberine has positive effect on beneficial gut 379 

microbes, e.g. selectively enriched a few putative short-chain fatty acid producing bacteria [35], 380 

and increased the relative abundance of Akkermansia spp [36]. However, under the background 381 

of an overall inhibition, an enrichment of a taxon (increase in relative abundance) does not 382 

necessarily relate to its outgrowth. As another example, our result showed that ciprofloxacin, 383 

metronidazole and FOS significantly enriched Bifidobacterium (Supplementary Figure S5). 384 

The fact that Bifidobacterium has a certain resistance to ciprofloxacin and metronidazole [37] 385 

could contribute to its higher adaptability over other genera. However, we didn’t find evidence of 386 

increase in its absolute abundance in presence of ciprofloxacin and metronidazole with 387 

RapidAIM. On the contrary, FOS, which could be utilized as the carbon source of 388 

Bifidobacterium [38, 39], significant increased both absolute and relative abundances of this 389 

genus in our study.  390 

We showed that the RapidAIM assay yielded insights into functional responses at multiple 391 

levels. Using PLS-DA, we found that berberine, FOS, metronidazole, isoniazid, ciprofloxacin, 392 

diclofenac, and rifaximin consistently shifted the metaproteome of the individual gut 393 

microbiomes. By annotating the altered proteins at taxonomy, function and pathway levels, we 394 

revealed the actions of the different drugs on the microbiome. For example, FOS treatment 395 

elevated enzymes involved in fructan and sucrose uptake, as well as enzymes involved in the 396 

interconversion among glutamine, glutamate and GABA, which are associated with microbiome 397 

communication via the gut-brain axis [40]. In agreement, a study has shown that FOS 398 

administration increased GABA receptor genes in mice, and further exhibited both 399 

antidepressant and anxiolytic effects [41]. FOS also decreased proteins involved in sulfide 400 

generation, suggesting decreased sulfide accumulation in the microbiome. This observation is in 401 

agreement with in vivo studies showing that FOS treatment decreased the concentration of fecal 402 

H2S [42-44]. Ciprofloxacin treatment increased enzymes SOD and CAT, which was in 403 

agreement with several reports indicating that ciprofloxacin triggers oxidative stress in several 404 

bacteria [45-47]. With berberine treatment, we showed that taxon-specific functional shifts can 405 

occur either with or without a change in the taxon’s biomass. This observation highlights the 406 

strength of our workflow which enables quantitative metaproteomic profiling of the microbiome. 407 

Indeed, current classical sequencing-based approaches (16S rDNA or metagenomics 408 

sequencing), which generate relative abundances, would not detect these types of changes. 409 
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Finally, we showed that although a compound may not show global impacts across the five 410 

tested microbiomes, it could result in significant alterations on a single microbiome basis. The 411 

example given by Indomethacin showed that the order Enterobacterales were enriched with 412 

increased chaperonin GroEL (HSP60 family) and co-chaperonin GroES (HSP10) (Figure 6e), 413 

which have been implicated in infection and diseases pathology [48]. 414 

Our workflow still exhibits certain limitations. In particular, MS analysis is a time-consuming 415 

process. To this end, a fast-pass screening process such as tandem mass tags (TMT)[49, 50] 416 

could be used to multiplex multiple microbiome samples in one MS analysis. Furthermore, our 417 

workflow only measures the direct effects of compounds on the microbiome. In its current 418 

implementation, it does not take into account the host effect on the microbiome and/or the effects 419 

of drug metabolites produced by the host. Future efforts could be aimed at incorporating co-420 

culture of host cells/tissue and gut bacteria [51-53] into a high-throughput drug screening process 421 

for achieving more comprehensive insights on host-drug-microbiome interaction. 422 

Metaproteomics is a tool that is orthogonal to other omics technologies [17], hence for the need 423 

of deeper investigations, RapidAIM could also be coupled with techniques such as 424 

metagenomics or metabolomics for a multiple dimension view of the microbiome interaction 425 

with drugs. 426 

Conclusion 427 

To date, the field of drug-microbiome interactions largely focuses on relative microbiome 428 

composition and microbial drug metabolism, with a limited understanding of the effects of 429 

pharmaceuticals on the absolute abundance and the function of the gut microbiome. A better 430 

understanding of these interactions is essential given that the drug effects on the microbiome 431 

biomass and functions may have important health consequences. Our workflow enabled the 432 

insights into both absolute abundances and functional responses of the gut microbiome to drugs 433 

using metaproteomics as the single analytical tool. We have shown that our workflow is robust, 434 

reproducible and quantitative, and is easily adaptable for high-throughput drug screening 435 

applications. 436 
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Methods 437 

Stool sample preparation 438 

The Research Ethics Board protocol (# 20160585-01H) for stool sample collection was approved 439 

by the Ottawa Health Science Network Research Ethics Board at the Ottawa Hospital. Stool 440 

samples were obtained from 5 healthy volunteers (age range 27 - 36 years; 3 males and 2 441 

females). Exclusion criteria were: IBS, IBD, or diabetes diagnosis; antibiotic use or 442 

gastroenteritis episode in the last 3 months; use of pro-/pre-biotic, laxative, or anti-diarrheal 443 

drugs in the last month; or pregnancy. All volunteers were provided with a stool collection kit, 444 

which included a 50 ml Falcon tube containing 15 ml of sterile phosphate-buffered saline (PBS) 445 

pre-reduced with 0.1% (w/v) L-cysteine hydrochloride, a 2.5 ml sterile sampling spoon (Bel-Art, 446 

United States), plastic wrap, gloves and disposal bags. Briefly, each volunteer placed the plastic 447 

wrap over a toilet to prevent the stool from contacting water, collected ~3 g of stool with the 448 

sampling spoon, and dropped the spoon into the prepared 50 ml tube. The sample was 449 

immediately weighed by a researcher and transferred into an anaerobic workstation (5% H2, 5% 450 

CO2, and 90% N2 at 37°C), where the tube was uncapped to remove O2 before homogenization 451 

with a vortex mixer. Then the homogenate was filtered using sterile gauzes to remove large 452 

particles and obtain the microbiome inoculum.  453 

Culturing of microbiomes and drug treatments 454 

Each microbiome inoculum was immediately inoculated at a concentration of 2% (w/v) into a 96-455 

well deep well plate containing 1 ml culture medium and a compound dissolved in 5 µl DMSO (or 456 

5 µl DMSO as the control) in each well. The culture medium contained 2.0 g L-1 peptone water, 457 

2.0 g L-1 yeast extract, 0.5 g L-1 L-cysteine hydrochloride, 2 mL L-1 Tween 80, 5 mg L-1 hemin, 458 

10 μL L−1 vitamin K1, 1.0 g L-1 NaCl, 0.4 g L-1 K2HPO4, 0.4 g L-1 KH2PO4, 0.1 g L-1 459 

MgSO4⋅7H2O, 0.1 g L-1 CaCl2⋅2H2O, 4.0 g L-1 NaHCO3, 4.0 g L-1 porcine gastric mucin (cat# 460 

M1778, Sigma-Aldrich), 0.25 g L-1 sodium cholate and 0.25 g L-1 sodium chenodeoxycholate. The 461 

culture medium was sterile and had been pre-reduced overnight in an anaerobic workstation. 462 

Concentration of each compound was determined based on the assumption that maximal oral 463 

dosage of the drug distributed in 200 g average weight of the colon contents. However, several 464 

compounds (i.e. cimetidine, ciprofloxacin, flucytosine, mesalamine, metformin, metronidazole, 465 

naproxen-sodium, paracetamol, rifaximin, sodium butyrate, and sulfalazine) exceeded solubility 466 

in the given volume of DMSO (5 µl). After confirming that these compounds still showed effect 467 
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after a 10× dilution (as can be seen from hierarchical clustering in Supplementary Figure S3), 468 

the concentrations corresponding to the 1/10 highest oral dosages were used for these compounds. 469 

Detailed catalogue number and concentration of each compound is listed in Supplementary Table 470 

S1. After inoculation, the 96-well deep well plate was covered with a sterile silicone gel mat with 471 

a vent hole for each well made by a sterile syringe needle. Then, the plate was shaken at 500 rpm 472 

with a digital shaker (MS3, IKA, Germany) at 37°C for 24 hours in the anaerobic chamber. 473 

Metaproteomic sample processing and LC-MS/MS analysis 474 

The sample processing was based on a previously reported metaproteomic sample processing 475 

workflow[25], we adapted it for microplates (Supplementary Figure S1). Briefly, after 476 

culturing for 24 hours, each 96-well plate was transferred out of the anaerobic station and was 477 

immediately centrifuged at 300 g for 5 min to remove debris. The supernatants were transferred 478 

into new 96-well deep well plates for another two rounds of debris removal at 300 g. The 479 

supernatants were then transferred to a new plate and centrifuged at 2,272 g for 1 hour to pellet 480 

the microbiome. The supernatant was removed and the pelleted bacterial cells were washed three 481 

times with cold PBS in the same 96-deep well plate, pelleting the cells after each wash by a 482 

2,272 g centrifugation for 1 hour. The 96-well plate containing harvested bacterial cells was then 483 

stored overnight at -80oC before bacterial cell lysis and protein extraction. The lysis buffer was 484 

freshly prepared, containing 8 M urea in 100 mM Tris-HCl buffer (pH = 8.0), plus Roche 485 

PhosSTOP™ and Roche cOmplete™ Mini tablets. Microbial cell pellets were then re-suspended 486 

in 150 µl lysis buffer and lysed on ice using a sonicator (Q125 Qsonica, USA) with an 8-tip-horn 487 

probe. 100% amplitude was used (i.e. 15.6 Watts per sample), and four cycles of 30 s 488 

ultrasonication and 30 s cooling down were performed. Protein concentrations of the DMSO 489 

control samples were measured in triplicate using a detergent compatible (DC) assay (Bio-Rad, 490 

USA). Then, a volume equivalent to the average volume of 50 μg of protein in the DMSO 491 

control samples was acquired from each sample and placed into a new 96-deep well plate. The 492 

samples were reduced and alkylated with 10 mM dithiothreitol (DTT) and 20 mM iodoacetamide 493 

(IAA), followed by a 10× dilution using 100 mM Tris-HCl (pH = 8.0) and tryptic digestion 494 

under 37°C for 18 hours using 1 µg of trypsin per well (Worthington Biochemical Corp., 495 

Lakewood, NJ). Digested peptides were desalted using a panel of lab-made 96-channel filter tips 496 

generated by inserting 96 20 µl filter tips into a 96-well cover mat and stacking each filter tip 497 
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with 5 mg of 10-μm C18 column beads. After being washed twice with 0.1% formic acid (v/v), 498 

tryptic peptides were then eluted with 80% acetonitrile (v/v)/0.1% formic acid (v/v). 499 

After freeze-drying, each sample was re-dissolved in 100 μl 0.1% formic acid (v/v), and 2 μl of 500 

the solution (corresponding to 1 μg of proteins in the DMSO control) was loaded for LC-MS/MS 501 

analysis in a randomized order. An Agilent 1100 Capillary LC system (Agilent Technologies, 502 

San Jose, CA) and a Q Exactive mass spectrometer (ThermoFisher Scientific Inc.) were used. 503 

Peptides were separated with a tip column (75 μm inner diameter × 50 cm) packed with reverse 504 

phase beads (1.9 μm/120 Å ReproSil-Pur C18 resin, Dr. Maisch GmbH, Ammerbuch, Germany) 505 

following a 90 min gradient from 5 to 30% (v/v) acetonitrile at a 200 nL/min flow rate. 0.1% 506 

(v/v) formic acid in water was used as solvent A, and 0.1% FA in 80% acetonitrile was used as 507 

solvent B. The MS scan was performed from 300 to 1800 m/z, followed by data-dependent 508 

MS/MS scan of the 12 most intense ions, a dynamic exclusion repeat count of two, and repeat 509 

exclusion duration of 30 s. 510 

Assessment of the equal-volume strategy 511 

Six dilutions of a single microbiome sample were prepared in triplicate wells and an equal 512 

volume was taken from each sample for tryptic digestion and LC-MS/MS analysis. 513 

Metaproteomic sample processing and analysis followed the same procedures stated above, and 514 

total peptide intensity was calculated. A DC protein concentration assay was also performed with 515 

each sample. Linearity between total protein concentration and total peptide intensity quantified 516 

by LC-MS/MS was then compared. 517 

Metaproteomics data analysis 518 

1) Metaproteomic database search: 519 

Protein/peptide identification and quantification, taxonomic assignment and functional 520 

annotations were done using the MetaLab software (version 1.1.0)[27]. MetaLab is a software 521 

that automates an iterative database search strategy, i.e. MetaPro-IQ [26]. The search was based 522 

on a human gut microbial gene catalog containing 9,878,647 sequences from 523 

http://meta.genomics.cn/. A spectral clustering strategy were used for database construction from 524 

all raw files, then the peptide and protein lists were generated by applying strict filtering based 525 

on a FDR of 0.01, and quantitative information of proteins were obtained with the maxLFQ 526 

algorithm on MaxQuant (version 1.5.3.30). Carbamidomethyl (C) was set as a fixed modification 527 

and oxidation (M) and N-terminal acetylation (Protein N-term) were set as variable 528 

modifications. Instrument resolution was set as “High-High”.  529 
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2）Microbiome biomass analyses:  530 

Total microbiome biomass was estimated for each sample by summing peptide intensities. 531 

Taxonomic identification was achieved by assigning peptide sequences with lineage of lowest 532 

common ancestor (LCA). The “peptide to taxonomy” database (pep2tax database) was selected 533 

for mapping identified peptides to the taxonomic lineages [27]. Bacteria, eukaryota, viruses, and 534 

archaea were included in the LCA calculation. Taxonomic biomass was quantified by summing 535 

the intensities of the peptides corresponding to each taxon. A Bray-Curtis dissimilarity-based 536 

approach [28] was applied for evaluating the variation of genus-level biomass contributions 537 

between drug-treated and DMSO control groups. Calculation of the Bray-Curtis distance was 538 

performed using the R package “vegan”[29]. 539 

3） Functional analysis: 540 

The quantified protein groups were first filtered according to the criteria that the protein appears 541 

in >80% of the microbiomes with at least one drug treatment. Then LFQ protein group intensities 542 

of the filtered file was log2-transformed and normalized through quotient transformation 543 

(x/mean) using the R package clusterSim. Then, LFQ protein group intensities were processed 544 

by a ComBat process [54, 55] using iMetalab.ca [56] to remove possible batch effects between 545 

individual microbiomes. Using the ComBat-corrected data, an unsupervised non-linear 546 

dimensionality reduction algorithm, t-distributed stochastic neighbor embedding (t-SNE)[30] 547 

was then applied to visualize similarities between samples using the R package Rtsne. Parameter 548 

for the function Rtsne() were, perplexity=10, max_iter = 1200 (number of iterations), other 549 

parameters were set as default. The R function geom_polygon implemented in ggplot2 was used 550 

to visualize the t-SNE results. 551 

Functional annotations of protein groups, including COG and KEGG information, were obtained 552 

in the MetaLab software. In addition, KEGG ortholog (KO) annotation of protein FASTA 553 

sequences was conducted using GhostKOALA (https://www.kegg.jp/ghostkoala/)[57]. Log2 554 

fold-change of each drug-treated sample relative to the corresponding DMSO control was 555 

calculated using the abundances of proteins annotated to COG categories and COGs. Functional 556 

enrichment analysis was performed using the enrichment module on iMetalab.ca through 557 

inputting the list of COG functional proteins. Adjusted p-value cutoff was set at 0.05 for the 558 

enrichment analysis. 559 
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Statistical analysis 560 

We examined data distribution on all levels of data, and results indicated non-normal 561 

distributions of the dataset (examples shown in Supplementary Figures S10 and 11). Hence, a 562 

non-parametric statistical hypothesis test, the Wilcoxon rank sum test, was applied in statistical 563 

analyses. For multiple comparisons, p-values were adjusted using the Benjamini-Hochberg false 564 

discovery rate (FDR) procedure[58]. For multivariate analysis, partial least-squares discriminant 565 

analyses (PLS-DA) based on ComBat-corrected protein group intensities were performed using 566 

MetaboAnalyst (http://www.metaboanalyst.ca/)[59]. PLS-DA model were evaluated by cross-567 

validation of R2 and Q2. 568 

Data visualizations 569 

Box plots, violin plots, hierarchical clustering, 3D scatter plots, heatmaps, PCA, and t-SNE were 570 

visualized using R packages ggplot2, gridExtra, scatterplot3d, and pheatmap. Pathway maps 571 

were visualized using iPATH 3 (https://pathways.embl.de/)[60] and Pathview Web 572 

(https://pathview.uncc.edu/)[61]. Stacked column bars and functional enrichments were 573 

visualized on iMetaLab.ca. 574 

List of abbreviations 575 

COG Clusters of orthologous groups 
DMSO Dimethyl sulfoxide 
FDR False-discovery rate 
FOS Fructooligosaccharide 
GABA Gamma-Aminobutyric Acid 
KEGG Kyoto Encyclopedia of Genes and Genomes 
LC-MS/MS Liquid chromatography–tandem mass spectrometry 
LFQ Label-free quantification 
NSAIDs Nonsteroidal anti-inflammatory drugs 
PCA Principle component analysis 
PLS-DA Partial least squares discriminant analysis 
POC Proof-of-concept 
VIP Variable importance in projection 
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Figure S1. Establishment and step-by-step validation of the microplate-based metaproteomic sample 777 

preparation workflow of the RapidAIM assay. 778 

After culturing in a 96-well deepwell plate [1], the bacterial cells were washed with PBS [2], then disrupted with 779 

four cycles of 30 s ultrasonication [3]. Protein concentration was measured in the DMSO control sample using a DC 780 

protein assay. This concentration was used to calculate a volume equivalent to 50 µg proteins in the control sample. 781 

This volume was taken from every sample and digested with trypsin [4], then desalted with a panel of 96 filter tips 782 

packed with C18 beads and equal volumes of each sample were analyzed by LC-MS/MS [5]. 783 

Due to a few differences in the metaproteomic procedure compared with tube-based protocols, we examined the 784 

effect of protocol differences on sample quality step-by-step. In previously published protocols, samples were 785 

cultured in 2 ml culture tubes1,2. In step [1], culturing samples in a 96-well plate reduced the sample size to 1 ml. No 786 

significant difference was shown by t-test in peptide and protein group identification numbers between protein 787 

extractions from 1 ml and 2 ml samples. For step [2], the 96-deepwell plates limited centrifugation speed to 2,270 g 788 

(versus 14,000 g in the original protocol), so we extended the centrifugation time from 20 min to 1 hour and tested 789 

whether bacterial concentration was affected by the altered centrifugation process1,3. Concentration of purified 790 

bacterial cells were compared by OD600 after being re-suspended in 1 ml, 2 ml, 4 ml, 8 ml, and 16 ml PBS. No 791 

significant difference in OD600 reads was observed between the two cell purification protocols. In step [3], the 792 

original protocol used a high-speed centrifugation (16,000 g) to remove cell debris after the ultrasonication. Due to 793 

the limitation of centrifugation speed when using a microplate, we compared metaproteomic profiles of the sample 794 

when digested with or without cell debris removal. No significant differences were found in the number of protein 795 

identifications. In terms of differentially identified proteins, we found that the samples without cell debris removal 796 

resulted in more identifications of cell-membrane proteins such as the ABC-type transport systems, as well as 797 

cytoskeleton-related proteins, such as the translation elongation factor EF-Tu4,5, 6-phosphofructokinase6, and 798 

ribosomes7. Therefore, we infer that eliminating the centrifugation process could reduce the removal of cytoskeleton 799 

and cell membrane proteins. For step [4], no validation was necessary as the same type of filter tips were used in 800 

both protocols. Finally, we performed a whole-workflow comparison of the metaproteomic outcomes between 801 

traditional tube-based and 96-well-based processes. The microplate-based metaproteomic workflow showed no 802 

statistically significant difference in peptide and protein identification compared with the tube-based workflow. 803 
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Supplementary Figure S2 805 
 806 

 807 

 808 
Figure S2. Assessment of the equal-volume digestion and LC-MS/MS analysis strategy. 809 

(a) In triplicates, six dilutions of a single microbiome sample were subjected to this equal-volume based analysis. 810 

 The LFQ intensities of protein groups showed Pearson’s correlation coefficient r > 0.95 between most dilutions, but 811 

a lower r was seen in the samples with the lowest concentration. (b) Comparison of taxonomic biomass 812 

contributions on different levels (summed peptide intensity assigned to different taxa) among diluted groups 813 

suggested very low level of bias. GRD1-6 are six different dilution gradients (protein concentration shown in Figure 814 

1b), and t1-t3 are technical replicates of the same conditions. 815 
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Supplementary Figure S3 817 

 818 

Figure S3. Reproducibility of RapidAIM assay on different levels. 819 

(a) Clustering using protein group composition information showed that triplicates of drug treatments were closely 820 

clustered. A hierarchical tree was generated based on Pearson’s correlation coefficient. The cluster corresponding to 821 

the gray box contained DMSO control samples; samples in this cluster indicated drugs that had very weak effects on 822 

the microbiome. (b) Box chart suggesting that biomass effects by drugs are highly reproducible. (c) Examples 823 

showing reproducible functional responses to drugs at the enzyme level. COC0031 and COG2873 are cysteine 824 

synthase and O-acetylhomoserine/O-acetylserine sulfhydrylase (pyridoxal phosphate-dependent), respectively; both 825 

enzymes are involved in the conversion of sulfide to L-cysteine8. COG2221 is dissimilatory sulfite reductase 826 

(desulfoviridin), alpha and beta subunits; this enzyme reduces sulfite to sulfide9. (d) Examples showing reproducible 827 

taxonomic responses to drugs at the species level. F. prausnitzii is a ubiquitous bacterium of the intestinal 828 

microbiota10; B. worthia is a taurine-degrading bacterium which can reduce sulfite to sulfide by dissimilatory sulfite 829 

reductase9. COG2221 and B. worthia show a correlation in their response to different drugs. Box spans interquartile 830 

range (25th to 75th percentile), and line within box denotes median.  831 
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Supplementary Figure S4 832 
 833 

 834 
 835 

Figure S4. Case study on microbiome V1’s response to rifaximin (RFXM). We have shown that the antibiotic 836 

rifaximin did not show overall biomass inhibition on microbiome sample V1 (Figure 2a and Supplementary Figure 837 

S3b). We examined whether the expressions of antibiotic resistance proteins were affected. Briefly, the LC-MS/MS 838 

raw files were specifically searched against the Structured Antibiotic Resistance Genes (SARG) database 48 which 839 

highlighted 118 antibiotic resistance protein groups across the dataset. (a) We found an increase in relative 840 

abundance of total antibiotic resistance proteins in microbiome V1 in response to rifaximin. (b and c) Particularly, 841 

antibiotic resistance peptide sequences unique to Proteobacteria and Firmicutes were increased. (d) Moreover, 842 

despite no significant change in total microbiome biomass in V1, a significant 6.5-fold increase in the relative 843 

biomass of Proteobacteria in the whole microbial community was observed. (e) Non-parametric test resulted in 844 

seven significantly increased antibiotic resistance protein groups (FDR-adjusted p value<0.05). These protein groups 845 

belonged predominantly to Proteobacteria (5 out of 7). Increase of Proteobacteria is associated with dysbiosis in gut 846 

microbiota 49. These together suggested a potential risk of rifaximin administration in individual V1. (p values were 847 

based on two-sided Wilcoxon test; box spans interquartile range (25th to 75th percentile), and line within box 848 

denotes median.  849 
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Supplementary Figure S5 850 
 851 

 852 
Figure S5. Log2 fold-change of relative abundance at the genus level in response to each drug compared with 853 

the DMSO control. Genera that existed in ≥80% of the volunteers are shown. Star (*) indicate significantly 854 

changed bacterial abundance by Wilcoxon test, p <0.05..  855 
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Supplementary Figure S6 856 
 857 

 858 
 859 

Figure S6. Score plots and cross-validations of seven PLS-DA models 860 

PLS-DA models of microbiomes responses to each compound were established using MetaboAnalyst 4.0. PLS-DA 861 

model qualities were assessed through cross-validation, and accuracy, R2 and Q2 were given for each model. Seven 862 

compounds were found with valid PLS-DA models distinguishing the effect of the compound from the DMSO 863 

control. 864 
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Supplementary Figure S7 868 
 869 
 870 

 871 
 872 

Figure S7. Log2 fold-change of functions at the COG protein level 873 

On the COG functional protein level, 535 COGs were significantly decreased by at least one drug treatment. The 15 874 

COGs that were affected by ≥ 10 compounds are shown in this figure. Statistical significance was evaluated by 875 

one-sided Wilcoxon rank sum test, FDR-adjusted p-values: *, p < 0.05; **, p < 0.01. 876 
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Supplementary Figure S8 878 

 879 
Figure S8. String interaction of COG functional proteins significantly stimulated by diclofenac 880 
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Supplementary Figure S9 883 

 884 
Figure S9. Phylum-specific functional responses to Berberine 885 

Protein groups with VIP scores of >1 were annotated to phyla and COGs. Up- and down-regulated (red and green 886 

lines) COGs corresponding to different phyla were illustrated on a metabolic pathway map using iPath 3.  Pathway 887 

maps for each phylum were combined, and overlapped pathways were shown in black lines. Our data suggest that 888 

different phyla responded differently at a functional pathway level. 889 
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Supplementary Figure S10 891 

 892 
Figure S10. Randomly selected LFQ intensities of protein groups showing heavy tailed distribution on the Q-893 

Q plots. 894 
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Supplementary Figure S11 897 

 898 
 899 

Figure S11. Randomly selected log2-fold changes of COGs showing heavy tailed distribution on the Q-Q plots. 900 
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